
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7761  | https://doi.org/10.1038/s41598-023-34410-6

www.nature.com/scientificreports

Effect of basal metabolic rate 
on lifespan: a sex‑specific 
Mendelian randomization study
Jack C. M. Ng 1 & C. Mary Schooling  1,2*

Observationally, the association of basal metabolic rate (BMR) with mortality is mixed, although 
some ageing theories suggest that higher BMR should reduce lifespan. It remains unclear whether a 
causal association exists. In this one-sample Mendelian randomization study, we aimed to estimate 
the casual effect of BMR on parental attained age, a proxy for lifespan, using two-sample Mendelian 
randomization methods. We obtained genetic variants strongly (p-value < 5 × 10–8) and independently 
(r2 < 0.001) predicting BMR from the UK Biobank and applied them to a genome-wide association 
study of parental attained age based on the UK Biobank. We meta-analyzed genetic variant-specific 
Wald ratios using inverse-variance weighting with multiplicative random effects by sex, supplemented 
by sensitivity analysis. A total of 178 and 180 genetic variants predicting BMR in men and women were 
available for father’s and mother’s attained age, respectively. Genetically predicted BMR was inversely 
associated with father’s and mother’s attained age (years of life lost per unit increase in effect size of 
genetically predicted BMR, 0.46 and 1.36; 95% confidence interval 0.07–0.85 and 0.89–1.82), with 
a stronger association in women than men. In conclusion, higher BMR might reduce lifespan. The 
underlying pathways linking to major causes of death and relevant interventions warrant further 
investigation.

Abbreviations
BMR	� Basal metabolic rate
CI	� Confidence interval
GV	� Genetic variant
GWAS	� Genome-wide association study
IVW	� Inverse-variance weighting
MR	� Mendelian randomization
MR-RAPS	� Mendelian randomization robust adjusted profile score
MR-PRESSO	� Mendelian randomization pleiotropy residual sum and outlier

Metabolism has long been linked to the process of aging and longevity but the evidence from studies of their 
associations is not always in accordance1. Several different theories of aging related to metabolism exist par-
ticularly within a life history context, where reproductive strategies and lifespan are seen as shaped by natural 
selection2, such as the “rate-of-living” theory and the “free radical” theory. The “rate-of-living” theory suggests 
that faster metabolism accelerates aging and therefore reduces lifespan whereas the “free radical” theory suggests 
that oxidative stress arising from metabolism is toxic and the harm accumulates to damage body systems3. Cor-
respondingly, on average, men have a higher metabolic rate4 and also have shorter lives than women.

Total daily energy expenditure consists of basal metabolic rate (BMR), thermic effects of food, and energy 
expenditure from physical activity5. BMR reflects the daily energy requirement for maintaining basic bodily 
functions. It is the major source of energy expenditure6 and is an important parameter for estimating daily 
energy requirements7.

Observational studies have suggested that higher BMR predicts mortality in young individuals8,9 but lower 
mortality in old individuals10. Somewhat counter-intuitively, associations that change with age at recruitment 
may indicate causality because each successively older age group are more strongly selected survivors of a 
harmful exposure11. Evidence as to whether changing BMR affects the risk of mortality is lacking. In addition, 
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observational studies are susceptible to residual confounding, when factors affecting both BMR and mortality, 
such as body composition, exist. A study in mice suggested that the observational association of BMR with lifes-
pan could be confounded by fat mass12. Notably, body composition was not adjusted for in some of the human 
studies assessing the association of BMR with mortality9,10. Some forms of physical activity, such as resistance 
training but not aerobic exercise, have been shown to increase BMR13, but cannot be comprehensively assessed 
and adjusted for adequately, as seen in previous human studies on the same topic9,10,14. People with metabolic 
disorders, such as type 2 diabetes, have a higher BMR than those without15,16 and are also at a higher risk of 
mortality, although a change in BMR could have occurred due to latent metabolic disruption making it look as 
if BMR caused the disease17,18. Aging and progression of some other medical conditions may lower BMR over 
time19 and increase the risk of mortality, which might also obscure the true associations. To date, no randomized 
controlled trial targeting BMR as a means of increasing lifespan has been conducted.

Mendelian randomization (MR) uses genetic variants (GVs) as instrumental variables to estimate the causal 
effect of an exposure on an outcome20. Since alleles are randomly assorted and are fixed at conception, MR studies 
have the advantage over conventional observational studies of being less vulnerable to confounding. MR studies 
of longevity have the advantage of ensuring that exposure allocation and recruitment are aligned, thereby avoid-
ing any time-related biases21, such as selection or survival bias.

We conducted a sex-specific MR study to estimate the causal effect of BMR on parental attained age, a proxy 
of lifespan, because BMR differs by sex22. For validation, we also included survival to old age as an additional 
outcome.

