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Training a quantum measurement 
device to discriminate unknown 
non‑orthogonal quantum states
D. Concha 1, L. Pereira 2*, L. Zambrano 1,3 & A. Delgado 1

Here, we study the problem of decoding information transmitted through unknown quantum states. 
We assume that Alice encodes an alphabet into a set of orthogonal quantum states, which are 
then transmitted to Bob. However, the quantum channel that mediates the transmission maps the 
orthogonal states into non-orthogonal states, possibly mixed. If an accurate model of the channel 
is unavailable, then the states received by Bob are unknown. In order to decode the transmitted 
information we propose to train a measurement device to achieve the smallest possible error in the 
discrimination process. This is achieved by supplementing the quantum channel with a classical one, 
which allows the transmission of information required for the training, and resorting to a noise-
tolerant optimization algorithm. We demonstrate the training method in the case of minimum-error 
discrimination strategy and show that it achieves error probabilities very close to the optimal one. In 
particular, in the case of two unknown pure states, our proposal approaches the Helstrom bound. A 
similar result holds for a larger number of states in higher dimensions. We also show that a reduction 
of the search space, which is used in the training process, leads to a considerable reduction in the 
required resources. Finally, we apply our proposal to the case of the phase flip channel reaching an 
accurate value of the optimal error probability.

The states of quantum systems have properties that distinguish them from their classical counterparts. Unknown 
quantum states cannot be perfectly and deterministically copied1 and entangled states exhibit correlations without 
classical equivalence2. These are deeply related to the impossibility of discriminating non-orthogonal quantum 
states. If this were the case, then unknown quantum states could be perfectly and deterministically copied and 
entangled states could be used to implement superluminal communications3. Consequently, the discrimination 
of non-orthogonal quantum states has become an important research subject due to its implications for the foun-
dations of the quantum theory4,5 and quantum communications6,7. For example, the problem of implementing 
quantum teleportation, entanglement sharing, and dense coding through a partially entangled pure state can be 
solved by local discrimination of non-orthogonal pure states8–15.

The discrimination of quantum states can be naturally stated in the context of two parties that attempt to com-
municate: Alice encodes information representing the letters of an alphabet through a set �1 of orthogonal pure 
quantum states, which is transmitted through a communication channel. The channel transforms the orthogo-
nal states into a new set �2 of states, which might become non-orthogonal and mixed. Bob then receives them 
and performs a generalized quantum measurement to discriminate the states and to retrieve the information 
encoded by Alice. Both parties are assumed to know the generation probabilities of the orthogonal states in �1 
and the set �2 of non-orthogonal states in advance. To decode the transmitted information, the parties agree on 
a figure of merit which is subsequently optimized to obtain the best single-shot generalized quantum measure-
ment. This leads to several discrimination strategies such as minimum-error discrimination16–18, pretty-good 
measurement19,20, unambiguous discrimination21–24, maximum-confidence discrimination25,26, and fixed-rate of 
inconclusive result27,28. Various discrimination strategies have already been experimentally demonstrated29–37.

Typical figures of merit for state discrimination are functions of the generation probabilities and the condi-
tional probabilities between the states transmitted by Alice and Bob’s measurement outcomes, which in turn also 
depend on the generalized measurement used by Bob and the states received by Bob. Thereby, optimizing any 
figure of merit and choosing the best-generalized measurement become difficult problems. Analytic solutions 
are only known for a small number of states or families of states defined by a few parameters, such as symmetric 
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states. This adverse scenario imposes the use of numerical optimization techniques such as semidefinite pro-
gramming (SDP)38–40 or neural networks41,42.

Quantum state discrimination has also been studied in the context of unknown quantum states. In this case, 
the communication channel maps the states in �1 into a new set of states �2 that are unknown to the commu-
nicating parties. Surprisingly, it has been shown that it is still possible to unambiguously discriminate between 
unknown states, which is achieved through a programmable discriminator43–48. This device has quantum reg-
isters that allow it to store the unknown states to be discriminated. In addition, the device is universal, that is, 
it does not depend on the actual unknown states to be discriminated44 and achieves a success probability close 
to the optimum.

