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Small RNA transcriptome analysis 
using parallel single‑cell small RNA 
sequencing
Jia Li 1, Zhirong Zhang 1,2, Yinghua Zhuang 1, Fengchao Wang  1,3 & Tao Cai  1,3*

miRNA and other forms of small RNAs are known to regulate many biological processes. Single-cell 
small RNA sequencing can be used to profile small RNAs of individual cells; however, limitations 
of efficiency and scale prevent its widespread application. Here, we developed parallel single-cell 
small RNA sequencing (PSCSR-seq), which can overcome the limitations of existing methods and 
enable high-throughput small RNA expression profiling of individual cells. Analysis of PSCSR-seq 
data indicated that diverse cell types could be identified based on patterns of miRNA expression, 
and showed that miRNA content in nuclei is informative (for example, cell type marker miRNAs can 
be detected in isolated nuclei). PSCSR-seq is very sensitive: analysis of only 732 peripheral blood 
mononuclear cells (PBMCs) detected 774 miRNAs, whereas bulk small RNA analysis would require 
input RNA from approximately 106 cells to detect as many miRNAs. We identified 42 miRNAs as 
markers for PBMC subpopulations. Moreover, we analyzed the miRNA profiles of 9,533 cells from 
lung cancer biopsies, and by dissecting cell subpopulations, we identified potentially diagnostic and 
therapeutic miRNAs for lung cancers. Our study demonstrates that PSCSR-seq is highly sensitive and 
reproducible, thus making it an advanced tool for miRNA analysis in cancer and life science research.

miRNAs and other forms of small RNAs are known to regulate many biological processes1,2, and miRNA expres-
sion is currently used by researchers as a signature of disease diagnosis, prognosis, and the determination of 
patient responses to treatments3–5. However, miRNA expression signatures in tissue biopsies are often masked in 
data analyses after bulk processing of tissue samples, as these typically contain highly heterogeneous cell types. 
Thus, highly sensitive and high-throughput single-cell small RNA profiling methods are needed to better explore 
heterogeneous tissue samples. In contrast to high-throughput methods for single-cell mRNA sequencing6–9, 
which have been successfully applied in various biological and medical research areas, few low-throughput, 
single-cell small RNA analytical methods have been reported10–13.

Small RNA sequencing workflows involve a series of reactions. Briefly, these methodologies first ligate adapt-
ers to small RNA molecules using T4 RNA ligase I/II so that the small RNA molecules are flanked by a defined 
sequence. Next, the ligated small RNA molecules are reverse transcribed into cDNA and amplified by PCR. The 
existing single-cell small RNA sequencing methods suffer the limitations of low efficiency in that the majority of 
sequencing reads are from adapter self-ligations (5’ and 3’ adapter dimers) or random error sequences, and the 
target miRNA read numbers are often low. Additionally, the low-throughput designs of these methods cannot be 
practically applied for small RNA profiling of highly heterogeneous tissue samples. Here, we developed a method 
called parallel single-cell small RNA sequencing (PSCSR-seq) to overcome these limitations. We applied PSCSR-
seq to analyze the small RNA profiles from cultured cells, and then isolated nuclei and PBMCs for experimental 
validation. Furthermore, we investigated the small RNA profiles from lung cancer samples.

Results
Development of PSCSR‑seq.  We first explored strategies to improve the efficiency of small RNA library 
construction. Current small RNA sequencing library preparation strategies require multistep procedures, and 
the ligation efficiency in the early steps of these methods will strongly affect successful small RNA library con-
struction. In particular, 3’ adapter ligation (ligating small RNA to a DNA adapter using modified T4 RNA ligase 
II) is critical14. To increase the ligation efficiency, we used microinjection technology to reduce the volume of 
the 3’ ligation reaction to 1~2 nanolitres. Compared to the usual microlitre-scale reaction, the nanolitre-scale 
reactions can significantly suppress the formation of side products and improve the target product yield during 
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small RNA library construction (Supplementary Fig. S1). The product yield for small RNA libraries is further 
improved by a heating step, which likely facilitates the release of small RNA from the RNA-induced silencing 
complex (RISC). A heating step at 75 °C for 10 min can significantly improve the small RNA library yield com-
pared to that of the control reaction at 25 °C (Supplementary Fig. S2).

Next, we explored strategies to reduce potential experimental biases during small RNA sequencing. In our 
system, the ligation adapters were carefully designed (see Supplementary Table S3). The ligation adapters con-
tain 8 random nucleotides as a unique molecular index (UMI) that can be used for small RNA counting; this 
structure can reduce the PCR duplication bias in measurements of small RNA expression. Additionally, random 
nucleotides close to the ligation junction can help neutralize ligation bias15–17. We used high temperatures dur-
ing the reverse transcription process (carried out by SuperScript III reverse transcriptase) to further reduce 
the potential formation of side products. Then, two rounds of PCR-based amplification introduce barcodes for 
labeling cells (round 1) and for multiplexing of samples (round 2) for high-throughput sequencing. Compared 
with ordinary methods, our sequencing method can decrease the potential biases and more sensitively detect 
miRNAs (Supplementary Fig. S3).