Results
Genetic predictors of basal metabolic rate.  We obtained 217 and 219 GVs strongly and independently 
predicting BMR in men and women, respectively, of which 178 and 180 were available for father’s and mother’s 
attained age (Supplementary Table S1). Correspondingly, these GVs explained 6.5% and 5.6% of the variance 
in BMR, with a mean F-statistic of 62 (range 30–363) and 61 (range 30–400) (Supplementary Table S2). Sup-
plementary Table S3 shows the GVs predicting BMR that were associated with potential confounders. The study 
has power of > 80% to detect 0.59 and 0.67 years of life changed per one unit of effect size increase in genetically 
predicted BMR in men and women, respectively.

Association of basal metabolic rate with parental attained age.  BMR was inversely associated 
with father’s (years of life lost per unit increase in effect size of genetically predicted BMR, 0.46 [95% confidence 
interval (CI) 0.07–0.85]) and mother’s attained age (years of life lost, 1.36 [95% CI 0.89–1.82]) using inverse-
variance weighting (IVW) with multiplicative random effects, with evidence of stronger associations in women 
than men (Table 1). Sensitivity analyses gave directionally similar results. MR-Egger intercept tests did not sug-
gest the presence of directional pleiotropy. I2

GX ranged from 0.77 to 0.83 in all MR-Egger analyses.
Overall, BMR was inversely associated with parental attained age (Supplementary Table S4).

Association of basal metabolic rate with survival to 99th and 90th percentile of ages.  BMR 
was not associated with survival to the 99th or 90th percentile of ages using IVW with multiplicative random 
effects in both men (odds ratio for 99th percentile of age per unit increase in effect size of genetically predicted 
BMR, 0.92 [95% CI 0.76–1.11]; odds ratio for 90th percentile of age, 0.91 [95% CI 0.80–1.03]) and women (odds 
ratio for 99th percentile of age, 0.97 [95% CI 0.80–1.18]; odds ratio for 90th percentile of age, 0.94 [95% CI 
0.82–1.07]), although the associations were in the direction of higher BMR reducing survival (Table 2). Sensitiv-
ity analyses gave similar results. MR-Egger intercept tests did not suggest the presence of directional pleiotropy. 
I2

GX ranged from 0.78 to 0.87 in all MR-Egger analyses.

Discussion
Using MR and outcomes that obviate survival bias, we have shown that genetically higher BMR was associated 
with reduced parental attained age. Validation using survival to old age also showed directionally similar results. 
Our results are consistent with observational studies in younger individuals that reported a higher BMR being 
positively associated mortality8,9 and some theories of ageing14.

From the perspective of disease etiology, cancer and cardiovascular diseases are two leading causes of death 
worldwide23,24 and contribute substantially to years of life lost24,25. In an MR study, BMR was shown to increase the 
risk of cancer26, which supports our findings. Excessive harmful reactive oxygen species produced at a higher rate 
of metabolism that cannot be compensated by timely cell repair are thought to be the underlying mechanism27. 
The role of BMR in the development of cardiovascular diseases is not well studied. However, in observational 
studies BMR is reported to be positively associated with systolic blood pressure28,29, an established risk factor for 
cardiovascular diseases, although causality between BMR and systolic blood pressure could not be ascertained. 
Some anti-obesity drugs that act via raising BMR, e.g., thyroid hormone and melanocortin-4 receptor agonists, 
have been reported to cause cardiovascular side effects30,31. Postulated mechanisms linking higher BMR and 
systolic blood pressure include increased cardiac output28 and excessive production of reactive oxygen species29.

We found an inverse association of BMR with parental attained age in both men and women with a 
stronger association in women than men. Investigation of the downstream effects of BMR may gain more 
insight. A sex-specific effect may have clinical implications because muscle mass, a readily modifiable com-
ponent that contributes substantially to BMR32, differs by sex22. At the same body mass index, men have more 
muscle mass and less fat mass than women. Whether the disadvantage at the starting line in men of hav-
ing more muscle mass could be compensated by the weaker effect of BMR on lifespan compared to women 
throughout their life is unclear.
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Table 1.   Mendelian randomization of basal metabolic rate (Neale Lab) on father’s and mother’s attained 
age (Pilling et al.). CI: confidence interval; GV: genetic variant; IVW: inverse-variance weighting; LL: lower 
limit; MR: Mendelian randomization; MR-RAPS: Mendelian Randomization Robust Adjusted Profile Score; 
MR-PRESSO: Mendelian Randomization Pleiotropy Residual Sum and Outlier; SE: standard error; UL: upper 
limit; WM: weighted median.

