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Acoustic stability 
of a self‑gravitating cylinder 
leading to astrostructure formation
Sayanti Dasgupta 1, Ahmed Atteya 2 & Pralay Kumar Karmakar 1*

We employ a quantum hydrodynamic model to investigate the cylindrical acoustic waves excitable 
in a gyromagnetoactive self‑gravitating viscous cylinder comprised of two‑component (electron–
ion) plasma. The electronic equation of state incorporates the effect of temperature degeneracy. It 
reveals an expression for the generalized pressure capable of reproducing a completely degenerate 
(CD) quantum (Fermi) pressure and a completely non‑degenerate (CND) classical (thermal) pressure. 
A standard cylindrical wave analysis, moderated by the Hankel function, yields a generalized 
linear (sextic) dispersion relation. The low‑frequency analysis is carried out procedurally in four 
distinct parametric special cases of astronomical importance. It includes the quantum (CD) non‑
planar (cylindrical), quantum (CD) planar, classical (CND) non‑planar (cylindrical), and classical 
(CND) planar. We examine the multi‑parametric influences on the instability dynamics, such as the 
plasma equilibrium concentration, kinematic viscosity, and so forth. It is found that, in the quantum 
regime, the concentration plays a major role in the system destabilization. In the classical regime, 
the plasma temperature plays an important role in both the stabilization and destabilization. It 
is further seen that the embedded magnetic field influences the instability growth dynamics in 
different multiparametric regimes extensively, and so forth. The presented analysis can hopefully be 
applicable to understand the cylindrical acoustic wave dynamics leading actively to the formation of 
astrophysical gyromagnetic (filamentary) structures in diverse astronomical circumstances in both the 
classical and quantum regimes of astronomical relevance.

The study of acoustic waves and instabilities excitable in two-component plasmas (electron–ion) has recently 
gathered significant research interest because of their large-scale applications in diversified explorative areas in 
both the classical and quantum regimes. Such plasmas are naturalistically ubiquitous in diverse circumstances. 
It mainly includes inertially confined laboratory plasmas, liquid metals, stellar and planetary interiors, Earth’s 
auroral regions, Jupiter magnetosphere, supernova explosions, and so  on1–6. As a consequence, it is quite expe-
dient to analyze the supported normal acoustic waves and instabilities in order to perceive their bulk stability 
behaviours in different astronomical circumstances.

It is worth mentioning in the above context that a good number of rigorous investigations have been per-
formed to study the dynamics of acoustic waves and corresponding instabilities in astrophysical  plasmas7–14. 
In this context, an investigative study of non-linear electron acoustic waves in quantum plasmas has been 
 performed7. It has been found that both compressive and rarefactive solitons along with periodical potential 
structures exist for various ranges of dimensionless quantum  parameter7. In addition, linear and non-linear 
quantum ion-acoustic waves in dense magnetized electron–positron-ion plasmas have also been  analyzed8. It 
has been found that the ion-acoustic soliton structures are influenced by several factors, like quantum pressure, 
concentration of positrons, and so  on8. Non-linear quantum dust acoustic waves in non-uniform complex dusty 
plasma have also been  studied9. It has been found that the system admits only rarefactive solitons, the properties 
of which were analyzed using the initial ion and electron number  densities9. A theoretic study has been performed 
to analyze the obliquely propagating two-dimensional quantum dust ion-acoustic solitary waves in magnetized 
quantum dusty plasma by deriving the Zakharov-Kuznetsov (ZK) equation for small-amplitude  perturbations10. 
The combined effects of obliqueness and non-extensive electrons have also been incorporated in the study of 
the ion-acoustic waves to investigate the propagation properties of two possible modes in the linear  regime11. It 
has been found that electron non-extensivity decreases the phase velocity of both the  modes11. It has also been 
observed that the relativistic effect plays an important role in the propagation of the positron-acoustic solitary 
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 waves12. The linear and non-linear analyses of dust-acoustic waves in dissipative space dusty plasma have also 
been  addressed13. The dependence of the damping rate of the waves on the wavenumber, kinematic viscosity, 
and so on has been  discussed13. The acoustic mode excitation and stability in strongly coupled bi-component 
plasma have also been  investigated14. It has been found that the acoustic mode is significantly modified due to 
consideration of the viscoelastic  effect14. Another semi-analytic study has been conducted to analyze the effects 
of positron density and temperature on the electron acoustic shock waves in magnetized electron–positron-ion 
 plasma15. It has been found that combined action of dissipation, superthermality, concentration of positrons; 
and so on significantly modify the properties of the electron-acoustic shock  waves15. The formation of electron 
acoustic solitary structure in the inner magnetosphere of Earth has also been  studied16. The non-linear coupling 
between electromagnetic waves and electron-acoustic waves in astrophysical plasma has also been  investigated17. 
From this study, it has been found that the high-frequency electromagnetic waves interact non-linearly with the 
electron-acoustic  waves17. The propagation dynamics of non-linear electron-acoustic waves have been explored 
with the help of the Boussinesq  equation18. It has been found that electron-acoustic waves possess breather 
structures, in addition to the solitary wave  solutions18. A semi-analytic theoretic study has also been conducted to 
study the dynamics of the nucleus-acoustic waves, excitable in compact astroobjects in spherical  geometry19. The 
influence of relativistic effects, electrostatic confinement pressure, and other realistic factors on the propagation 
of ion-acoustic waves has been  investigated20. The instability arising due to the interaction of the electromagnetic 
waves with the small-frequency longitudinal spin electron-acoustic waves has been  investigated21. Very recently, 
a review article has also been compiled taking into account all the possible acoustic modes excitable in Jovian 
dusty  magnetosphere22. The characteristics of dust acoustic cnoidal waves due to dust particle polarization have 
been  investigated23. It can be fairly concluded that acoustic waves have attracted the attention of researchers since 
a long time. It is clearly evident that even though there are quite a large number of investigations dealing with 
acoustic waves in cylindrical and spherical geometry, the cylindrical acoustic wave analysis by employing Hankel 
function is missing from all the aforementioned investigations to the best of our knowledge. By cylindrical waves, 
we mean a wave where distribution of all quantities is homogeneous in some direction and has complete axial 
symmetry about that  direction24. Thus, investigation of the characteristics of cylindrical acoustic waves by means 
of the Hankel function formalism in a uniformly rotating magnetized plasma system in planar and non-planar 
regimes is still an open problem hitherto lying unexplored.