We further expanded the optimized low-throughput protocol into a highly parallel protocol based on a 
nanowell (nanolitre-microwell) chip (Fig. 1A,B, see Methods). We compiled an analysis pipeline (Fig. 1C) to 
decode the small RNA sequences and estimate the small RNA expression of individual cells. Compared with exist-
ing methods, PSCSR-seq enables single-cell small RNA profiling for many more cells simultaneously (Fig. 1D). 
PSCSR-seq was efficient, with well-controlled side products and enhanced small RNA enrichment (Supple-
mentary Fig. S4). PSCSR-seq was highly reproducible across technical replicates, and the cell-to-cell variance 
of PSCSR-seq was comparable to that of the single-cell mRNA sequencing method (Fig. 1E and Supplementary 
Fig. S5). PSCSR-seq achieved high sensitivity. We conducted a comparison with the recently reported Hücker 
method (SBN-CL)13. Specifically, using data for A549 cells, PSCSR-seq detected twice as many miRNAs as the 
Hücker method at the same sequencing depth (Fig. 1F). To explore this new method, we next sequenced 17,565 
single cells/nuclei from various biological and clinical samples (Supplementary Table S1).

Single‑cell small RNA transcriptome analysis of cultured cells.  We initially explored the small 
RNA profiles of A549 cancer cells using PSCSR-seq. We generated 514M raw reads for 1,173 selected cells and 
after sequencing and data processing, we obtained high-quality data for 1,145 cells (Supplementary Fig. S6A). 
Each cell had an average of 216K mapped small RNA reads and achieved an estimated ~87% sequencing satura-
tion (Supplementary Fig. S6B). The small RNA complement that can be detected from mammalian cells using 
PSCSR-seq included miRNAs, small RNAs from rRNAs, tRNAs, snRNAs, snoRNAs, and degraded protein-
coding mRNAs, or other miscellaneous small RNAs from unannotated regions. On average, 15,540 small RNA 
molecules (scored by UMIs) were detected from each cell and miRNAs were of highest abundance (~38% of the 
small RNA molecules from miRNA loci, Fig. 2A). In the dataset including all cells, PSCSR-seq revealed small 
RNA species originating from 6,167 genomic loci. The average number of small RNA species in each cell was 
2,245. For miRNAs specifically, the whole dataset included miRNA species originating from 1,363 genomic loci, 
with an average of 301 distinct miRNA species per cell (Fig. 2B).

As expected, our results also confirmed that the expression distribution of the detected miRNA species was 
highly skewed18. A small number of very highly expressed miRNAs were predominant, with an average of only 

Figure 1.   High-quality single-cell small RNA sequencing with PSCSR-seq. (A) Schematic of PSCSR-seq. 
Resuspended cells were dispersed into a nanowell chip. Individual viable cells were selected by a microscope, 
and small RNA libraries were prepared, followed by sequencing and data analysis. (B) Flowchart of single-cell 
small RNA library preparation. Cells were lysed to release small RNAs. Then, 3’ adapters were ligated to these 
small RNAs, and the remaining 3’ adapters were removed. Next, 5’ adapters were ligated to these small RNAs. 
In total, the adapters harbor 8 random nucleotides as a unique molecular index or UMI, which were used for a 
small RNA counting procedure during data analysis. The ligated small RNAs were then reverse transcribed. In 
addition, two rounds of PCR-based amplification were used to introduce barcodes for labeling cells (PCR-1) and 
for multiplexing of samples for high-throughput sequencing (PCR-2) (see the "PSCSR-seq library preparation 
and sequencing" section of Methods). (C) Small RNAs with associated UMIs and cell barcodes were extracted 
from the raw reads and then aligned to the genome. The small RNA read criteria were as follows: 1, the small 
RNA length was within 16–39 nt after removal of adapter sequences; and 2, the small RNA sequences needed 
to be matched to the genome without any mismatches. Small RNAs were further classified into miRNAs or 
tRNA-derived small RNAs, rRNA-derived small RNAs, as well as other RNA species. The expression level 
for each class of small RNA was then estimated (see the "PSCSR-seq data analysis" section of Methods). (D) 
Comparison of existing single-cell small RNA sequencing methods. We defined the small RNA ratio as the 
number of small RNA reads divided by the total number of sequenced reads. The small RNA reads ratios for 
existing methods were calculated based on published datasets (25 primed human embryonic stem cells were 
used with the Faridani method10, 16 K562 cells were used with the Wang method11, 6 A549 cells were used 
with the Hücker method13, and 6 cancer samples with traditional bulk small RNA sequencing method, see the 
“comparison of methods” section of Methods). (E) Reproducibility comparison. The bar plot is based on the 
average reproducibility values of A549 cells (Hücker method, n = 6), A549 cells randomly chosen from PSCSR-
seq results (n = 10), and the reported value from the Fluidigm C1 single-cell mRNA sequencing method50. Error 
bars represent the standard deviation (see the “comparison of methods” section of Methods). (F) Boxplot of 
miRNA numbers per cell detected at different sequencing depths (random downsampling from sequences of 
A549 cells using the Hücker method and PSCSR-seq, n = 6 and 10 respectively, see the “Comparison of methods” 
section of Methods).

◂
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10 of the most abundant miRNAs accounting for more than half of the overall expressed miRNAs in a given cell 
(Supplementary Fig. S6C). As we can obtain data from many cells, PSCSR-seq enables precise characterization of 
the small RNA complement present in a "typical cell" from an A549 cell line, in contrast with what was possible 
using other low throughput methods. We observed that the miRNA profiles showed considerable homogeneity 
based on t-distributed stochastic neighbor embedding (tSNE) plots (Fig. 2C). Next, we analyzed four different cell 
lines (A549, K562, HeLa, and HEK293T) using PSCSR-seq. We found that miRNA profiles could distinguish these 
cell types when they were mixed, while other forms of small RNAs hardly separated these types of cells (Fig. 2D).