In this article, we are interested in discriminating unknown quantum states when information about them is 
not readily available. An example of this situation is free-space quantum communication49–53, where information 
is encoded into states of light and transmitted through the atmosphere. This exhibits local and temporal varia-
tions in the refractive index, which can greatly modify the state of light and makes it difficult to characterize the 
transmitted states54,55. Since neither Alice nor Bob has access to the density matrices of the transmitted states, 
no known approaches can be applied. To solve this problem, we propose the training of a measurement device 
to optimally discriminate a set of unknown non-orthogonal quantum states. We assume that the action of this 
device is defined by a large set of control parameters, such that a given set of parameter values corresponds to 
the realization of a positive operator-valued measure (POVM). Given a fixed figure of merit for the discrimina-
tion process, it is iteratively optimized in the space of the control parameters. The optimization is driven by a 
gradient-free stochastic optimization algorithm56–58, which approximates the gradient of the figure of merit by 
a finite difference. This requires at each iteration evaluations of the figure of merit at two different points in the 
control parameter space. Thereby, the training is driven by experimentally acquired data. Furthermore, stochastic 
optimization methods have been shown to be robust against noise59, so they are a standard choice in experimental 
contexts. The training of the measurement device is carried out until approaches the optimal value of the figure 
of merit within a prescribed tolerance.

We illustrate our approach by studying minimum-error discrimination, where the figure of merit is the aver-
age retrodiction error. This figure of merit can be experimentally evaluated if, during the training step, Alice com-
municates the labels of the states that she sent to Bob through a classical channel. Minimum-error discrimination 
plays a key role in quantum imaging60, quantum reading61, image discrimination62, error-correcting codes63, 
and quantum repeaters64. This problem does not have a closed analytical solution except for sets of states with 
high symmetry. Our approach may also implement other discrimination strategies at the expense of resorting to 
more elaborate optimization algorithms. We first consider the minimum-error discrimination of two unknown 
non-orthogonal pure states. In this case, the minimum of the average error probability, which can be analytically 
calculated, is given by the Helstrom bound. We show that it is possible to train the measurement device to reach 
values very close to the Helstrom bound. We extend our analysis to d unknown non-orthogonal quantum states 
using d-dimensional symmetric states. Discrimination of this class of states plays an important role in processes 
such as quantum teleportation10,11, entanglement swapping14, and dense coding15 when carried out with partially 
entangled states and has already been implemented experimentally34. In this case, our approach also leads to the 
optimal single-shot generalized quantum measurement. However, it requires a large number of iterations. This 
is a consequence of the dimension of the control parameter space that scales as d4 . We also show that the use of 
a priori information effectively reduces the number of iterations, where we consider the use of initial conditions 
close to the optimal measurement as well as the reduction of the dimension of the control parameter space by 
assuming a particular property of the optimal measurement. Finally, we consider the discrimination of unknown 
mixed quantum states generated by quantum channels such as phase flip.

This article is organized as follows: in “Methods” we introduce our approach to the discrimination of unknown 
orthogonal quantum states. In “Results” we study the properties of our approach by means of several numerical 
experiments. In “Conclusion” we summarize and conclude.