In the present semi-analytic investigation, we consider a generalized quantum two-fluid hydrodynamic 
model consisting of electrons and singly charged ions. The two-component plasma is confined in a magnetized 
axisymmetric cylinder rotating uniformly about the longitudinal direction. The electrons and ions are governed 
by their appropriate equations of state. The fermions governed by the Fermi–Dirac statistical distribution law 
are characterized by temperature (T) and chemical potential (µ)25–27. The effect of temperature degeneracy 
considered here is incorporated in the electronic equation of state with the help of the temperature degeneracy 
parameter given as G′

e = Li5/ 2 (−ξ)
/

Li3/ 2 (−ξ) , where ξ(µ,T) = eβµ and β = 1
/

kBT
25–27. Under application of 

appropriate approximations, the electronic equation of state results in the completely degenerate (CD) quantum 
pressure (Fermi) and the completely non-degenerate (CND) classical pressure (thermal). The ionic equation of 
state takes into account the classical thermal pressure. A standard normal cylindrical wave analysis by employ-
ing the Hankel  function24 yields a sextic dispersion relation, which is then analyzed in the low-frequency (LF) 
regime. The modified dispersion relation is then investigated in the light of four different parametric windows. 
The influence of various realistic parameters like equilibrium number density, kinematic viscosity, and so forth 
on the instability dynamics is thoroughly studied. The importance of cylindrical geometry considered here can 
be justified from the fact that axisymmetric cylinders under self-gravity offer insights on evolution of elongated 
molecular cloud, magnetized arms of spiral galaxies, circumnuclear starburst rings and filamentary structures 
of various scales in broad astrophysical and cosmological  contexts28–30.

Physical model formalism
We consider a magnetized axisymmetric cylindrical two-component plasma system subjected to the non-local 
self-gravitational action. It consists of electrons and singly charged ions. The former is judiciously modelled 
with the help of generalized quantum hydrodynamic formalism; whereas, the latter is treated classically. This 
model evolves under the conjoint influence of the Lorentz force, Coriolis rotation, kinematic viscosity, Bohm 
potential, and temperature degeneracy effects. The confining cylinder rotates with a constant angular velocity 
directed along the longitudinal direction. The basic governing equations here consist of continuity equation, 
force-balancing momentum equation, and appropriate equation of state. The system closure is obtained with 
the help of electrostatic and gravitational Poisson equations. The quantum dynamics of the electronic species in 
generic notations is accordingly cast as

Likewise, the classical dynamics of the ionic species in our considered plasma is described as

(1)∂tne + (r)−1∂r(rneue) = 0,

(2)
∂tue =

(

em−1
e

)

∂rϕE−eBzm
−1
e ueϕ+

(

men
−1
e

)

∂rPe+�
2
(

2m2
e

)−1
∂rn

−1/ 2
e

{

r−1∂r

(

rn1/ 2e

)}

+2vϕωz−∂rψ ,

(3)Pe = G′
eneβ

−1.

(4)∂tni + (r)−1∂r(rniui) = 0,
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The model is systematically closed with the help of electrostatic and self-gravitational Poisson equations given 
respectively in customary notations as

In our considered cylindrical coordinate system, r and t denote the spatial and temporal parameters, respec-
tively. ne(i) and ue(i) , denote the population density and the velocity of the electrons (ions) with their inertial 
mass me(i) , respectively. ωge(i) = eBz

/

me(i) is the electronic (ionic) magnetic gyrofrequency, where Bz is the 
magnetic field acting along the longitudinal direction. The axisymmetric plasma system is assumed to be rotat-
ing with a constant angular velocity ω . The constant rotational force acting on the entire system is given by 
C∗
F = 2vϕωz , where ωz is the longitudinal component of the angular velocity and vϕ is the azimuthal compo-

nent of linear velocity. Pe(i) gives the pressure acting on the electronic (ionic) species. h = 6.6× 10−34 J s is 
the Planck constant signifying the unit of quantum–mechanical action. T is the thermal temperature on the 
Kelvin scale. kB = 1.38× 10−23 J  K-1 is the Boltzmann constant representing the energy-temperature coupling. 
ϕE and ψ are the electrostatic potential and gravitational potential, respectively. ε0 = 8.85× 10−12 F  m-1 is 
the permittivity of free space (here, the plasma). G = 6.67× 10−11 N  m2  kg-2 is the universal gravitational 
constant, also called the Newtonian constant, signifying the coupling strength of gravitating matter. In Eq. (8), 
�ρe(i) =

(

ρe(i) − ρ0
)

= me(i)

(

ne(i) − n0
)

 is the effective plasma matter density used to model the so-called Jeans 
swindle, extensively adopted as an ad-hoc self-gravitational homogenization technique without any loss of gen-
erality of the fluctuation dynamics under consideration.