Single-cell analysis revealed multiple cell type marker miRNAs, which significantly overlapped with the bulk 
sequencing analysis results (Supplementary Fig. S6D). We further compared our data with the expression profiles 
within a large miRNA atlas with data from 172 different sample types19. We found that the average miRNA pro-
files of individual A549, HEK293T, and HeLa cells were highly consistent with known profiles. That is, the profiles 
from PSCSR-seq data were most similar to the corresponding profiles in the atlas (Supplementary Table S2). The 
expression data of K562 cells (a human immortalized myelogenous leukemia cell line) was not present in the 
existing miRNA atlas database, but a cell ontology analysis based on our PSCSR-seq data indicated that these 
miRNA profiles were most likely from “leukocytes” or “haematopoietic_cells” (Supplementary Fig. S6E). Taken 
together, these results emphasized that PSCSR-seq could accurately reveal the miRNA profiles of individual cells.

Single‑cell small RNA transcriptome comparison between nuclei and whole cells.  Although 
single-nucleus analysis strategies are widely used in mRNA expression20,21 or DNA modification analysis22, sin-
gle-nucleus small RNA analysis has not yet been explored in the literature. Therefore, we isolated nuclei from 
human HEK293T cells and applied PSCSR-seq to isolated nuclei. In these experiments, the separation of nuclei 
and whole cells was verified by RT-qPCR and microscopy experiment (Fig. 3A-C). We used PSCSR-seq to gener-
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Figure 2.   Small RNA profiling of cultured cells via PSCSR-seq. (A) Distribution of small RNA molecules in 
A549 cells. The pie chart shows the proportion of small RNA molecules mapped to each RNA type (also see 
Supplementary Table S1). (B) Violin plots depicting the distribution of total small RNA molecule counts (scored 
by UMIs) per cell, miRNA species numbers per cell, and the total small RNA species numbers per cell. (C) 
tSNE projection of 1,145 A549 cells calculated from the expression profiles of miRNA and other small RNA 
forms. The proportion of particular small RNA forms among the total molecules in each cell is overlaid on each 
tSNE plot. Additionally, see Supplementary Fig. S6F. (D) tSNE projection of mixed cells calculated from the 
expression profiles of miRNA and other small RNA forms. Here, HeLa (n = 356), A549 (n = 242), K562 (n = 120), 
and HEK293T (n = 109) cells were used for the plots. Additionally, see Supplementary Fig. S6G.
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ate the small RNA expression profiles of nuclei (n = 1012) or whole cells (n = 941). On average, the number of 
small RNA molecules detected per nucleus was ~463, representing 18% of that from whole cells (Fig. 3D). The 
majority of small RNAs captured were located within 21-24nt (Supplementary Fig. S7A). We observed miRNAs 
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Figure 3.   Small RNA profiling of nuclei isolated from HEK293T cells using PSCSR-seq. (A) Flowchart of 
parallel small RNA profiling of nuclei (293 T-N) and whole cells (293 T-C). (B) Microscope visualization of 
nuclei (293 T-N) and whole cells (293 T-C). The samples were stained with DAPI, ER-tracker, and Mito-tracker 
(see the “nuclei isolation” section of Methods). (C) Relative expression levels of marker genes in cells and nuclei. 
Error bars represent the standard deviation (n = 3). (D) Violin plots for comparing the distribution of total small 
RNA molecule counts per cell, miRNA species numbers per cell, and (E) proportions of different forms of small 
RNAs between nuclei and whole cells (also see Supplementary Table S1). (F) Consistency of miRNA expression 
between nuclei and whole cells. Nuclei or whole cells in PSCSR-seq were pooled together, and the miRNA 
abundance was averaged. The axis is the log10 transformed. Red dots indicate the differentially expressed 
miRNAs. For source data, see Supplementary Table S5.
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and other diverse forms of small RNAs in nuclei. But the proportions of small RNA forms were significantly dif-
ferent between nuclei and whole cells (Supplementary Table S1). For example, tRNA-derived small RNAs were 
significantly depleted, but snRNA/snoRNA-derived small RNAs were significantly enriched in nuclei (Fig. 3E). 
This result was consistent with the knowledge that tRNAs primarily function in the cytoplasm, and snRNA/
snoRNAs primarily function in the nucleus.

In nuclei, the patterns of reads mapping to miRNA loci were consistent with the annotations (Supplementary 
Fig. S7B,C). As expected, fewer miRNA species were detected in nuclei than in whole cells (52 per nucleus vs. 153 
per cell). When pooling all the data together, 535 miRNAs were detected in nuclei and 1067 miRNAs in whole 
cells, with 501 miRNAs sharing overlap between the sample types. The pooled miRNA expression profiles were 
generally consistent between nuclei and whole cells with exceptions (Fig. 3F. Pearson correlation coefficient r = 
0.91). An expression comparison using Wilcoxon rank tests indicated that 10 miRNAs (2% of the total detected 
miRNAs) were differentially enriched in the nuclei vs. the whole cell samples (see Supplementary Table S5). These 
miRNAs were relatively less abundant in nuclei except miR-1275 and let-7b. Importantly, our results showed that 
cell type marker miRNAs were detected in both nuclei and cells. This indicates that nuclei contain informative 
miRNAs for the characterization of cellular diversity.

We also examined HeLa cells (Supplementary Fig. S8A, B). We isolated the nuclei from HeLa cells and com-
pared the miRNA profiles of 1334 nuclei and 891 whole cells. There is a total of 676 miRNAs detected in nuclei 
and 1028 miRNAs detected in whole cells (76 miRNAs per nucleus vs. 167 miRNAs per cell, Supplementary 
Fig. S8C), and the pooled expression profiles between nuclei and whole cells were highly correlated (r = 0.93; 
Supplementary Fig. S8D). Similarly, all marker miRNAs of HeLa cells can be detected in nuclei. In conclusion, 
our experiments show that sampling nuclei yields informative data profiles for miRNA expression.