Methods
Alice encodes the information to be transmitted into a set �1 = {|ψq�} of N mutually orthogonal pure states that 
are generated with probabilities {ηq} . The communication channel transforms the states in �1 into the unknown 
states {ρq} in �2 , pure or mixed. By unknown we mean that Alice and Bob do not have explicit access to the 
density matrices {ρq} . For simplicity, we assume that the relation between states in �1 and �2 is one-to-one and 
that the action of the channel does not change the generation (or a priori) probabilities. Upon receiving each 
state, Bob tries to decode the information sent by Alice using a positive operator-valued measure {Em} composed 
of positive semi-definite matrices Em such that 

∑

m Em = I , the identity operator. The probability of obtaining 
the m-th measurement outcome given that the state ρq was sent is P(Em|ρq) = Tr(Emρq) . We assume that if Bob 
obtains the m-th measurement result, he concludes that Alice attempted to transmit the state |ψm� . This decod-
ing rule leads to errors unless the states in �2 are mutually orthogonal, which leads Bob to seek to minimize the 
occurrence of errors in the discrimination process. Thereby, Bob needs to find the optimal POVM that minimizes 
the figure of merit that accounts for the errors.

Several quantum state discrimination strategies are known, each defined by a particular figure of merit. Here, 
we focus on minimum-error discrimination, where the number of states to be identified is equal to the number of 
elements of the POVM. The probability of correctly identifying the state |ψq� is given by P(Eq|ρq) . Since the states 
in �2 are generated with probabilities {ηq} , the average probability of correctly identifying all states is given by
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The average error probability is perr = 1− pcorr . This probability, which is a function of the POVM {Em} and 
of the unknown states {ρk} , is minimized over the POVM space in order to train the measurement device. We 
assume that the states are fixed, that is, every time Alice aims to transmit the state |ψk� , Bob receives the same 
state ρk . Since the transmitted states �2 behave as a set of unknown fixed parameters, this optimization cannot 
be carried out with numerical methods that require explicit access to the density matrices, such as SDP.

Although perr cannot be evaluated numerically, it can be obtained experimentally. The value of perr corre-
sponds to a sum over probabilities ηlTr(ρlEl) , which must be independently estimated. In order to do this Alice 
sends N copies of each state |ψl� to Bob, communicating classically the label of them. These states play the role 
of training set. Bob measures the states with the corresponding POVM, which allows estimating the value of 
Tr(ρlEl) . We simulate the experiment that allows us to estimate this value. For simulation purposes the states 
{ρl} are known and thus we calculate the probabilities

These are used to generate a random number nl from a binomial distribution with success probability pl on a 
sample of size N. The probability pl is estimated as nl/N . This procedure is repeated for each state in the set {ρk} 
and for each one of the POVMs at each iteration. Thereby, the average error probability is estimated as

We consider that the measurement device implements a POVM using the direct sum extension. According to 
this, the Hilbert space Hs of the states to be discriminated is complemented with an ancilla space Ha , obtaining 
an extended Hilbert space He = Hs ⊕Ha . The POVM is implemented by applying a unitary transformation U 
on He followed by a projective measurement on He . This procedure requires adding fewer dimensions than the 
extension by means of the tensor product65. Let be ds and da the dimensions of Hs and Ha respectively, so that 
the dimension of the extended system He is d = ds + da . In order to implement a POVM {Ei} with n elements 
of rank r we require d = rn , so that the dimension of the ancillary system has to be da = rn− ds . Considering 
that the projective measurement on the extended system is {| j �� j |} , the POVM implemented has elements

where |ϕ(i)
j � =

∑ds
k=1� r(i − 1)+ j |U†| k �| k � are unnormalized state. This POVM is obtained by grouping d 

outcomes of the projective measurement into n set of r elements, where each group represents the result of a 
POVM element. For optimization purposes, the unitary matrix U is parametrized in terms of an unconstrained 
complex matrix Z of order rn× d . Through the QR decomposition, the matrix Z is projected into an isometric 
matrix S, which fulfills S†S = Id×d . The isometric matrix S determines d rows of U, while the remaining have to 
be filled with free parameters determined only up to unitarity. The construction of the matrix U is required to 
obtain a physical implementation of the POVM, however, in order to obtain an explicit expression of the POVM 
the isometric matrix S is enough. The computation of the POVM can be done efficiently by reshaping techniques. 
Reshaping S into a rank-3 tensor Sijk of size n× r × d , the r-rank POVM is obtained as Ei = M†

i Mi , where the 
components of the matrices Mi are � j |Mi| k � = Sijk . For a full-rank POVM the matrices Mi have size d × d , while 
for an observable they have size 1× d . The average error probability perr can be thus regarded as a function f (z) 
of the complex vector z whose coefficients are given by the matrix elements of Z, that is, we have f (z) = perr(z).