A number of physical points regarding the above mathematical equations are noteworthy. Here, Eq. (1) 
is the equation of continuity, depicting the flux conservation of the electronic fluid. Then, Eq. (2) is the force 
balancing (momentum) equation. Here, the force by virtue of electronic motion (L.H.S) is balanced by the 
forces arising due to electrostatic potential (1st term in R.H.S), magnetic field (2nd term in R.H.S), electronic 
pressure (3rd term in R.H.S), quantum Bohm potential (4th term in R.H.S), Coriolis rotation (5th term in 
R.H.S), and gravitational potential (6th term in R.H.S). The electronic equation of state incorporating the 
temperature degeneracy effects is represented by Eq. (3). The arbitrary temperature degeneracy in usual 
 notations25–27 is given as G′

e = Li5/ 2 (−ξ)
/

Li3/ 2 (−ξ) . Here, Lip(−ξ) is the polylogarithmic function with index 
p. ξ(µ,T) = eβµ = eµ/ kBT describes the degeneracy of the  system25–27. The general form of Lip(−ξ) for p > 0 
is given as

where, Ŵ
(

p
)

=
∞
∫

0

xp−1e−x dx is the gamma function with an argument p. For the CD limit ( ξ → ∞ ), one arrives 

at

where, δ = T
/

TF denotes the ratio between the thermal and Fermi temperature; and Eq. (11) gives the CD 
electronic pressure (quantum).

It is noteworthy that, in the presence of a uniform magnetic field (B) in the z-direction, we have the transverse 
pressure, P⊥ and parallel pressure, P|| . It is noteworthy that P⊥ and P|| become significantly different for large 
values of B. For B → ∞ , only the lowest Landau level contributes to P|| and P⊥ becomes zero in the considered 
 limit31. The quantization of the Landau levels is also important in the quantum scenarios. Thus, the different 
kinds of magnetic pressures in a quantum  system31 are related to the quantization of the Landau levels. But, the 
effect of the Landau levels can only be observed when the mean thermal energy (classical) is smaller than the 
energy level separation (quantum), that is, kBT << �ω . In the proposed work, kBT = 1.38× 10−20 J for T = 103 
K, and �ωe = �

(

eB
/

me

)

= 1.84× 10−22 J for B = 10 T. This implies that kBT >> �ω . Thus, the Landau levels 
and related magnetic pressure effects have been ignored in the considered study without any loss of generality 
in a justified way.

For the CND limit ( ξ → 0 ), one gets
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(
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2n5/ 3e (5me)

−1;
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Equation (13) gives the classical electronic pressure for the CND limit.
It is evident that Eq. (4) is the ionic analog of Eq. (1). Likewise, Eq. (5) is the exact analog of Eq. (2), except 

the Bohm potential term, since the ions are treated classically because of their large mass. The ionic fluid is 
characterized with the kinematic viscosity (5th term in R.H.S), in addition to all the forces already mentioned 
before in the case of Eq. (3). Now, Eq. (6) is the ionic equation of state modelled classically. The model closure is 
obtained with the help of electrostatic and gravitational Poisson equations (Eqs. (7) and (8)).

For a scale-invariant analysis, we adopt a standard normalization  scheme20, quite relevant for astrophysical 
description. The corresponding normalized sets of equations are cast as

In the above, the spatial coordinate r is normalized as R = r
/

L0 ; where, L0 = cs
/

ωpi is a characteristic 
spatial scale. cs =

√

2EFe
/

mi = hn0
/

4
√
memi  is the acoustic speed in terms of Fermi energy. 

ωpi =
√

n0e2
/

ε0mi  designates the ion plasma oscillation frequency. The temporal coordinate t  is normalized 
as τ = t

/

ω−1
pi  . The Fermi energy is given as EFe = p2F

/

2me , with pF = h n0
/

4 as the corresponding Fermi 
momentum. The rescaled electronic (ionic) number density is given as Ne(i) = ne(i)

/

n0 , where n0 is the equi-
librium number density. Me(i) = ue (i)

/

cs gives the Mach number of the electronic (ionic) species. The normal-
ized electronic (ionic) magnetic gyrofrequency is given as �∗

ge(i) = ωge(i)

/

ωpi . The normalized Coriolis rota-
tional force is given as C∗

F = Mϕω
∗
z  ; where, Mϕ = vϕ

/

cs is the rescaled tangential velocity of the system and 
ω∗
z = ωz

/

ωpi is the rescaled longitudinal component of angular velocity. MFe = vFe
/

cs is the Fermi Mach num-
ber, where, vFe is the Fermi velocity. Hp = �ωpi

/

mec
2
s  is the quantum parameter. σ = ω2

Ji

/

ω2
pi gives the ratio of 

the squares of Jeans frequency to that of ionic plasma oscillation frequency. ωJi =
√
4πGmin0 gives the Jeans 

frequency for ions. The normalized kinematic viscosity is given as η∗ = η
/

min0csL0 . T∗ = TkB
/

mic
2
s  gives the 

normalized temperature. In a similar pattern, �E = eϕE
/

2EFe is the normalized electrostatic potential. The 
normalized gravitational potential is given as � = ψ

/

c2s .
It is to be noted that in the quantum regime, Bohm potential term accounts for the typical quantum like 

behaviour like tunneling, overlapping of wave packets, and so on. Thus in the CND (classical) regime represented 
by Eq. (15.2), normalized Bohm potential term is  ignored32,33.