Single‑cell small RNA transcriptome analysis of PBMCs.  PBMCs are small cells known to have low 
RNA content (~1 pg RNA per cell in PBMCs versus > 10 pg RNA per cell for typical cancer cells)8. Compre-
hensive miRNA profiling in the expression atlas database revealed global hematopoietic markers18,19, but high-
resolution miRNA markers for subpopulations of PBMCs were lacking. We generated small RNA profiles for 
the individual components of PBMCs, consisting of 182 CD16+ monocytes, 122 CD14+ monocytes, 146 CD4+ 
T cells, 66 CD8+ T cells, 116 CD19+ B cells, and 100 CD56+ natural killer (NK) cells (a total of 732 PBMCs). 
As anticipated, our dataset confirmed that the PBMCs contained many fewer RNA molecules than A549 cells. 
On average, the number of small RNA molecules detected per cell was ~2,676. miRNA was the major form of 
the detected small RNA species. An average of 69% of the detected small RNA molecules were miRNAs, and 
on average, the number of miRNA species per cell was 105, but monocytes had a relatively higher number of 
miRNAs, with an average of 128 miRNAs per monocyte (Fig. 4A).

As a whole, PSCSR-seq in PBMCs detected a total of 774 miRNA species. The results were comparable to the 
number of miRNA species identified in a published study using a standard bulk sequencing method (Fantom 
database, 639–731 miRNAs in PBMCs, approximately 1 µg or 106 cells worth of input RNA for bulk small RNA 
analysis)18. The miRNA profiles of PSCSR-seq were highly consistent with these bulk analysis results. A com-
parison of our profiling data with published expression profiles from 121 human primary cell types (Fantom 
database)18 revealed that our PSCSR-seq results were most similar to the samples of PBMCs (Supplementary 
Table S2). Thus, PSCSR-seq was sufficiently accurate to reveal small RNA profiles in PBMCs despite their low 
RNA content.

A tSNE plot of this data presented distinguishable patterns of miRNA expression profiles for PBMC sub-
populations (Fig. 4B). Based on miRNA profiles, approximately 94% of PBMC cell types were classified cor-
rectly. When we merged highly similar CD4+/CD8+ T cells and CD14+/CD16+ monocytes, more than 98% of 
the cells were correctly classified (see the “unsupervised clustering method” section of Methods). A hierarchal 
clustering analysis based on miRNA profiles separated different subpopulations of PBMCs, which could reflect 
the cell lineages of PBMCs (Fig. 4B). Lymphocytes diverged from monocytes during hematopoiesis progression, 
and among lymphoid subpopulations, NK cells diverged from those of B and T cells. A statistical comparison of 
miRNA expression between NK and T cells showed 1.5 more differentially expressed miRNAs than a comparison 
between B and T cells. This observation was different from an mRNA profiling analysis, in which NK cells were 
highly similar to T cells (especially CD8+ T cells)23. mRNA profiles only partially correlate with cells’ lineage 
history24, so miRNA readouts provide additional information for lineage analysis.

Our results identified multiple miRNA markers in PBMCs (Fig. 4C). miR-223 and miR-150 have been pre-
viously reported to be miRNA markers of hematopoietic cells19, and our data confirmed this observation and 
revealed exclusive expression patterns of miR-223 and miR-150 in myeloid and lymphoid cells. We next tested 
whether we could use PSCSR-seq to dissect the subpopulations of PBMCs without cell sorting. We therefore 
applied PSCSR-seq to a fresh PBMC sample from a healthy donor. We validated the different miRNA patterns in 
these fresh PBMCs and classified the cells into subpopulations. Based on our identified markers, the expression 
of miR-223 and miR-150 classified PBMCs into myeloid cells and lymphoid cells, and miR-181b or miR-873 
could separate NK cells from other lymphocytes. Additionally, miR151a/b could be used to separate B cells from 
T cells (Supplementary Fig. S9). These results provide a proof-of-concept for the application of PSCSR-seq using 
highly heterogeneous samples, such as cancer biopsies.

Single‑cell small RNA transcriptome analysis of lung adenocarcinomas (LUADs).  We next 
explored the application of PSCSR-seq to an analysis of clinical specimens. To do this, we harvested cells from 
tumor tissues (TT) and tumor adjacent tissues (TAT) collected from 5 lung cancer patients (Fig. 5A), and used 
PSCSR-seq to analyze a total of 9,533 cells. This included 8,198 (86.0%) cells from TT samples and 1,335 (14.0%) 
cells from TAT samples (Fig. 5B). The demographic information of the patients is presented in Supplementary 
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Table S4. We detected a total of 1,463 miRNA species (an average of 98 miRNAs per cell). miRNAs again rep-
resented the major form among the detected small RNAs, and in fact, an average of 70% of the detected small 
RNA molecules were miRNAs. The distributions of small RNA molecules, including both UMI count data and 
miRNA species number per cell, were matched between TT and TAT for this dataset, but the distributions in the 
TT group had long tails (Fig. 5C). tSNE plots highlighted the different miRNA expression patterns between TT 
and TAT samples (Supplementary Fig. S10A).