Exposure Outcome

Selection of 
GVs

No. of 
GVs

MR 
method

Beta Years of life lost p-value Cochran’s Q MR-Egger

Outlier detected 
by MR-PRESSO

Sex difference for years 
of life lost

Trait Sex Trait Sex Estimate SE
95% CI  
LL

95% CI 
UL Estimate SE

95% CI  
LL 95% CI UL Statistic p-value Intercept

Intercept 
p-value I2

GX z statistic p-value

Men

Basal 
meta-
bolic 
rate

Men
Father’s 
attained 
age

Men All 178 IVW (random) 0.020 0.009 0.003 0.037 0.46 0.20 0.07 0.85 0.021 360.839 1.14E−14 – – – – 2.894 0.004

All 178 WM 0.022 0.010 0.002 0.042 0.50 0.24 0.04 0.96 0.035 – – – – – – 1.946 0.052

All 178 MR-Egger 0.004 0.023 –0.041 0.049 0.10 0.52 –0.93 1.12 0.855 359.698 1.07E−14 0.001 0.455 0.826 – 1.300 0.194

All 178 MR-RAPS 0.021 0.006 0.009 0.033 0.47 0.14 0.20 0.75 0.001 – – – – – – 4.198 2.70E–05

All 175
MR–PRESSO 
(corrected)

0.022 0.008 0.007 0.037 0.50 0.18 0.15 0.85 0.005 – – – – –
rs112875651, 
rs3184504, 
rs62396185

2.869 0.004

Exclusion of 
potentially 
confounded 
GVs

162 IVW (random) 0.019 0.009 0.001 0.038 0.44 0.22 0.01 0.86 0.044 327.644 1.89E−13 – – – – 2.739 0.006

Exclusion of 
potentially 
confounded 
GVs

162 WM 0.005 0.011 −0.017 0.026 0.11 0.25 −0.39 0.60 0.675 − − − − − − 3.330 0.001

Exclusion of 
potentially 
confounded 
GVs

162 MR-Egger −0.007 0.025 −0.057 0.043 −0.16 0.58 −1.30 0.98 0.783 325.157 2.51E−13 0.001 0.269 0.773 − 1.947 0.052

Exclusion of 
potentially 
confounded 
GVs

162 MR-RAPS 0.020 0.007 0.007 0.033 0.45 0.15 0.15 0.75 0.003 – – – – – – 3.930 8.49E–05

Exclusion of 
potentially 
confounded 
GVs

159
MR-PRESSO 
(corrected)

0.021 0.008 0.005 0.038 0.49 0.19 0.11 0.86 0.012 – – – – –
rs112875651, 
rs3184504, 
rs62396185

2.877 0.004

Women

Basal 
meta-
bolic 
rate

Women
Mother’s 
attained 
age

Women All 180 IVW (random) 0.052 0.009 0.034 0.071 1.36 0.24 0.89 1.82 1.32E–08 357.236 5.93E–14 – – – –

All 180 WM 0.048 0.011 0.025 0.070 1.23 0.30 0.65 1.82 3.32E–05 – – – – – –

All 180 MR-Egger 0.046 0.026 –0.004 0.096 1.19 0.66 –0.10 2.49 0.071 357.092 4.31E–14 0.0002 0.789 0.829 –

All 180 MR-RAPS 0.054 0.007 0.041 0.067 1.40 0.17 1.07 1.74 2.22E–16 – – – – – –

All 177
MR-PRESSO 
(corrected)

0.051 0.009 0.034 0.068 1.32 0.22 0.88 1.76 1.77E–08 – – – – –
rs10774624, 
rs2102278, 
rs9843653

Exclusion of 
potentially 
confounded 
GVs

161 IVW (random) 0.052 0.010 0.033 0.072 1.35 0.26 0.85 1.86 1.34E–07 308.741 1.62E–11 – – – –

Exclusion of 
potentially 
confounded 
GVs

161 WM 0.056 0.012 0.032 0.081 1.46 0.32 0.84 2.08 4.40E–06 – – – – – –

Exclusion of 
potentially 
confounded 
GVs

161 MR-Egger 0.065 0.029 0.008 0.121 1.67 0.74 0.22 3.13 0.024 308.331 1.27E–11 –0.0004 0.645 0.771 –

Exclusion of 
potentially 
confounded 
GVs

161 MR-RAPS 0.054 0.007 0.040 0.068 1.40 0.19 1.03 1.77 7.33E–14 – – – – – –

Exclusion of 
potentially 
confounded 
GVs

159
MR-PRESSO 
(corrected)

0.053 0.009 0.035 0.072 1.38 0.24 0.90 1.86 6.95E–08 – – – – –
rs10774624, 
rs2102278
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Exposure Outcome