We assume that neither Alice nor Bob knows the states in �2 . Therefore, we cannot numerically evaluate 
the error probability perr or its derivatives. Besides, given that we consider POVMs implemented by direct 
sum extension, the shift parameter rule can not be applied to evaluate the gradient66,67. Nevertheless, the error 
probability perr can be evaluated experimentally, which allows us to overcome this problem with a gradient-free 
optimization algorithm. We use the Complex simultaneous perturbation stochastic approximation (CSPSA)56–58. 
This is based on the iterative rule

where zk is a complex vector in the control parameter space at the k-th iteration, ak is a positive gain coefficient, 
and gk is an approximation of the gradient of the figure of merit f (z) whose components are given by

In the expression above, the quantities f (zk,+) and f (zk,−) are the values of the figure of merit on the vectors

where ck is a positive gain coefficient and �k is a vector whose components are randomly generated at each itera-
tion from the set {1,−1, i,−i} . CSPSA allows for the existence of noise ζk,± in the evaluations f (zk,±).

(1)pcorr =

N
∑

l=1

ηlTr(Elρl).

(2)pl = Tr(ρlEl) and ql = 1− pl = 1−
∑

m �=l

Tr(ρkEm).

(3)perr = 1−
∑

l

ηl
nl

N
.

(4)Ei =

r
∑

j=1

|ϕ
(i)
j ��ϕ

(i)
j |,

(5)zk+1 = zk − akgk

(6)gk,i =
f (zk,+)− f (zk,−)+ ζk,+ − ζk,−

2ck�
∗
k,i

.

(7)zk,± = zk ± ck�k ,
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The gain coefficients are defined by the sequences

and

where {s, r,A, a, b} are gain parameters. The values of the gain parameters are chosen to achieve the best possible 
rate of convergence. Therefore, the selection of the values itself becomes a costly optimization problem whose 
solution depends on the objective function and the particular optimizer. To avoid this problem, two sets of gain 
parameters are commonly used. Standard gain parameters with s = 0.602 , r = 0.101 , A = 10,000.0 , a = 2.25 , 
and b = 0.5 , which provide fast convergence in the regime of a small number of iterations, and asymptotic gain 
parameters with s = 1.0 , r = 0.166 , A = 0.0 , a = 2.0 and b = 0.5 , which provide fast convergence in the regime 
of a large number of iterations.

According to Eq. (6), the optimization algorithm requires in each iteration the value of the objective function 
at two different points in the search space. In our case, this implies that two POVMs must be measured in each 
iteration to acquire the statistic required to estimate the average error probability. Each POVM is evaluated using 
an ensemble of size N and consequently the total ensemble size Nt used by the measurement training proposed 
here after kt iterations is given by Nt = 2Nkt . Therefore, if the measurement training is limited by a fixed amount 
of total ensemble size Nt , it must be distributed between the ensemble size N to measure each POVM and the 
total number of iterations kt in such way that the best optimum is achieved. In addition, inexpensive classical 
processing is also required at each iteration.