Perturbation analysis
We linearly perturb the relevant physical fluid parameters appearing in Eqs. (14), (15.1), (15.2), (16), (17), (18) 
and (19), using a cylindrical wave  analysis24 in an autonormalized Fourier transformed wavespace given as

where H(1)
0  is the Hankel function of the first kind, of order 0.

For R → 0 , H(1)
0  has logarithmic singularity:

At large distances, we have

Thus, Eq. (20) gets modified as
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Here, we assume an axisymmetric cylinder such that all quantities are homogeneously distributed along 
z-direction, and thereby just show radial variations. In Eq. (23), F1 denotes the radial perturbations, which evolve 
as per the Hankel function of first kind of order 0. F0 denotes the equilibrium values corresponding to which 
perturbations F1 take place. In the new Fourier transformed wavespace, the spatial and temporal operators get 
transformed as ∂

/

∂R →
(

ik∗ − 1
/

R
)

 and ∂
/

∂τ → (−i �) , respectively. Here, � 
(

= ω
/

ωpi

)

 denotes the nor-

malized fluctuation frequency and k∗
(

∼ k
/

L−1
0

)

 designates the normalized wavenumber. The linearly perturbed 

relevant physical parameters from Eqs. (14), (15.1), (15.2), (16), (17), (18) and (19) in the new wave space can 
respectively be cast as

In the above set of Eqs. (27), (28), (29), (30), (31) and (32), the various substituted terms are given as

After a standard procedure of elimination and substitution among Eqs. (27), (28), (29), (30), (31), (32), (33), 
(34), (35), (36) and (37), we obtain a generalized linear sextic dispersion relation cast as

The different coefficients in an expanded form are given as
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The different terms substituted in A0 are given in an expanded form as
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The sextic dispersion relation (Eq. (38)) is transformed into a reduced form in light of the LF approximation 
with the help of traditional simplification  procedure34. We are primarily interested in the LF limit because we 
wish to investigate the cylindrical acoustic waves. In the LF limit 

(

�q = 0 , ∀ q > 1
)

 , the modified dispersion 
relation is

The coefficients A1-A0 are given in Eqs. (43) and (44), respectively. We then analyze the dispersion relation 
in four distinct regimes of our interest, namely in quantum (CD) non-planar (cylindrical), quantum planar, 
classical (CND) non-planar (cylindrical), classical (CND) planar.

Quantum (CD) non‑planar regime. In the quantum non-planar regime, we have the same dispersion 
relation as given by Eq. (49). Likewise, the coefficients are the same as given by Eqs. (43) and (44).α for the CD 
case is substituted from Eq. (35).

Quantum (CD) planar regime. In the quantum planar regime, we have R → ∞ . The dispersion relation 
is the same as Eq. (49). However, the coefficients given by Eqs. (43) and (44) are modified. α for the CD case 
is substituted from Eq. (35). The cylindrical coordinates are mapped into planar coordinates accordingly. The 
modified coefficients are given as

The different substituted terms in Eq. (51) are modified accordingly.

Classical (CND) non‑planar regime. In the classical non-planar regime, the Bohm potential term is 
ignored. The dispersion relation is the same as Eq. (49), however, the coefficients A1 and A0 are modified. α for 
the classical case is substituted from Eq. (36). The coefficients are modified as

The different substituted terms appearing in Eq. (53) are modified as per the approximations stated in “Clas-
sical non-planar regime” section.

Classical (CND) planar regime. In the classical (CND) planar regime, we have R → ∞ . Just like the clas-
sical non-planar regime, Bohm potential is also ignored herein. The dispersion relation is the same as given by 
Eq. (49). The coefficients appearing in Eq. (49) are modified as per the considered regime. The cylindrical coor-
dinates are conveniently mapped into planar coordinates. α for the classical case is substituted from Eq. (36). The 
modified coefficients A1 and A0 are given as
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The different terms appearing in Eq. (55) are modified as per our approximations (as in “Classical planar 
regime” section).

The above discussion in the subsections are summarily pointed out as

• In the quantum non-planar regime, the dispersion relation has the contribution due to the geometric curva-
ture effect, Lorentz force, Coriolis rotational force, kinematic viscosity, quantum parameter, Bohm potential, 
quantum pressure, temperature, and Jeans-to-plasma oscillation frequency ratio squared. The growth patterns 
for different parameters are depicted in Figs. 1, 2, 3, 4 and 5.

• In the quantum planar regime, the reduced dispersion relation has the dependencies of all the above terms 
except the geometric curvature. The growth/damping trends of the same for different relevant parameters 
are given in Figs. 6, 7, 8, 9 and 10.

• For the classical non-planar regime, the dispersion relation has the dependencies of all the terms as the 
quantum non-planar regime, except the Bohm potential term. The quantum pressure also gets replaced with 
the classical pressure. The growth/damp trends for the same are given in Figs. 11, 12, 13, 14 and 15.