Selection of 
GVs

No. of 
GVs

MR 
method

Beta Odds ratio

p-value

Cochran’s Q MR-Egger Outlier detected Sex difference

Trait Sex Trait Sex Estimate SE
95% CI 
 LL

95% CI 
UL Estimate

95% CI 
LL

95% CI 
UL Statistic p-value Intercept

Intercept 
p-value I2

GX by MR-PRESSO z statistic p-value

Men

Basal 
meta-
bolic 
rate

Men

Survival 
to 99th 
percen-
tile of 
age

Overall All 202
IVW 
(random)

−0.087 0.095 −0.275 0.100 0.916 0.760 1.105 0.359 259.518 0.003 – – – – 0.420 0.674

All 202 WM −0.217 0.136 −0.484 0.050 0.805 0.617 1.051 0.111 – – – – – – 1.098 0.272

All 202 MR-Egger −0.339 0.280 −0.888 0.210 0.713 0.412 1.234 0.226 258.342 0.003 0.008 0.340 0.838 – 0.010 0.992

All 202 MR-RAPS −0.089 0.085 −0.256 0.078 0.914 0.774 1.081 0.294 – – – – – – 0.474 0.636

All 201
MR-PRESSO 
(corrected)

−0.062 0.093 −0.245 0.122 0.940 0.783 1.130 0.510 – – – – – rs768023 0.242 0.809

Exclusion of 
potentially con-
founded GVs

186
IVW 
(random)

−0.042 0.102 −0.241 0.158 0.959 0.786 1.172 0.684 231.722 0.011 – – – – 0.785 0.433

Exclusion of 
potentially con-
founded GVs

186 WM −0.185 0.145 −0.468 0.099 0.831 0.626 1.104 0.202 – – – – – – 1.622 0.105

Exclusion of 
potentially con-
founded GVs

186 MR-Egger −0.126 0.315 −0.744 0.491 0.881 0.475 1.634 0.689 231.621 0.010 0.003 0.776 0.791 – 0.461 0.645

Exclusion of 
potentially con-
founded GVs

186 MR-RAPS −0.042 0.093 −0.224 0.139 0.958 0.799 1.149 0.646 – – – – – – 0.864 0.388

Exclusion of 
potentially con-
founded GVs

185
MR-PRESSO 
(corrected)

−0.011 0.099 −0.206 0.185 0.989 0.814 1.203 0.915 – – – – – rs768023 0.755 0.450

Basal 
meta-
bolic 
rate

Men

Survival 
to 90th 
percen-
tile of 
age

Overall All 204
IVW 
(random)

−0.098 0.063 −0.221 0.026 0.907 0.801 1.026 0.120 288.099 7.92E−05 – – – – 0.381 0.704

All 204 WM −0.048 0.086 −0.217 0.122 0.953 0.805 1.129 0.581 - - - - - - 0.071 0.943

All 204 MR-Egger −0.313 0.179 −0.665 0.039 0.731 0.514 1.040 0.081 285.783 9.46E−05 0.007 0.201 0.832 - 0.422 0.673

All 204 MR-RAPS −0.100 0.054 −0.205 0.005 0.905 0.814 1.005 0.061 – – – – – – 0.442 0.659

All 203
MR-PRESSO 
(corrected)

−0.082 0.062 −0.203 0.040 0.921 0.816 1.040 0.186 – – – – – rs768023 0.622 0.534

Exclusion of 
potentially con-
founded GVs

188
IVW 
(random)

−0.104 0.068 −0.236 0.029 0.902 0.789 1.030 0.126 262.112 0.0002 – – – – 0.793 0.428

Exclusion of 
potentially con-
founded GVs

188 WM −0.010 0.092 −0.189 0.170 0.991 0.828 1.185 0.917 – – – – – – 0.491 0.623

Exclusion of 
potentially con-
founded GVs

188 MR-Egger −0.305 0.201 −0.699 0.089 0.737 0.497 1.093 0.129 260.522 0.0003 0.006 0.287 0.783 – 1.035 0.301

Exclusion of 
potentially con-
founded GVs

188 MR-RAPS −0.106 0.058 −0.220 0.007 0.899 0.802 1.008 0.067 – – – – – – 0.934 0.350

Exclusion of 
potentially con-
founded GVs

187
MR-PRESSO 
(corrected)

−0.085 0.066 −0.215 0.046 0.919 0.806 1.047 0.201 – – – – – rs768023 0.796 0.426

Women

Basal 
meta-
bolic 
rate

Women

Survival 
to 99th 
percen-
tile of 
age

Overall All 202
IVW 
(random)

−0.029 0.100 −0.225 0.167 0.971 0.798 1.182 0.770 249.285 0.012 – – – –

All 202 WM −0.0003 0.143 −0.280 0.280 0.9997 0.756 1.322 0.998 – – – – – –

All 202 MR-Egger −0.335 0.293 −0.909 0.238 0.715 0.403 1.269 0.252 247.751 0.012 0.009 0.266 0.867 –