Using a “canonical correlation analysis” method25, we integrated all the cells from different patients together 
and then classified them into cell subpopulations (Fig. 5D,G). We first distinguished tumor cells from non-tumor 
cells using the expression of miR-135b (Fig. 5E), which is known to be highly expressed in lung cancer26. Tumor 
cells contained a relatively larger number of miRNA species than other normal cells (Fig. 5F). The majority of 
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Figure 4.   Small RNA profiling of PMBCs using PSCSR-seq. (A) Violin plots showing the distribution of small 
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the annotated tumor cells came from TT samples rather than TAT samples (n = 1,640, 98.8% from TT and 1.2% 
from TAT). Based on our established miRNA markers and an existing miRNA atlas expression database18, we 
could annotate non-tumor cell populations: immune cells (n = 6,693; 82.5% from TT and 17.5% from TAT), 
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stromal cells (fibroblast or endothelial cells; n = 800, 93.6% from TT and 6.4% from TAT), and normal epithelial 
cells (n = 400, 76.0% from TT and 24.0% from TAT). An interactive presentation of the annotated data for the 
lung cancer cells can be found at https://​bioca​itao.​github.​io/​lungc​ancer/​index.​html.

Comparison of tumor cells and non-tumor cells revealed multiple tumor-specific differentially regulated 
miRNAs. The upregulated miRNAs (Fig. 5H) have been previously reported to function in the tumor inflamma-
tory response, cell proliferation, invasion, and metastasis26,27. Additionally, the upregulated miRNAs, including 
miR-928, 9629, 18230, and 18330, have been reported as serum markers for early lung cancer diagnosis. The known 
tumor suppressor miRNAs (Fig. 5I) were among the downregulated miRNAs in our dataset (for example, miR-
34b/c31, 642a32, 442333, and 548i34). This was attractive as miR-34 family miRNAs are potentially therapeutic 
miRNAs35. With single-base and single-cell resolution, our data showed the different expression patterns of miR-
34 family miRNAs in lung adenocarcinomas (Supplementary Fig. S10B). Compared to miR-34a, we observed 
that miR-34b/c was strongly suppressed in tumor cells. These findings were consistent with the observations of 
hypermethylation in the promoter region of miR-34b/c in lung cancer samples36,37. Taken together, our results 
confirmed that PSCSR-seq could informatively dissect cell populations and reveal tumor-associated miRNAs 
from clinical specimens from cancer patients.

Discussion
Here, we developed a parallel single-cell small RNA sequencing method and demonstrated its application using 
diverse biological and clinical samples. Our results showed that PSCSR-seq was highly sensitive and reproducible, 
and possessed superior performance over existing methods in several areas. First, PSCSR-seq greatly alleviated 
the known issues associated with single-cell small RNA sequencing, such as the high proportion of self-ligation 
dimmers and the low proportion of miRNA reads. Second, PSCSR-seq is an efficient system. Its adapters were 
carefully designed to ensure higher ligation efficiency and lower formation of unwanted side products relative to 
other adapters. Extra reagents such as PEG or ribosomal RNA-masking oligos were not needed in this system. 
Finally, PSCSR-seq was performed at a nanoliter scale and based on a high-throughput sample management 
system. Nanoliter scale reactions could increase the concentration of the reactants and reduce the cost of reagents 
(for PSCSR-seq library construction, the cost was ~$1.6 per cell). Also, all of the analyses in a nanowell chip were 
performed under the same reaction conditions, the reaction variations could be reduced. Currently, we use the 
commercially available Takara ICELL8 system, but we expect the protocol can be adapted by other platforms than 
can operate multi-step nanoliter reactions. PSCSR-seq chose the strict parameters in the analysis pipeline (for 
example, allowing no mismatches in the small RNA alignment); these settings could facilitate the quantification 
of miRNA isoforms, some of which only have single-base differences. However, the current pipeline may miss 
miRNAs with RNA editing, and further improvements to include these miRNAs are needed.

Nuclei contain miRNAs and their unprocessed precursors38,39. By analyzing single-nucleus small RNA profiles, 
our results show that the miRNAs from nuclei were highly informative. The miRNA expression profiles in nuclei 
were generally consistent with those from whole cells. In single-cell studies, analyzing nuclei is a useful strategy 
for archived clinical materials or hard to dissociate tissues (for example, brain tissue21 or plant tissue40). PSCSR-
seq paves the way for the small RNA analysis in these samples. Although there is a relatively small number of 
miRNAs encoded in the genome, single-cell miRNA profiles can be used to infer cell types. We demonstrate that 
PSCSR-seq can dissect cell populations in lung cancer, and identify tumor-specific miRNAs that are of diagnostic 
or therapeutic value. Finding suitable miRNA markers or targets in miRNA translational applications has been 
challenging35. Heterogeneous cell compositions largely confound traditional bulk miRNA analysis. PSCSR-seq 
can provide an advanced tool for miRNA translational studies.

Recent published “polyadenylation and template switching” method (Smart-seq-total) can investigate a broad 
spectrum of coding and non-coding RNA (including miRNAs) from a single cell41. However, the miRNA propor-
tion in the method is low. PSCSR-seq is highly sensitive for miRNA profiling. Given that miRNAs are essential 
regulators in many biological processes and diseases, PSCSR-seq will have broad applications.

Methods
Oligonucleotides design and synthesis.  3’ adapter (RA3-A2N) was obtained from Takara Biomedical 
Technology (Beijing, China); 5’ adapter (SR5F) was obtained from Sangon Biotech (Shanghai, China). Other 
oligonucleotides were obtained from Sangon Biotech. All oligonucleotides used in this study are described in 
Supplementary Table S3.