A1 = ik∗
2

η∗
[ [

(

ik∗
)

[(

�∗
geMey − 2Myω

∗
z

)[

2σmem
−1

i −mim
−1

e +2αk∗
2
] ]

− k∗
2
[

�∗
geMey

(

�∗
geMey − 4Myω

∗
z

)

+4
(

Myω
∗
z

)2
] ]

(54)−k∗
2
[

−2ασ mem
−1
i + αmim

−1
e −k∗

−2
(

σ mem
−1
i −mim

−1
e

)

− 2α2k∗
2
] ]

,

(55)A0 =
[

−P −
(

mim
−1
e Q

)

− (2σS)− k∗
2
σ 2 − I

]

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

Wavenumber

G
ro

w
th

 ra
te

n0=1029 m-3

n0=1033 m-3

n0=1031 m-3

Figure 1.  Profile of the normalized growth rate (�i) with variation in the normalized wavenumber (k∗) . 
The different lines link to different values of the equilibrium number density (n0) in non-planar (cylindrical) 
geometry in the quantum regime ( �  = 0).
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10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7163  | https://doi.org/10.1038/s41598-023-34415-1

www.nature.com/scientificreports/

• Lastly, for the classical planar regime, the dispersion relation highlights the contribution of all the terms as the 
classical non-planar regime, except the geometric curvature terms. The growth/damp trends for the relevant 
parameters in this regime are graphically seen in Figs. 16, 17, 18, 19 and 20.

Thus, it is clearly seen that, in all the four considered distinct regimes, the modified dispersion relation has 
sensitive dependencies on the multiparametric model coefficients influencing the stability dynamics of the 
considered plasma system.
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subplot is the magnified version depicting the peaks (kinks) clearly.
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Results and discussions
The excitation and stability features of cylindrical acoustic waves are analyzed by means of a two-component 
axisymmetric magnetized cylindrical plasma system comprising of electrons and ions. The system is rotating 
uniformly with its angular velocity directed longitudinally. The electrons evolve under the action of their motion, 
electrostatic potential, Lorentz force, Coriolis rotational force, Bohm potential and gravitational potential. Mean-
while the ionic dynamics is governed by all of the above mentioned factors, except the Bohm potential term. 
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Figure 6.  Profile of the normalized growth rate (�i) with variation in the normalized wavenumber (k∗) . 
The different lines link to different values of the equilibrium number density (n0) in planar (non-cylindrical) 
geometry in the quantum regime. The second subplot is the enlarged version highlighting the trends for 
n0 = 10

29  m-3 and n0 = 10
31  m-3.
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In addition, kinematic viscosity is retained for the ionic dynamics. The temperature degeneracy of electrons 
is incorporated via the temperature degeneracy parameter in the equation of state for the electrons. The ions 
experience the normal classical thermal pressure. A standard cylindrical mode analysis employing the Hankel 
function yields a generalized linear sextic dispersion relation, which is modified using the LF  approximation24. 
A numerical illustrative platform is used to analyze the growth rate corresponding to the acoustic excitation and 
stability in four parametric windows, namely the quantum non-planar, quantum planar, classical non-planar, and 
classical planar. Here, the dispersion analysis of current interest in different regimes is systematically carried out 
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by analyzing Eq. (49) graphically, as clearly depicted in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20. It is noteworthy that different input values used herein exist in the  literature35–42. There are certain debates 
regarding the input values and their validity in the classical and quantum  domains43–45. The number density and 
temperature range for the quantum regime are  given43 as  1024–1030  cm−3 and  102–107 K, respectively. In SI units, 
the number density is  1030–1036  m−3. This is in agreement with the values considered for the quantum regime 
in the manuscript. Likewise, for the classical regime, the number density and temperature range are  given43 as 
 106–1024  cm−3 and  104–107 K. In SI units, the number density is  1012–1030  m−3. The values for the classical regime 
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in the manuscript are also in good agreement with the specified values of the previous  study43. The parameters 
of the study about the non-linear structures in dense  magnetoplasmas44 is purely for white dwarfs, whereas, the 
values considered herein are generalized values for quantum and classical regimes. Hence, minor disparities are 
found between input values of the proposed manuscript and the referred  study44. The comprehensive review 
about the fluid description of quantum plasma mostly deals with the pros and cons of the fluid approach of 
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 plasma45. Apart from a common feature of extreme growth of the fluctuations at extremely large wavelengths, 
the uncommon features of the same are described and interpreted in the following subsections.

Quantum (CD) non‑planar regime. In Fig. 1, we depict the profile structures of the normalized growth 
rate (�i) with variation in the normalized wavenumber (k∗) , which results numerically from Eq. (49), for differ-
ent values of the equilibrium number density (n0) . The different coloured lines link to n0 = 1029  m−3 (blue solid 
line), n0 = 1031  m−3 (red dashed line), and n0 = 1033  m−3 (black dotted line). As clearly evident from Fig. 1, the 
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subplot is the magnified version depicting the peaks (kinks) clearly.
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growth rate increases with increasing number density. The physical reason behind this can be ascribed to the fact 
that higher the mass of the system, higher is the possibility of exciting gravitational  instability46. It couples with 
the background fluctuations resulting in the growth.