Results
We start to analyze our approach by considering the simplest case, namely, the discrimination of two unknown 
orthogonal pure states. We assume that Alice prepares the states {|0�, |1�} with a priori probabilities η0 and η1 , 
respectively. These orthogonal states are transformed by the communication channel into the states,

where the parameter s corresponds to the real-valued inner product �ψ0|ψ1� . In this scenario, the optimal average 
error probability is given by the Helstrom bound18

which can be achieved by measuring an observable.
We assume that the value of s is unknown. The training of the measurement device is carried out without 

the use of a priori information. In particular, the training does not use the facts that the transmitted states are 
pure and that the optimal measurement is an observable. For a given value of s our training procedure leads to 
a quantum measurement characterized by a value p̃err close to the optimal value given by the Helstrom bound. 
This is depicted in Fig. 1a, which shows the value of p̃err achieved by the training procedure as a function of s 
for η0 = η1 = 1/2 . Since the optimization algorithm is stochastic, for each value of s we repeat the procedure 
considering 100 randomly chosen initial guesses in the control parameter space and 100 iterations. The statistic 
generated by each POVM is simulated using an ensemble size N = 150 . In Fig. 1a the solid black line describes 

(8)ak = a/(k + A)s

(9)ck = b/kr ,

(10)|ψ0 � =

√

1+ s

2
| 0 � +

√

1− s

2
| 1 �,

(11)|ψ1 � =

√

1+ s

2
| 0 � −

√

1− s

2
| 1 �,

(12)perr =
1

2
(1−

√

1− 4η0η1s2),

Figure 1.   Median of the estimated minimum-error probability p̃err as a function of the inner product s between 
two unknown pure states given by Eq. (11) for η0 = η1 = 1/2 . Solid black line corresponds to the minimum-
error probability perr given by the Helstrom bound in Eq. (12). Solid blue dots correspond to the median of p̃err 
calculated over 100 initial conditions for each value of s. Blue error bars indicate the interquartile range. (a) 
N = 150 and kt = 100 , (b) N = 1500 and kt = 10 , and (c) N = 50 and kt = 300 . Asymptotic gain parameters 
are used.
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the Helstrom bound while the solid blue dots indicate the median of p̃err calculated over the 100 repetitions. The 
blue error bars describe the interquartile range. As is apparent from this figure, the training of the measurement 
device provides a median of p̃err that is very close to the Helstrom bound, where the difference |p̃err − perr | is 
on the order of 10−2 . The training procedure leads to similar results for other values of generation probabilities.

The total ensemble Nt can be split among the total number kt of iterations and the ensemble size N is used to 
estimate the statistics of each POVM. This raises the question of whether for a fixed total ensemble better accuracy 
is achieved by increasing kt or N. Figure 1b,c show the impact on p̃err for different splittings of Nt = 15× 103 . 
In Fig. 1b we have N = 1500 and kt = 10 and in Fig. 1c we have N = 50 and kt = 300 . As these two figures 
indicate, a much better accuracy is obtained by splitting the total ensemble in a small ensemble N and a large 
number kt of iterations. In particular, in Fig. 1c the difference |p̃err − perr | is in the order of 10−3 , that is, one 
order of magnitude smaller than in the case of Fig. 1a. Furthermore, the interquartile range becomes narrower 
indicating less variability in the set of estimates {p̃err} for a given perr.

The features exhibited by Fig. 1 can be explained by two properties of the optimization algorithm. First, we 
use asymptotic gain parameters, which guarantee convergence for a high number of iterations, and second, the 
optimization algorithm tolerates noise in the figure of merit evaluation. Therefore, for a fixed total ensemble size 
Nt , it seems better to increase the number of iterations as much as possible as long as the ensemble N allows to 
overcome the error in the figure of merit evaluation. Furthermore, since in the first few iterations the optimiza-
tion algorithm is still far from the optimum, accurate figure-of-merit evaluations do not contribute to algorithm 
convergence.