Cell culture.  A549 cells were cultured in DMEM/F-12 (11320082, Gibco, Thermo Fisher Scientific). HeLa, 
3T3, and HEK293T cells were cultured in basic DMEM (C11965500BT, Gibco). K562 cells were cultured in 
basic RPMI-1640 media (C22400500BT, Gibco). All the cultured media were supplemented with 10% (v/v) 
fetal bovine serum (26140079, Gibco) and 1% penicillin-streptomycin (15140122, Gibco). The cells were cul-
tured at 37°C in a 5% CO2 humidified incubator. Fresh cells were resuspended with 1 x Dulbecco’s phosphate-
buffered saline (DPBS, C14190500BT, Thermo Fisher Scientific), and stained with 4’,6’-diamidino-2-phenylin-
dole (D1306, Thermo Fisher Scientific) to indicate dead cells. Living cells were sorted using a BD FACSAria III 
instrument at the facility (National Institute of Biological Sciences, Beijing).

PBMCs preparation.  Cryopreserved CD3+ Pan T cells (PB009-1F-C-5M), CD19+ B cells (PB010-P-F-C), 
CD14+ monocytes (PB-011-P-F-1-C), and CD56+ natural killer cells (PB012-P-F-C) were purchased from All-
Cells (Shanghai, China). The CD3+ Pan T cells were stained with APC/Cyanine7 anti-human CD3 Antibody 
(300425, BioLegend), FITC anti-human CD4 Antibody (300506, BioLegend) and PE anti-human CD8 Antibody 
(344705, BioLegend) following the manufacturer’s instructions. Then, the Pan T cells were sorted into CD4+ T 

https://biocaitao.github.io/lungcancer/index.html
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cells and CD8+ T cells with a BD FACSAria III instrument. CD14+ monocytes were stained with PE anti-human 
CD14 Antibody (301805, BioLegend) and APC anti-human CD16 Antibody (302011, BioLegend) following 
the manufacturer’s instructions. CD14+ monocytes were further separated into CD16+ monocytes and CD14+ 
monocytes (CD16-) with a BD FACSAria III instrument.

For fresh PBMCs, venous blood was collected from a healthy donor into a plastic blood tube spray-coated with 
K2EDTA (367863, Becton Dickinson, NJ, USA). Blood was dissolved in an equal volume of 1 x DPBS solution and 
added to a SepMate™-15 tube (86415, StemCell Technologies, Canada) containing Histopaque-1077 (10771-100 
ml, Sigma-Aldrich, MO, USA). After centrifugation (1200 x g, 10 min), PBMCs were collected, washed twice, 
and resuspended with a 1 x DPBS solution.

Nuclei isolation.  Cultured HeLa and HEK293T nuclei were isolated according to the “L&W” protocol42. All 
preparations were performed on ice. Briefly, cells were harvested and centrifuged at 500 x g at 4℃ for 5 min, then 
resuspended in hypotonic buffer for 5 min (20 mM Tris-HCl [pH 7.4], 10 mM KCl, 2 mM MgCl2, 1 mM EGTA, 
0.5 mM DTT). Next, cells were lysed with IGEPAL® CA-630 (I8896-50ML, Sigma) at 0.3% final concentration, 
and centrifuged at 800 x g to separate the nuclei. Nuclei were resuspended in isotonic buffer (20 mM Tris-HCl 
[pH 7.4], 150 mM KCl, 2 mM MgCl2, 1 mM EGTA, 0.5 mM DTT, 0.3% NP-40) and incubated for 10 min. 
Finally, nuclei were centrifuged at 800 x g, then washed and resuspended with PBS.

The cells and nuclei were stained with DAPI (C1002, Beyotime Biotechnology, Shanghai, China), ER-Tracker 
Green (C1042S, Beyotime), and Mito-Tracker Red CMXRos (C1049B-50μg, Beyotime), according to the manu-
facturer’s instructions. The microscope slides were analyzed using a Nikon A1R confocal microscope (100X).

The quality of the extracted nuclei was also evaluated by quantifying the expression levels of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and ribosomal protein L30 (RPL30) mRNAs. Total RNA from cells and 
nuclei was extracted using Direct-zol RNA Microprep Kit (R2060, Zymo Research Corporation), and treated with 
gDNA wipe mix at 42 °C for 2 min. Reverse transcription of the treated RNA was performed using the HiScript 
II Q Select RT SuperMix for qPCR (R233-01, Nanjing Vazyme Biotech Co., Ltd). RT-qPCR was performed using 
AceQ qPCR SYBR Green Master Mix (Q111-02, Vazyme) on an Applied Biosystems 7500 Fast Real-Time PCR 
System. The data were normalized to the levels of U6 snRNA levels which were stably expressed.

Human lung cancer specimen preparation.  All the included patients were pathologically diagnosed 
with lung adenocarcinoma. About 1cm3 of tumor tissue and tumor adjacent tissue during curative surgery were 
collected and dissociated into single-cell suspensions by Tumor Dissociation Kit (130-096-730, Miltenyi). Cell 
suspensions were added with ACK lysis buffer (A10492-01, Gibco) to lyse the remnant RBC, and treated with 
Dead Cell Removal Kit (130-090-101, Miltenyi), then filtered through the 40-μm plastic mesh (Falcon). Cell sus-
pensions were stained with DAPI for viability, and living cells were sorted with a BD FACSAria III instrument.

PSCSR‑seq library preparation and sequencing.  The schema of the PSCSR-seq method is illustrated 
in Fig. 1.