In Fig. 2, we depict the same as Fig. 1, but for different indicated values of the normalized kinematic viscos-
ity (η∗) . The corresponding unnormalized viscosity values ( η ) are alongside highlighted for the sake of our easy 
understanding. The different coloured lines link to η = 10−3 kg  m−1  s−1 ( η∗ = 24.91× 10−6 , blue solid line), 
η = 10−2 kg  m-1  s−1 ( η∗ = 24.91× 10−7 , red dashed line), η = 10−1 kg  m−1  s−1 ( η∗ = 2.49× 10−3 , black dot-
ted line). The trends shown by the different coloured lines indicate that an increase in the viscosity gradually 
decreases the instability growth rate, thereby exhibiting stabilizing influence on the system. This can be physi-
cally attributed to the fact that with an increase in the viscosity, the cohesion among fluid layers  increases37. It 
means that the interspecies force gets enhanced; thereby, restricting the relative fluid motion. As a result, the 
fluid viscosity here plays a stabilization role against the perturbation dynamics under the current exploration.

In Fig. 3, we indicate the same as Fig. 1, but for different values of the normalized Coriolis rotational force 
(

C∗
F

)

 . The different coloured lines link to C∗
F = 0.008 (blue solid line), C∗

F = 0.01 (red dashed line), and C∗
F = 0.012 

(black dotted line). We see that the system has significant growth only in the long-wavelength regime ( k∗ → 0 ). 
It is indicated that higher the Coriolis rotational force, higher is the destabilization of the system; and vice-versa. 
It can be physically attributed to the fact that, higher the Coriolis rotation of the system, higher is the rotational 
kinetic energy, Er =

(

1
/

2
)

Iω2
r =

(

1
/

2
)

MK2
gω

2
r  , and vice-versa. Here, I is the system moment of inertia around 

the reference axis of rotation, M is the inertial mass of the system with angular velocity ωr and Kg is its radius of 
gyration around the same rotation axis. We assume a uniform rotation of the system, which, thereby implicates 
that Er ∝ M . It is a well-established fact that heavier objects are gravitationally unstable as compared to their 
lighter counterparts. Thus, an increase in the Coriolis rotation destabilizes the system, and vice-versa. It is in 
accordance with the previous results by  us20 and astronomical evidences observed by  others47,48.

As in Fig. 4, we depict the same as Fig. 1, but for different indicated values of the normalized thermal tem-
perature (T∗) . Here, just like Fig. 2, the unnormalized values of the temperature are indicated in Fig. 4. The dif-
ferent coloured lines link to T = 103 K ( T∗ = 8.26× 10−8 , blue solid line), T = 104 K ( T∗ = 8.26× 10−7 , red 
dashed line), and T = 105 K ( T∗ = 8.26× 10−6 , black dotted line). The different coloured lines clearly indicate 
that, an increase in the temperature destabilizes the system, and vice-versa. It is indeed a well-established fact 
that a temperature increase enhances the system kinetic energy, and so on. It, hereby, randomizes the system 
at the cost of enhanced particle thermal motion resulting in destabilization of the system. In other words, it is 
noteworthy that microscopic thermal motions of the individual constitutive particles significantly contribute to 
the bulk development of an anti-centric thermal pressure force (outward, randomizing) against the concentric 
gravitational counterpart (inward, organizing), causing the bulk destabilization consequences.

In a similar way, Fig. 5 shows the same as Fig. 1, but for different values of the magnetic field. The different 
coloured lines correspond to B = 10 T (blue solid line), B = 100 T (red dashed line), and B = 1000 T (black 
dotted line). An interesting hybrid trend of growth peaks in different magnetic conditions is found to exist. It is 
against the previous cases showing a definite multiparametric increasing or decreasing growth pattern (Figs. 1, 
2, 3, 4). In other words, Fig. 5 shows a unique admixture of fluctuation growth patterns. Here, the growth rate 
is highest for B = 1000 T, followed by the subsequent gradually weaker growths produced at B = 10 T and 
B = 100 T, respectively. The non-uniformity in the instability growth-peak order with the magnetic field strength 
found here is a new and unique behaviour exhibited by this categorical class of collective fluctuation dynamics.

Quantum (CD) planar regime. In Fig. 6, we depict the same as Fig. 1, but for the quantum planar geo-
metric regime. The colour spectral coding is the same as that of Fig. 1. Clearly, the growth rate increases with 
increasing number density, and vice-versa. This is physically due to the well-established fact that heavier objects 
are gravitationally more unstable as compared to their lighter counterparts on the astrophysical scales. Even 
though the trend shown by Fig. 1 (quantum non-planar regime) is the same as Fig. 6 (quantum planar regime), 
the growth rate of the considered fluctuation dynamics is considerably higher for the latter.

In an analogous way, Fig. 7 shows the same as Fig. 2, but for the quantum planar regime. The colour coding 
used here is the same as that of Fig. 2. Clearly, the growth rate decreases with increase in the kinematic viscosity, 
and vice-versa. It may, therefore, be inferred that an enhancement in the viscosity leads to the stabilization of 
the self-gravitating system, and vice-versa. The physical reason behind this is the same as described in Fig. 2. 
Viscosity playing as a stabilizing role in self-gravitating systems is a well-known fact established in the  literature37.

Similarly, Fig. 8 shows the same as Fig. 3, but for the quantum planar regime. As can be clearly seen herefrom, 
the growth rate of the system increases with an increase in strength of the Coriolis rotational force. The physical 
reason behind this behaviour is the same as that of Fig. 3.