The training of the measurement device for the discrimination of a larger number of states is demonstrated 
via symmetric states. These are given by the expression

where d is the dimension of Hs , ω = exp (2π i/d) , and the coefficients cm are constrained by the normalization 
condition. As long as the generation probabilities are equal, d non-orthogonal symmetric states can be identified 
by measuring an observable whose eigenstates are given by the Fourier transform of the canonical base {|m�} 
(with m = 0, . . . , d − 1 ). The minimum-error discrimination of symmetric states has been experimentally dem-
onstrated with high accuracy in dimensions up to d = 2134. The discrimination of symmetric states typically arises 
in the processes of quantum teleportation, entanglement swapping and dense coding. These use a maximally 
entangled quantum channel as resource. If the entanglement decreases along the generation of the channel, then 
the performance of the process can be enhanced by resorting to the local discrimination of symmetric states, 
where the coefficients ck entering in Eq. (13) are given by the real coefficients of the partially entangled state. If 
in addition, the channel coefficients are unknown, then our approach can be used.

In the case of three symmetric states, the channel coefficients are parameterized as c0 = cos(θ1/2) cos(θ2/2) 
and c1 = sin(θ1/2) cos(θ2/2) with θ1 and θ2 in the interval [0,π ] . Figure 2a shows p̃err as a function of θ1 for a par-
ticular value of θ2 . The solid black line corresponds to the optimal minimum error discrimination probability perr 
while the solid blue dots indicate the median of p̃err calculated on 100 initial conditions for each value of θ1 after 
103 iterations using an ensemble size N = 103 . The difference |perr − p̃err | is on the order of 10−2 , as in the case of 
Fig. 1, but is obtained with a higher number of iterations and a larger ensemble size. In the case of a higher num-
ber of states we resort to a bi-parametric family of symmetric states given by c2k ∝ 1− d

√

[(k − j0 + 1)/(d − j0)]α 
if k ≥ j0 and c2k ∝ 1 if k < j0 , where j0 = 1, . . . , d − 1 and α ∈ [0, 1] . Figure 2b,c show the behavior of p̃err as a 
function of α and j0 = 2 for d = 4 and d = 5 , respectively. In both cases the ensemble size is N = 300 and the 
median was calculated over 100 initial conditions for each value of α . As in Fig. 2a, the difference |perr − p̃err | 
is on the order of 10−2 . To achieve this result, however, it was necessary to increase the number of iterations to 
6× 103 and 1.2× 104 for d = 4 and d = 5 , respectively.

(13)|ψj � =

d−1
∑

m=0

cmω
jm|m �, j ∈ {0, · · · , d − 1},

Figure 2.   Median of the estimated minimum-error probability p̃err for symmetric states as a function of: (a) 
θ1 for d = 3 , (b) α for d = 4 , and (c) α for d = 5 . Solid black line corresponds to the optimal minimum-error 
probability perr . Solid blue dots correspond to the median of p̃err calculated over 100 initial conditions for each 
set of symmetric states. Blue error bars indicate the interquartile range. (a) N = 300 and kt = 300 . (b) N = 300 
and kt = 6× 10

3 . (c) N = 300 and kt = 1.2× 10
4 . Asymptotic gain parameters are used.
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Thus, as we increase the number n of states to be discriminated and the dimension d of the Hilbert space, the 
number of iterations kt and the ensemble size N required to achieve a given tolerance also increase. This is due 
to the fact that the dimension of the search space, that is, the number of parameters that control the measure-
ment device, increases as nd2 . In addition, the probabilities entering in the estimate of perr of Eq. (3) are obtained 
using as a resource a given ensemble size. As the number of probabilities increases it is necessary to increase the 
ensemble size N to obtain probability estimates that lead to a given tolerance.

So far we have considered training the measurement device assuming the most general quantum measure-
ment. This typically conveys an increase in the resources required for the training. As our previous simulations 
indicate, as we increase the number n of states to discriminate, as well as the dimension d, the training of the 
measurement device consumes even more resources, that is, larger ensembles and higher iteration numbers. To 
reduce the resources required for training, it is customary to reduce the dimension of the search space. This is 
done by imposing a set of conditions on the measurement device. This occurs when we have a priori information 
that allows us to ascertain that the optimal measurement satisfies a given condition. For instance, if the non-
orthogonal states to be discriminated via the minimum-error strategy are pure and n = d , then we can assume 
that the optimal POVM is an observable. This effectively decreases the dimension of the search space. Another 
possibility is that we are interested in reaching a given value of the minimum-error probability in a particular 
family of measurement devices, in which case we don’t need the optimal measurement.