Cell staining and selection.  Cell suspensions were stained with ReadyProbes® Cell Viability Imaging Kit 
(R37610, Thermo Fisher Scientific) for 20 min, then centrifuged (300 x g, 5 min) and resuspended in 1 x DPBS. 
After cell counting, the stained cell suspensions were diluted in a mix of 1 x Second Diluent (640196, TaKaRa Bio 
USA) and 0.4 U Ribonuclease Inhibitor (N2515, Promega) to 1 cell/35 nl. The cell suspensions were dispensed 
into a SMARTer ICELL8 350v Chip (640019, TaKaRa Bio USA, containing 5,184 [72 × 72] nanowells) on a 
MultiSample NanoDispenser (MSND, TaKaRa Bio USA). All nanowells of the ICELL8 chip were imaged with a 
fluorescence microscope (Olympus BX43), and the images were analyzed using CellSelect software (TaKaRa Bio 
USA) to determine the viability and number of cells present. Alive single cells were automatically or manually 
selected for the subsequent experiments.

Small RNA ligation on chip.  After single-cell sorting, lysis buffer (35 nl) with 0.5% Triton™ X-100 (T9284, 
Sigma-Aldrich) and 4 U/μl Ribonuclease Inhibitor was dispensed into selected nanowells. The microchip was 
transferred to a modified SmartChip thermocycler (Bio-Rad) at 25°C for 5 min and 75°C for 10 min and chilled 
on ice immediately. 3’-ligation mix (35 nl) containing 0.07 pmol 3’ adapter (RA3-A2N, Supplementary Table S3), 
60 U/μl T4 RNA Ligase 2, truncated KQ (M0373S, NEB), 3x T4 RNA ligase buffer, and 1.5 U/μl Ribonuclease 
Inhibitor was prepared and dispensed into the previously selected nanowells. The microchip was incubated with 
a program of 25°C for 6 hours and 4°C for 8–10 hours, followed by 65°C for 20 min. After 3’-ligation, 35 nl of 
RT primer mix (0.7 pmol barcoded RT primer [SCSR-RTP, Supplementary Table S3], 2.5 x lambda exonuclease 
buffer) was added into selected nanowells, with the program “Index 1” on the MSND. The chip was placed inside 
a thermocycler at 70°C for 2 min and then chilled on ice. 35 nl of adapter-removed solution (2.5 U/μl Lambda 
exonuclease [EN0562, Thermo Fisher Scientific], 5 U/μl 5’ Deadenylase [M0331, NEB], 2.5 U/μl Ribonuclease 
Inhibitor) was dispensed into the microchip, and incubated at 30°C for 30 min followed by 37°C for 60 min and 
then 75°C for 10 min. Next, 35 nl of 5’-ligation mix (0.15 pmol of the 5’ adapter [SR5F, Supplementary Table S3], 
6 mM ATP, 9 U/μl T4 RNA Ligase 1 [M0437M, NEB], 3 x T4 RNA ligase buffer, 3 U/μl Ribonuclease Inhibitor) 
was added into the microchip and transferred to the thermocycler with a program of 37°C for 60 min and 65°C 
for 20 min.

Reverse transcription and barcoding on chip.  The reverse transcription reaction mix (0.9 x first-strand buffer, 
50 mM DTT, 1.4 mM dNTP, 2 U/μl ribonuclease inhibitor, 28 U/μl Superscript III reverse transcriptase [18080-
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085, Thermo Fisher Scientific]) was dispensed into selected nanowells (35 nl of each) and incubated at 55°C for 
50 min and 70°C for 15 min. 35 nl of PCR-1 mix (0.3 pmol barcoded PCR-1 primers [SR5F-P1, Supplementary 
Table S3], 0.8 mM dNTP, 3.2 x PCR buffer, and 0.16 U/μl Phanta® HS Super-Fidelity DNA Polymerase [P502-d1, 
Vazyme]) was dispensed into the microchip with the program “Index 2”. After dispensation, the microchip was 
placed in the thermocycler with a program of 95°C for 3 min, followed by 12–14 cycles (95°C for 20 s, 65°C for 20 
s and 72°C for 20 s) and a final incubation at 72°C for 5 min. Finally, the microchip was inverted and centrifuged 
at 3000 x g for 10 min to collect and pool all contents into a single collection tube using the supplied SMARTer™ 
ICELL8® Collection Kit (640048, TaKaRa Bio USA).

Purification and size selection.  The collected PCR-1 product was purified using 1.7 x Ampure XP beads (A63882, 
Beckman Coulter). The size distribution was obtained with an Agilent High Sensitivity DNA Kit (5067-4626, 
Agilent Technologies) on an Agilent Bioanalyzer 2100 instrument. The quantification was performed with a 
Qubit™ dsDNA HS Assay Kit (Q32854, Thermo Fisher Scientific). The PCR-1 product was size selected with 3% 
agarose, dye-free, Pippin Prep (CDP3010, Sage Science) at 125–160 bp.

Library amplification and sequencing.  The 50 µl PCR-2 reaction mix was prepared with purified PCR-1 prod-
uct, 0.2 mM dNTP, 1 x PCR buffer, 0.02 U/μl Phanta® Max Super-Fidelity DNA Polymerase (P505-d1, Vazyme), 
0.2 µM SCSR-PCR1 primer (Supplementary Table S3), and 0.2 µM SCSR-PCR2 index primer (Supplementary 
Table S3). The reaction was performed with a program of 95°C for 3 min, 7–13 cycles of 95°C for 20 s, 67°C for 
20 s, and 72°C for 20 s, and 1 cycle of 72°C for 5 min. The PCR-2 product was purified with 1.7 x Ampure XP 
beads. The PSCSR-seq library was quantified with a qPCR-based KAPA Library Quantification Kit for Illumina 
platforms (KK4824, Kapa Biosystems). The PSCSR-seq library was sequenced using an Illumina HiSeq2500 or 
NextSeq2000 instrument.