All 202 MR-RAPS −0.030 0.091 −0.209 0.149 0.971 0.812 1.161 0.743 – – – – – –

All 202 MR-PRESSO* −0.029 0.100 −0.227 0.168 0.971 0.797 1.183 0.770 – – – – – –

Exclusion of 
potentially con-
founded GVs

183
IVW 
(random)

0.074 0.107 −0.136 0.284 1.077 0.873 1.329 0.490 218.214 0.034 – – – –

Exclusion of 
potentially con-
founded GVs

183 WM 0.157 0.153 −0.143 0.457 1.170 0.867 1.579 0.305 – – – – – –

Exclusion of 
potentially con-
founded GVs

183 MR-Egger 0.087 0.338 −0.575 0.749 1.091 0.563 2.114 0.797 218.212 0.031 –0.0004 0.968 0.836 –

Exclusion of 
potentially con-
founded GVs

183 MR-RAPS 0.076 0.100 −0.120 0.271 1.079 0.887 1.311 0.447 – – – – – –

Exclusion of 
potentially con-
founded GVs

182
MR-PRESSO 
(corrected)

0.098 0.105 −0.109 0.305 1.103 0.896 1.356 0.353 – – – – – rs599004

Basal 
meta-
bolic 
rate

Women

Survival 
to 90th 
percen-
tile of 
age

Overall All 203
IVW 
(random)

−0.063 0.067 −0.194 0.067 0.939 0.824 1.070 0.343 277.242 0.0003 – – – –

All 203 WM −0.057 0.093 −0.239 0.126 0.945 0.787 1.134 0.542 – – – – – –

All 203 MR-Egger −0.202 0.193 −0.580 0.177 0.817 0.560 1.194 0.297 276.441 0.0003 0.004 0.446 0.851 –

Continued
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BMR is a possible target of intervention for lifespan in several ways. For lifestyle aspects, resistance train-
ing has been suggested as increasing BMR33, possibly through building muscle mass34. Caloric restriction 
reduces BMR35 and appears to promote longer lifespan36, as also in line with the viewpoint of tradeoff between 
growth, reproduction, and longevity in evolutionary biology37,38. In animal studies, it has recently been sug-
gested that metabolism may interact with life history traits, specifically growth and reproduction, to act as a 
constraint on maximizing fitness, i.e., lifetime reproduction39. During these processes, a higher metabolic rate 
was observed to be associated with reduced longevity. Protein intake is reported to raise insulin-like growth 
factor 140, a hormone responsible for growth, which also increases BMR41. For therapies that alter hormonal 
levels, exogenous testosterone has been shown to increase BMR, largely through building muscle mass42. Rais-
ing thyroid hormones also leads to an increase in BMR43. Climate change towards global warming may have 
an impact on BMR. Prolonged heat exposure may impair thermoregulation, a process to maintain normal 
core temperature of the body by increasing BMR at low ambient temperature and vice versa44, thus causing a 
rise in core temperature45,46. BMR increases with core temperature47, although protein damage can occur and 
eventually inhibits BMR45.

The validity of an MR study relies on a few key assumptions. First, it requires GVs to be strongly associated 
with the exposure. To assure this, we only selected GVs associated with BMR at genome-wide significance 
(p-value < 5 × 10–8). Also, all GVs predicting BMR had an F-statistic ≥ 30, which is greater than the rule-of-thumb 
value of 10 for a non-weak instrument48. The I2

GX value for MR-Egger was approximately 0.9, which also reflects 
an overall non-weak set of instruments49. Second, it requires GVs not to be associated with the confounders of 
the GV-outcome association. Although it was not possible for us to perform an exhaustive check on all poten-
tial confounders, we assessed the association of GVs with five key potential confounders related to lifestyle and 
socioeconomic position in the UK Biobank and excluded relevant GVs in sensitivity analysis. The results were 
largely consistent. Third, it requires GVs to affect the outcome only via the exposure of interest, which can be 
violated in different ways. A GV can exhibit horizontal pleiotropy, i.e., influencing multiple exposures, which 
in turn affects the outcome through different pathways. To address this issue, we conducted sensitivity analysis 
using different MR methods, including the weighted median, MR-Egger, and MR Pleiotropy RESidual Sum and 
Outlier (MR-PRESSO), which gave directionally similar results. MR-Egger intercept tests also did not suggest the 
presence of directional horizontal pleiotropy. Besides, selection bias in MR can distort associations if the GV (GV 
predicting BMR) or the exposure itself (BMR) affects survival, which precludes subjects from being recruited into 
the underlying genome-wide association studies (GWASs)50. This is an inherent problem of MR studies because 
of the time lag between randomization and recruitment into the study21. Selection bias in MR can also occur 
when a competing risk that shares common causes with the outcome of interest also affects survival50. However, 
our MR analysis benefits from using parental attained age as an outcome, which is not subject to such concerns.