Figure 9 depicts the same as Fig. 4, but for the quantum planar regime. An enhancement in the temperature 
increases the kinetic energy of the constitutive particles, thereby increasing the disturbance in the system. As 
a result, the instability growth rate of the considered instability increases with the temperature, and vice-versa.

Figure 10 shows the same as Fig. 5, but for the quantum planar regime. The colour spectral coding used here 
is exactly the same as that used in Fig. 5. An absurd behaviour is seen to exist in the case of the magnetic field 
enhancement followed by a simultaneous existence of both growth dips and peaks. More specifically, while 
B = 10 T and B = 100 T give growth rate dips; in contrast, B = 1000 T results in a growth peak, and so forth.

Classical (CND) non‑planar regime. In Fig. 11, we depict the profile structures of the normalized growth 
rate (�i) with variation in the normalized wavenumber (k∗) for different values of the equilibrium number den-
sity (n0) . The different coloured lines link to n0 = 1021  m−3 (blue solid line), n0 = 1023  m−3 (red dashed line), and 
n0 = 1025  m−3 (black dotted line). It is found that an enhancement in the equilibrium number density increases 
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the growth rate, and vice-versa. This growth behaviour is the same as that observed in both the quantum regimes 
discussed previously (Figs. 1, 6). The physical insight behind such instability growth features is the same as that 
already described in Fig. 1.

Figure 12 shows the same as Fig. 11, but for different values of the normalized kinematic viscosity (η∗) . Here, 
the unnormalized (normalized) values of the kinematic viscosity are indicated for our easy comprehension. 
The different coloured lines link to η = 10−3 kg  m−1  s−1 ( η∗ = 3.03× 104 , blue solid line), η = 10−2 kg  m−1  s−1 
( η∗ = 3.03× 105 , red dashed line), η = 10−1 kg  m−1  s−1 ( η∗ = 3.03× 106 , black dotted line). An enhancement 
in the value of kinematic viscosity again stabilizes the system. The physical reason behind this trend is the same 
as in Fig. 2.

Figure 13 shows the same as Fig. 11, but for different values of the Coriolis rotational force 
(

C∗
F

)

 . The different 
coloured lines correspond to C∗

F = 0.008 (blue solid line), C∗
F = 0.01 (red dashed line), and C∗

F = 0.012(black 
dotted line). It clearly indicates that the Coriolis force enhancement destabilizes the system, and vice-versa. The 
physical reason is the same as Fig. 3.

Figure 14 shows the same as Fig. 11, but for different values of the normalized thermal temperature. The 
different coloured lines link to T = 105 K ( T = 1.84× 103 , blue solid line), T = 106 K ( T = 1.84× 104 , red 
dashed line), and T = 107 K ( T = 1.84× 105 , black dotted line). It can be clearly seen that the growth rate of 
the system increases with an increase in the temperature in the considered configuration, and so forth. It hereby 
implies that the temperature acts as a destabilization agent under the joint action of all the considered factors.

Figure 15 shows the same as Fig. 11, but for different values of the magnetic field. The different coloured lines 
correspond to B = 10−10 T (blue solid line), B = 10−9 T (red dashed line), and B = 10−8 T (black dotted line). In 
contrast to the hybrid behaviour displayed in both the quantum regimes, the magnetic field, in case of classical 
non-planar regime, shows a definite trend. The growth rate of the instability decreases on increasing the magnetic 
field, and vice-versa. It is founded on the basics of plasma confinement processes in an external magnetic field. 
Due to an increase in plasma confinement on the magnetic field enhancement, the instability growth rate of the 
system decreases, and vice-versa. The same has also been pointed out in the previous investigations reported in 
the literature  elsewhere20.

Classical (CND) planar regime. In the classical (CND) regime, Fig. 16 shows the same as Fig. 11, but for 
the plane geometry approximation. It can be clearly seen herein that the growth rate increases with the equilib-
rium number density, and vice-versa. The explanation behind the observed trend is the same as Fig. 1.

Again, Fig. 17 shows the same as Fig. 12, but for the classical planar regime. As clearly evident herein, the 
growth rate decreases with increase in the kinematic viscosity value, and vice-versa. The explanation behind this 
growth trend is already presented in case of Fig. 2.

Furthermore, Fig. 18 shows the same as Fig. 13, but for the classical plane-geometry regime. It can be clearly 
inferred from here that the growth rate increases with the strength of the Coriolis rotational force, and vice-
versa. The physical mechanism operating behind this growth pattern trend is the same as Fig. 3; and so forth.

Likewise, Fig. 19 shows the same as Fig. 14, but for the classical planar regime. Interestingly, Fig. 19 shows 
an opposite growth trend against Fig. 14. In other words, in Fig. 19, a temperature enhancement stabilizes the 
system, and vice-versa. That is, the growth rate of the system decreases with an increase in the temperature, 
and vice-versa. It is a well-known fact that an increase in the temperature increases the kinetic energy of the 
system, and so forth. Thus, an excessive kinetic energy gained on a high temperature scale is dissipated away to 
the surroundings, thereby reducing the kinetic energy of the system. As a consequence, higher the temperature, 
higher is the kinetic energy, and higher will be the rate of dissipation, thereby decreasing the instability growth 
rate under consideration.