This is depicted in Fig. 3, where we reproduce the Helstrom bound for states in Eq. (11) by optimizing in the 
set of observables. In Fig. 3a we show the case of equal generation probabilities. In this case, the training was 
carried out using an ensemble size N = 50 and a total number of iterations kt = 50 , which leads to a difference 
|perr − p̃err | is on the order of 10−3 . This result can be compared to the one illustrated in Fig.1c, where the same 
ensemble size is used but with a much larger number of iterations kt = 300 . Therefore, the reduction in the 
dimension of the search space leads to a reduction of the total ensemble Ntot by a factor of 6. A similar result holds 
in Fig. 3b,c for different values of the generation probabilities. Let us note that the initial condition in the search 
space is randomly chosen, that is, we do not assume as initial condition an observable close to the optimal one.

Finally, we consider a more realistic scenario in which two single-qubit orthogonal states |ψ0� and |ψ1� gener-
ated by Alice are subjected to the action of a phase flip channel68. The action of this channel onto a single-qubit 
density matrix ρ is defined by the relation

where the parameter p represent the strength of the channel and σz = |0��0| − |1��1| . The phase flip channel nul-
lifies the off-diagonal terms in the density operator with respect to the canonical basis {|0�, |1�} while decreasing 
the purity. We assume that the states transmitted by Alice are random pure states and that the value of p = 3/5 
is unknown. The fidelity between the pure states and the noisy states in Fig. 4a is 0.785.

Figure 4a shows the result of training the measurement device to discriminate the states generated by the 
phase flip channel after acting on states |ψ0� and |ψ1� . State |ψ0� is chosen randomly according to a Haar-uniform 
distribution, which fixes the state |ψ1� . The training was initialized with the measurement that optimally dis-
criminates the pure states sent by Alice. Fig. 4a displays the median (continuous red line) of p̃err , calculated 
over 100 independent repetitions of the optimization procedure, as a function of the number of iterations. The 
continuous blue line corresponds to the solution perr of the optimization of the minimum error for the states 
generated by the phase flip channel via semidefinite programming. Clearly, the value of p̃err obtained by training 
the measurement device converges to the optimal value perr . The interquartile range, described by the shaded 
green area, is very narrow indicating a very small variability of the training with respect to the initial conditions. 
Similar results hold for other values of the parameter p, which controls the convergence rate toward the optimal 
value of perr . Figure 4b displays the median of |p̃err − perr | averaged over 1000 pairs of states |ψ0� and |ψ1� , where 
each state |ψ0� is independently chosen according to a Haar-uniform distribution and the optimization procedure 
is repeated 100 times, as a function of the number of iterations. As can be seen in this figure, all optimization 

(14)ε(ρ) = pρ +
(

1− p
)

σzρσz ,

Figure 3.   Median of the estimated minimum-error probability p̃err as a function of the inner product s between 
two unknown pure states given by Eq. (11). Solid black line corresponds to the minimum-error probability perr 
given by the Helstrom bound of Eq. (12). Solid blue dots indicate the median of p̃err calculated over 100 initial 
conditions for each value of s. Blue error bars indicate the interquartile range. (a) η0 = η1 = 1/2 , (b) η0 = 1/3 
and η1 = 2/3 , and (c) η0 = 2/5 and η1 = 3/5 . Simulations are carried out with an ensemble size N = 50 and 
total number of iterations kt = 50 . Asymptotic gain parameters are used.
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attempts converge for all pairs of states while exhibiting a very narrow interquartile range. Thus, measurement 
training provides consistent and accurate results.