This study has certain limitations. First, data on BMR was derived from impedance measurement using a 
body composition analyzer instead of being measured using the gold standard, indirect calorimetry. However, 
good estimation may be achieved by including body composition in the prediction formula51. Second, weak 
instrument bias may be present, which generally biases MR estimates towards the null in two-sample MR, pro-
vided that there is no sample overlap52. In our study, both the exposure and primary outcome used participants 
from the UK Biobank. However, the use of IVW and weighted median methods in two-sample MR using single 
sample are considered acceptable for large-sample studies53. MR Robust Adjusted Profile Score (MR-RAPS) 
complemented the results under possible weak instrument bias. In contrast, the MR-Egger estimate should be 
interpreted with caution in view of the insufficiently large I2

GX value53, with a maximum of 0.89 in the analysis of 
parental attained age. However, most MR-Egger estimates were directionally similar to the IVW one. Third, we 

Exposure Outcome

Selection of 
GVs

No. of 
GVs

MR 
method

Beta Odds ratio

p-value

Cochran’s Q MR-Egger Outlier detected Sex difference

Trait Sex Trait Sex Estimate SE
95% CI 
 LL

95% CI 
UL Estimate

95% CI 
LL

95% CI 
UL Statistic p-value Intercept

Intercept 
p-value I2

GX by MR-PRESSO z statistic p-value

All 203 MR-RAPS −0.065 0.058 −0.178 0.048 0.937 0.837 1.050 0.262 – – – – – –

All 201
MR-PRESSO 
(corrected)

−0.027 0.063 −0.152 0.098 0.974 0.859 1.103 0.673 – – – – –
rs3800228, 
rs599004

Exclusion of 
potentially con-
founded GVs

184
IVW 
(random)

−0.026 0.071 −0.164 0.113 0.974 0.848 1.119 0.714 237.752 0.004 – – – –

Exclusion of 
potentially con-
founded GVs

184 WM 0.056 0.098 −0.136 0.248 1.058 0.873 1.281 0.568 – – – – – –

Exclusion of 
potentially con-
founded GVs

184 MR-Egger 0.002 0.218 −0.426 0.430 1.002 0.653 1.537 0.994 237.728 0.003 –0.0008 0.894 0.812 –

Exclusion of 
potentially con-
founded GVs

184 MR-RAPS −0.026 0.063 −0.150 0.097 0.974 0.861 1.102 0.674 – – – – – –

Exclusion of 
potentially con-
founded GVs

183
MR-PRESSO 
(corrected)

−0.009 0.069 −0.145 0.126 0.991 0.865 1.135 0.895 – – – – – rs599004

Table 2.   Mendelian randomization of basal metabolic rate (Neale Lab) on survival to old age (Deelen et al.). 
CI: confidence interval; GV: genetic variant; IVW: inverse-variance weighting; LL: lower limit; MR: Mendelian 
randomization; MR-RAPS: Mendelian Randomization Robust Adjusted Profile Score; MR-PRESSO: 
Mendelian Randomization Pleiotropy Residual Sum and Outlier; SE: standard error; UL: upper limit; WM: 
weighted median.
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assumed a linear association between BMR and parental attained age. With summary-level data only, we were 
unable to verify this assumption. Fourth, population stratification can introduce genetic confounding. However, 
the underlying GWASs we used restricted analysis only to individuals of European descent. Besides, they were 
also adjusted for principal components for ancestry. Fifth, the MR estimates in our study represent only the life-
long effect of BMR on parental attained age. Whether short-term interventions on BMR could produce similar 
effects requires further investigation. Sixth, our findings may not be generalized to populations other than those 
of European descent. However, causes should be consistent across populations though relevancy is an issue54, 
especially because body composition across population varies. Seventh, canalization refers to the developmental 
compensation arisen from the effect of the GV. However, its existence in our study is unknown. Further, it also 
biases MR estimates towards the null, which could not explain the observed associations. Eighth, sex-specific 
GWASs were available for the exposure and primary outcome but not the additional outcome.

In conclusion, our results showed that higher BMR might reduce lifespan in a sex-specific manner. This 
might have a practical implication on recommending the optimal level of physical activity, especially resistance 
training and muscle mass building as well as dietary patterns, hormonal treatments, and environmental factors 
that raise BMR. The underlying mechanism by which BMR is related to major causes of death is worth further 
investigation.