PSCSR‑seq data analysis.  Sequence analysis.  The analytical procedures from our previous publication 
were used43. Briefly, the small RNA sequences, cell barcodes and molecular UMI counts were extracted from the 
raw reads using custom scripts. The small RNA sequences with a length of 16-39 nt were retained and mapped 
to the reference genome, with no mismatches allowed (Bowtie V1.2.244). The small RNAs were annotated ac-
cording to information within the miRbase (release v22.145), EBI RNAcenter (release v1146), and EBML CDS da-
tabases (ENSEMBL release v9647). The computational pipeline can be found within GitHub repository (https://​
github.​com/​bioca​itao/​PSCSR-​seq).

Cell selection.  Viable single cells in nanowells were selected using the ICELL8 system protocol (“Standard-
CellSettings-V5” or “PBMCv4”). The cell barcodes of the selected cells were then exported. The valid cells were 
filtered according to the exported barcodes (the length of cell encoded barcodes is 12 nt and barcodes design can 
tolerate 2-base sequencing error).

Saturation analysis. 

where Ndeduped_reads = total UMI counts in the cell. Ntotal_reads = total mapped sRNA read counts in the cell.

Unsupervised cluster analysis.  For each annotated small RNA, reads with same index tag or adjacent index tag 
(1 mismatch) were collapsed into UMI. After that, the UMI counts were weighted by the number of mapped 
locations. The UMIs were summed as the measurement of small RNA expression. Small RNA expression values 
for each cell were normalized and log transformed. Unsupervised cluster analysis was performed as described in 
a previous study7, and the cluster analysis was implemented using the "Seurat" package (v3.0.0)48. First, informa-
tive small RNA-encoding genes were selected based on the “variable stable transform” algorithm. The small RNA 
expression profiles were then scaled and projected to the PCA space. The first 50 PCs were selected. The scaled 
expression profiles were clustered using a graph-based clustering algorithm (the “Louvain” algorithm in Seurat). 
The resolution parameters were checked from 0.1 to 1 (in 0.1 steps), and we chose a resolution of 0.5 for the 
data presentation and comparison. The highly expressed genes in each cluster were identified using the criteria 
of a corrected P value<0.01 (the P values were assessed by the Wilcoxon rank sum test) and a minimal fraction 
in the population>0.2, log-transformed fold change > 1; other parameters used the default setting of the Seurat 
“FindAllMarkers” function.

Cell ontology analysis.  The miRNA expression profiles with cell ontology annotations were downloaded from 
the FANTOM518 website. Spearman correlations between the new samples and the annotated samples were cal-
culated. For each cell ontology term, the average correlation coefficients between members in the category and 
those that are not members were then compared. P values were assessed using a modified t-test49.

Saturation = 1−
Ndeduped_reads

Ntotal_reads
,

t = (m−M)/

√

s2

n
+

S2

n
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Here, m, s, and n are the mean Spearman coefficient, standard deviation, and the number of samples asso-
ciated with a particular cell ontology term, respectively, and M and S are the mean Spearman coefficients and 
standard deviations for all of the samples in the dataset.

Comparison of methods.  Raw reads from existing methods were downloaded. The adapters were removed 
according to the following patterns:

“HHHHHHHHCA” + sRNA + “TGG​AAT​TCTC” (H for A,C,T; Faridani method and Hücker method);
sRNA + "TGG​AAT​TCTC" (Wang method and Bulk-seq);
“AAANNAAANNAAANN” + sRNA + “NNCTG​TAG​GCAC” (N for A,C,G,T; PSCSR-seq);
The non-small RNA reads were removed by size filtering (<16nt or >39nt after removal of adapters), and 

then the small RNA reads were mapped to the genome. The perfectly mapped small RNA reads (allowing no 
mismatch) were counted.

The small RNA ratios were calculated as below:
For each cell in PSCSR-seq,

For each cell/sample in other methods,

For the reproducibility comparison in Fig. 1E, we followed the definition in the paper of Wu, A.R. et al, 201450.

Pairwise comparisons among cells were calculated, and the values were averaged.
For the sensitivity comparison in Fig. 1F, the reads with correct adapter sequencing (Hücker method) or 

cell barcodes (PSCSR-seq) were randomly sampled. Then, the extracted small RNA reads were mapped to the 
genome, and the annotated miRNAs were counted.

The demo codes can be found within the GitHub repository (https://​github.​com/​bioca​itao/​PSCSR-​seq).

Ethics declarations.  All patients were provided informed consent for sample collection and data analysis. 
The study was approved by the Ethics Committees of the National Institute of Biological Sciences, Beijing, and 
of Beijing Chao-Yang hospital of Capital Medical University. We complied with all relevant ethical guidelines 
and regulations.

Data availability
The datasets supporting the conclusions of this article are available in the NCBI Gene Expression Omnibus 
(GEO; https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database under accession number GSE134004. Single-cell miRNA 
profiles from lung cancer can be visualized through the UCSC cell browser51 (https://​bioca​itao.​github.​io/​lungc​
ancer/). The datasets for methods comparison in Fig. 1D were downloaded from the NCBI GEO database under 
accession numbers: GSM2149190-GSM2149206 for the Faridani method, GSM3132059-GSM3132078 for the 
Wang method, GSM5360035-GSM5360040 for Hücker method, and GSM5897090, GSM5897091, GSM5897092, 
GSM5897094, GSM5897096, GSM5897100 for traditional bulk small RNA sequencing method.

Code availability
All source codes are available within the GitHub repository (https://​github.​com/​bioca​itao/​PSCSR-​seq).
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