Conclusions
Here, we have studied the problem of discriminating unknown non-orthogonal quantum states. This situation 
occurs when two parties try to transmit information encoded in orthogonal quantum states that are transformed 
into non-orthogonal states by the action of a partially characterized quantum channel. Since the communicating 
parties do not know the states generated by the channel, standard approaches to discriminate non-orthogonal 
quantum states cannot be applied. Instead, we have proposed to train a single-shot measurement to optimally 
discriminate unknown non-orthogonal quantum states. This device is controlled by a large set of parameters, 
such that a given set of parameter values corresponds to the realization of a positive operator-valued measure 
(POVM). The measurement device is iteratively optimized in the space of the control parameters, or search 
space, to achieve the minimum value of the error probability, that is, we seek to implement the minimum-error 
discrimination strategy. The optimization is driven by a gradient-free stochastic optimization algorithm that 
approximates the gradient of the error probability by a finite difference. This requires at each iteration evaluation 
of the error probability at two different points in the search space. Thereby, the training is driven by experimen-
tally acquired data. The choice of a stochastic optimization method is based on its robustness against noise.

We have studied the proposed approach using numerical simulations. First, we have shown that our approach 
leads to values of the error probability that are very close to the optimum. This was done in the case of two 
2-dimensional unknown non-orthogonal pure states, where the optimal value of the average error probability 
is given by the Helstrom bound. Since the training method requires the estimation of probabilities, the total 
ensemble is regarded as a resource. This is divided evenly throughout the iterations of the training method. We 
have shown that the best results, that is, a value of the error probability closer to the Helstrom bound, can be 
obtained for a fixed total ensemble size by increasing the number of iterations. Thereafter, we have extended our 
result to the case of d d-dimensional symmetric states for d = 3, 4, 5 , where our method also provides accurate 
results. However, to achieve a fixed accuracy as we increase the number of states and the dimension, it is neces-
sary to increase the ensemble size and, consequently, the number of iterations. To avoid this, we have reduced 
the dimension of the search space by assuming that the required measurement has some special property. In 
particular, we have assumed that the optimal measurement is an observable. Thereby, in the case of two non-
orthogonal pure states we have achieved a considerable reduction by a factor 1/6 in the ensemble size, which 
leads to an equal reduction in the number of iterations. Finally, we have applied the training procedure to the 
phase flip channel and shown that it is possible to achieve a value of the error probability close to the optimal one. 
Note that our proposal does not require data post-processing methods, such as maximum likelihood or Bayesian 
inference, which helps reduce computational cost and avoids exponential scaling of multipartite quantum states.

Our proposal finds applications whenever two parties intend to communicate through a channel whose 
characterization is difficult or costly. For instance, processes such as quantum teleportation, entanglement swap-
ping, and dense coding, when performed through a partially entangled channel, can become a problem of local 
discrimination of non-orthogonal states8–13. If the description of the entangled channel is not available, then the 
states to be discriminated are unknown, in which case our method can also be applied. Recently, the problem 
of optimally discriminating between different configurations of a complex scattering system has been studied69 
from the point of view of quantum state discrimination, where several non-orthogonal quantum states of light 

Figure 4.   Discrimination of unknown non-orthogonal mixed single-qubit states generated by a phase flip 
channel. (a) Solid red line indicates the median value of p̃err for two randomly chosen states, calculated over 100 
repetitions, as a function of the number of iterations. Solid blue line corresponds to the optimal value of perr 
obtained via semidefinite programming. (b) Solid red line indicates the median value of |p̃err − perr | for 2000 
randomly chosen states calculated over 100 repetitions, as a function of the number of iterations. Shaded green 
area corresponds to the interquartile range and ensemble size N = 300 . Standard gain parameters are used.
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are associated with different hypotheses about a scattering system. These must be resolved with the best possible 
accuracy, which is limited by the Helstrom bound in the simplest case. Our training method can also be applied 
to this problem by finding the best average error probability.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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