Methods
We conducted an MR study of the association of BMR with parental attained age as the primary outcome using a 
two-sample MR approach by applying genetic predictors of the exposure to GWASs of outcomes with summary 
statistics. As an instrumental variable analysis, MR requires fulfillment of several important assumptions to give 
valid results. First, the GVs must be strongly associated with the exposure. Second, the GVs must not confound 
the GV-outcome association. Third, the GVs must be independent of the outcome given the exposure. In par-
ticular, given, we used two-sample methods applied in a one-sample study, albeit, in a large study, we checked 
for validity of the estimates53 and we additionally used survival to old age as an additional outcome, because the 
cases does not overlap with source study for the exposure.

Data source.  Basal metabolic rate.  Genetic predictors of BMR were retrieved from UK Biobank summary 
statistics provided by Neale Lab55. The UK Biobank is a large-scale population-based prospective study, which 
aimed to enroll > 500,000 participants aged between 40 and 69 years from 2006 to 2010 in Great Britain56. BMR 
(in kilojoule) was estimated using a body composition analyzer (Tanita BC418MA Body Composition Analyzer) 
(https://​bioba​nk.​ctsu.​ox.​ac.​uk/​cryst​al/​refer.​cgi?​id=​1421), which is based on Dual-energy X-ray absorptiometry 
using bioelectrical impedance analysis (https://​www.​tanita.​com/​es/.​downl​oads/​downl​oad/?​file=​85563​8086&​fl=​
en_​US). The analyzer provides BMR derived mainly from fat-free mass using a proprietary regression formula, 
which highly correlates to that measured using indirect calorimetry (r = 0.9, p < 0.0001) (https://​www.​tanita.​
com/​es/.​downl​oads/​downl​oad/?​file=​85563​8086&​fl=​en_​US). The Neale Lab obtained quality-controlled sex-
specific genetic associations in unrelated participants with BMR using multivariable linear regression, adjusted 
for age, age x age, and the first 20 principal components in up to 361,194 individuals (54% women) of white 
British ancestry. The estimates were in standard deviations from rank-inverse-normalization of residuals of the 
regression (phenotype code, 23105_irnt).

Parental attained age.  Genetic associations with parental (father’s and mother’s) attained age, where the age 
of parents (in years) was reported by their offspring, were retrieved from a GWAS of lifespan57. This GWAS 
analyzed attained age for 415,311 fathers and 412,937 mothers of participants of European descent from the UK 
Biobank56 after excluding those who reported themselves as adopted or had premature death of parents defined 
as a father who died before 46 years old and mother who died before 57 years old. The genetic associations 
were adjusted for age, sex, assessment centre, and array type. The estimates were expressed as rank-normalized 
Martingale residuals of the Cox’s proportional hazards regression, with a positive value representing a reduced 
attained age.

Survival to the 90th and 99th percentile of ages.  Genetic associations with odds of survival to the 90th and 99th 
percentile of ages or above compared to the 60th percentile of age or below, where percentiles of age were coun-
try-, sex-, and birth cohort-specific, were retrieved from a meta-analysis of GWASs of survival to old age58. This 
study contains 11,262 cases of survival to the 90th percentile of age, 3,484 cases of survival to the 99th percentile 
of age, and 25,483 controls of survival to the 60th percentile of age in people of European descent. The genetic 
associations were adjusted for clinical site, known family relationships, and/or the first four principal compo-
nents. The estimates were in log odds ratios of survival.

Selection of genetic variants.  We excluded GVs for BMR that are non-biallelic, rare (minor allele fre-
quency < 0.01), or not in Hardy–Weinberg equilibrium (p-value for Chi-squared test < 0.05). Only GVs that pre-
dicted BMR at p-value < 5 × 10–8 were retained. We then obtained the uncorrelated GVs, i.e., GVs not in linkage 
disequilibrium, with r2 < 0.001 using the “clump_data” function in the “TwoSampleMR” R package59. GVs una-
vailable for the outcome were discarded.

Assessment of confounding.  We examined whether the GVs for BMR were associated with five key 
potential confounders of the GVs on outcome related to socioeconomic status and lifestyle attributes, including 
a measure of deprivation (Townsend index (phenotype code, 189)), age at completion of full-time education 

https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1421
https://www.tanita.com/es/.downloads/download/?file=855638086&fl=en_US
https://www.tanita.com/es/.downloads/download/?file=855638086&fl=en_US
https://www.tanita.com/es/.downloads/download/?file=855638086&fl=en_US
https://www.tanita.com/es/.downloads/download/?file=855638086&fl=en_US
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(phenotype code, 845), number of days per week walked for 10 min or more (phenotype code, 864), current 
smoking (phenotype code, 1239), and alcohol intake frequency (phenotype code, 1558) using summary statistics 
from the UK Biobank provided by the Neale Lab55, at Bonferroni-corrected significance, i.e., 0.05 / (number of 
GVs x number of traits).