At the last, Fig. 20 shows the same as Fig. 15, but for the classical planar regime. Interestingly, an opposite 
behavioural pattern of the instability growth is observed herein against Fig. 15. That is, the growth rate of the 
instability increases with the strength of the magnetic field, and vice-versa. This is because, for the plasma to be 
confined in a magnetic field, a certain curvature drift effect is required, which is, however, missing in the case 
of the classical planar  regime49. Moreover, enhanced magnetic field strength increases the gyrofrequency of the 
constitutive particles. It hereby leads to the system destabilization on the Larmor kinetic footing.

On the basis of the above described results, it can clearly be inferred that, in the quantum regime, the equilib-
rium number density plays the most dominant role in destabilizing the system. However, in the classical regime, 
the system temperature plays a major role in stabilizing/destabilizing the system. Moreover, the destabilizing 
nature of rotational force is observationally accounted in many white dwarf  stars47 and circumstellar  discs48. To 
sum up, a compact table outlining a concise contrast on the fluctuation dynamics in all the four distinct consid-
ered regimes for the sake of readers can be given in Table 1 as follows.

Table 1.  Fluctuation dynamics in different regimes.

S. No Parameter Quantum non-planar Quantum planar Classical non-planar Classical planar

1 Equilibrium number density Destabilizer Destabilizer Destabilizer Destabilizer

2 Kinematic viscosity Stabilizer Stabilizer Stabilizer Stabilizer

3 Coriolis rotation Destabilizer Destabilizer Destabilizer Destabilizer

4 Temperature Destabilizer Destabilizer Destabilizer Stabilizer

5 Magnetic field Mixed role Absurd Stabilizer Destabilizer
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Conclusions
In our proposed semi-analytic study, a two-component quantum hydrodynamic plasma model is presented to 
analyze the excitation and stability dynamics of cylindrical acoustic waves excitable in magnetized cylindrical 
astrophysical structures. The considered plasma system is gyrogravitating in nature. The electrons evolve under 
the conjoint action of electrostatic potential, Lorentz force, Coriolis rotational force, Bohm potential, and tem-
perature degeneracy pressure effects. The temperature degeneracy parameter is incorporated in the electronic 
dynamics by means of the electronic equation of state. The temperature degeneracy parameter in the equation 
of state results in a CD quantum (Fermi) pressure and a CND classical (thermal) pressure in judicious approxi-
mations in correlation with realistic scenarios. The constitutive ionic fluid dynamics is modelled jointly with 
the electrostatic potential, Lorentz force, Coriolis rotational force, and kinematic viscosity. Thus, the electronic 
fluid is affected by the quantum potential, whereas the ionic fluid by the kinematic viscosity, in contrast, in 
isolation. The ions are acted upon by the classical thermal pressure. A cylindrical wave analysis employing the 
Hankel function yields a linear generalized sextic dispersion relation. The LF acoustic regime is then thoroughly 
investigated in four distinct parametric windows of practical importance. It includes the quantum non-planar, 
quantum planar, classical non-planar, and classical planar. The obtained results on the diverse stability factors 
in an itemized form are summarily given as follows.

A) In the quantum non-planar regime, the equilibrium number density, Coriolis rotational force, and tempera-
ture destabilize the system. The viscous influence stabilizes the system. The magnetic field shows a mixed 
behaviour in the instability dynamics.

B) In the quantum planar regime, the behaviour of the equilibrium number density, Coriolis rotational force, 
temperature, and viscosity remain the same as in the quantum non-planar regime. However, the magnetic 
field shows absurd peaks and dips in the instability dynamics in this quantum planar regime only.

C) In the classical non-planar regime, the equilibrium number density, temperature, and Coriolis rotational 
force destabilize the system. The viscosity and magnetic field are found to stabilize the astrofluid system 
under consideration.

D) In the classical planar regime, the magnetic field shows the opposite behaviour to that in the classical non-
planar regime. It aids in destabilizing the system, along with other factors, like the equilibrium number 
density, temperature, and Coriolis rotational force. The fluid viscosity, here too, is found to stabilize the 
considered cylindrical fluid system in accordance with the hydrodynamical first principle.

The physical parameters based on which the dispersion relation of the proposed cylindrical model are ana-
lyzed are the number density, viscosity, rotation, temperature, and magnetic field. The proposed theoretic analysis 
can be extensively applied to study diverse cylindrical waves excitable in elongated molecular clouds, filamentary 
structures, magnetized arms of spiral galaxies, and so  on28–30. It has been seen that circumstellar discs undergo 
viscous  evolution50. Circumstellar discs with masses more than 10% of the central star are more susceptible to 
gravitational  instability46 (more number density, more mass). The mass may also increase by means of mass 
accretion due to rotational  processes46,48. Magnetic field also plays a significant role in the evolution of the proto-
planetary  disks51. The chemistry of the disc and the evolution of the grain population are affected by magnetically 
driven  mixing51. The direction of migration of planets is determined by the effective viscous reaction of the  disc51. 
As a result, it can be seen that the presented analysis has an extensive reliability and validity.

It is finally admitted that, like many other theoretical model analyses, our model is not completely free from 
formalism limitations. Approximate input values, although judiciously used herein for certain rotation param-
eters, might perhaps have slightly affected the accuracy of the obtained results. Also, the consideration of non-
linearity and differential rotation would actually improve the realistic applicability of the results. There exists no 
sufficiency of actual astronomical stability data needed for a complete validation and concrete reliability checkup 
of our proposed theoretic investigation. Against this backdrop, a refined model development with the aforesaid 
key factors taken into full consideration is left here now for a future course of integrated study on astrophysical 
cylindrical stability analyses in diverse circumstances.
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