Statistical analysis.  We harmonized the effect allele of a GV for exposure and outcome based on the allele 
letters in general. The Neale Lab reported the reference alleles on the forward strand55. Pilling et al. and Deelen 
et al. did not report the strand orientation but provided the effect allele frequency57,58. We therefore only kept 
palindromic GVs with effect allele frequency ≤ 0.45 and ≥ 0.55 (i.e., not close to 0.50) in the analysis.

GV-specific Wald estimates were calculated as the ratio of the effect size of the GV-outcome association to 
that of the GV-exposure association60. The corresponding standard error was approximated from the first term 
of Fieller’s theorem61.

We computed the F-statistic, which reflects the strength of genetic instrument, for each GV using an approxi-
mation, i.e., by dividing the squared effect size by the squared standard error of GV-exposure association49. An 
F-statistic of > 10 indicates that the genetic instrument is not weak.

In the primary analysis, we meta-analyzed GV-specific Wald estimates using IVW with multiplicative random 
effects, which assumed no measurement error for the exposure49 and balanced pleiotropy62, using the “Men-
delianRandomization” R package63. The Cochran’s Q statistic quantifies the hetereogeneity among the genetic 
instruments and serves as an indicator of potential horizontal pleiotropy59,64.

As a sensitivity analysis to address potential horizontal pleiotropy, where GVs predicting the exposure of 
interest affect the outcome via pathways other than the exposure of interest itself, we employed the weighted 
median and MR-Egger methods using the “MendelianRandomization” R package63, MR-PRESSO method using 
the “MRPRESSO” R package (with 10,000 simulations)65, and MR-RAPS method using the “mr.raps” R package66. 
The weighted median method provides a valid estimate when > 50% of weight is from valid GVs67. The MR-Egger 
method provides a valid estimate as long as the “instrument strength independent of direct effect”49,68 and “no 
measurement error for the exposure” assumptions hold49. A non-zero MR-Egger intercept indicates the presence 
of directional pleiotropy or violation of the “instrument strength independent of direct effect” assumption, which 
biases the IVW estimate49. The I2

GX value of MR-Egger reflects the overall strength of the genetic instrument set 
and a higher value close to unity is more desirable in order to minimize the regression dilution bias arisen from 
measurement error49. When conducting one-sample MR, estimates should be valid with the sample size here, as 
long as the I2

GX > 97% for MR-Egger53. The MR-PRESSO method adopts the IVW method but detects directional 
pleiotropy statistically and corrects it by removing outliers65. The MR-RAPS method assumes balanced pleiotropy 
and that the pleiotropic effects are normally distributed66. It also takes into account measurement error for the 
exposure that can lead to weak instrument bias.

We repeated all analyses by removing GVs associated with potential confounders at Bonferroni-corrected 
significance as additional sensitivity analysis.

To visualize the results for the primary outcome, we additionally presented the MR estimates by converting 
the rank-normalized Martingale residuals into years of life lost using an established approximation, i.e., multiply 
by 2.2869 and 2.5863 for fathers and mothers, respectively, to account for the genetic associations given offspring 
only share half their genetic endowment with each parent, then multiply by 10 in accordance with a long-standing 
actuarial rule of thumb recently verified69. To obtain the overall associations, we also meta-analyzed the sex-
specific estimates of years of life lost.

Any sex difference in years of life lost was assessed using a z-test70.
Post hoc power calculations were performed using an online calculator71, which is based on the approxima-

tion that the sample size for an MR study is the sample size for exposure on outcome divided by the proportion 
of variance in exposure explained by the GVs72. The proportion of variance in BMR explained by each GV was 
estimated by an approximation as (effect size of the genetic associations with BMR)2 × 2 x minor allele frequency 
x (1 – minor allele frequency)73. All GV-specific proportions of variance were summated to give the overall one.

All statistical analyses were conducted using R (Version 4.0.3, The R Foundation for Statistical Computing 
Platform, Vienna, Austria).

Eithics approval and consent to participate.  We only used publicly available summary-level data in 
the current study. No original data was collected. Ethical approval including written informed consent from 
individual participants can be found in the original publications.

Data availability
The datasets generated during and/or analyzed during the current study are available from the website of the 
Neale Lab (http://​www.​neale​lab.​is/​uk-​bioba​nk/), a GWAS of parental attained age (https://​figsh​are.​com/​artic​les/​
datas​et/​Plling_​et_​al_​2017_​UKB_​paren​ts_​attai​ned_​age_​GWAS/​54393​82/2), and a GWAS of survival to old age 
(https://​www.​ebi.​ac.​uk/​gwas/​publi​catio​ns/​31413​261).
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