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Mzion enables deep and precise 
identification of peptides 
in data‑dependent acquisition 
proteomics
Qiang Zhang 

Sensitive and reliable identification of proteins and peptides pertains the basis of proteomics. We 
introduce Mzion, a new database search tool for data-dependent acquisition (DDA) proteomics. 
Our tool utilizes an intensity tally strategy and achieves generally a higher performance in terms 
of depth and precision across 20 datasets, ranging from large-scale to single-cell proteomics. 
Compared to several other search engines, Mzion matches on average 20% more peptide spectra at 
tryptic enzymatic specificity and 80% more at no enzymatic specificity from six large-scale, global 
datasets. Mzion also identifies more phosphopeptide spectra that can be explained by fewer proteins, 
demonstrated by six large-scale, local datasets corresponding to the global data. Our findings 
highlight the potential of Mzion for improving proteomic analysis and advancing our understanding of 
protein biology.

Confident characterization of peptides and proteins from mass spectrometry (MS) data is essential for biological 
researches that employ MS-based proteomics techniques. Among a multitude of data interpretation facilities, 
closed searches of tandem mass (MS/MS) spectra from data-dependent acquisition (DDA)1 remains the baseline 
module in proteomics pipelines2–11. Here, closed searches refer to experimental-to-theoretical matches with a 
predefined space in the variable modifications of theoretical peptide sequences.

Closed searches of DDA data compare MS/MS spectra to peptide sequences in protein databases12. While 
search algorithms against the DDA data in general work well, qualitative and quantitative findings from software 
tools that match experimental to theoretical spectra do not always reconcile13. Some of the discrepancy can be 
attributed to the different handling of users’ specified fixed and variable modifications by search engines. Others 
may be due to the scoring algorithms14–17 that arbitrate peptide spectrum matches (PSM) into the two domains 
of positive or false identifications, the boosting of machine data with complementary ions18, the size of search 
space, unexpected side effects of software, etc.

In this work, we present a tool, Mzion, that supports DDA searches of MS/MS spectra (Fig. 1). The tool 
matches separately the main sequences of MS/MS ions (e.g., b- and y-ions) and the satellite series (b0, y0, b*, y* 
and doubly charged b2, y2, b20, y20, b2*, y2*). It then refrains the information learned from the satellite matches by 
disallowing them from being counted as independent evidences in peptide scoring. Instead, the satellite intensi-
ties are tallied onto the corresponding main fragment-ion intensities, followed by intensity-based enrichment 
analyses. Mzion enables generally deeper proteome discovery at higher or comparable precision, demonstrated 
by twelve large datasets. It also generalizes the handling of fixed and variable modifications that are sometime 
incompatible, with an additional benefit in search space minimization.

Results
Fixed and variable modifications.  Interactions of fixed and variable modification terms specified in a 
database search may lead to additive effects that violate the fundamentals in chemistry. For instance, the accu-
mulated modification from the interaction of fixed peptide N-terminal TMT10plex labeling and variable pro-
tein N-terminal acetylation may be undesirable. To address this, Mzion begins by deploying a minimal set of 
compatible fixed and variable modifications from a users’ specification (Supplementary Note 1). In the example 
of a users’ specification of fixed Carbamidomethyl (C), TMT10plex (N-term) and TMT10plex (K) and variable 
Acetyl (Protein N-term), Gln- > pyro-Glu (N-term = Q), Oxidation (M) and Deamidated (N) (Supplementary 
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Table 1), the compilation and minimization by Mzion leads to a total of twelve combinations of fixed and vari-
able modifications (Supplementary Table 2).

It has been observed that an enlarged search space can reduce the numbers of identified PSMs and peptides 
when controlling false discovery rates (FDR)19. The combinatorial minimization by Mzion guards against undue 
expansion of a search space with regard to users’ intention in finding peptides that are more likely to present in 
samples. In an example of acetylome (Supplementary Table 3: dataset Lung_A), the numbers of PSMs, peptides 
(without modifications) and sequences (with applicable modifications) increase by 6.2%, 5.2% and 7.3%, respec-
tively, upon the refinement of search space (Supplementary Fig. 1). Analogously in an example of ubiquitylome 
(dataset Lung_U), the numbers of PSMs, peptides, sequences increase by 3.2%, 4.3% and 5.3%, respectively.

Intensity tally from two‑stage searches.  A strategy of two-stage search is employed by Mzion. After 
matching the main sequences of MS/MS ions (e.g., b- and y-ions), the search engine then matches the satellite 
series of fragment ions (b0, y0, b*, y* and doubly charged b2, y2, b20, y20, b2*, y2*), tallies their intensities to the 
corresponding main fragment ions, followed by intensity-dependent enrichment analyses of probability scores 
against the main fragment ions (Fig. 2a, “Methods” section). In an example of phosphoproteome (dataset JHU_
P2), the strategy led to a 6.5% increase in sequence identifications (Supplementary Fig. 2).

The findings of PSMs are stored in files psmC.txt and psmQ.txt where the former contains the complete list 
of PSMs in the search space at a given set of search arguments and the latter gives the quality subset that passes 
a user-specified FDR threshold.

High performance in global peptide identification with Mzion.  We first compared the performance 
of Mzion to several other search engines using six datasets of 10-plex global TMT (dataset WHIM_G). Under 
the assumption of tryptic enzymatic specificity, all engines perform comparably with similar numbers of signifi-
cant PSMs, peptides, sequences and proteins (Fig. 2b). Yet notable difference remains, exemplified by a relatively 
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Figure 1.   The Mzion workflow. User-supplied fixed and variable modifications are compiled into sets of 
fixed and variable modifications (Supplementary Note 1). The peptide candidates from in silico digestion are 
dispatched according to the modification sets (Supplementary Fig. 10). For instance, only sequences with 
amino-acid residue M will be retained if methionine oxidation is part of the variable modifications in a given 
set. The sequences are then binned by their precursor masses and searched against experimental MS data. The 
MS/MS features are first matched by primary product ions, for example, b- and y-ions. The secondary ions, b*, 
y* (–NH3) etc., are then searched for and the signals are ascribed to the corresponding primary ions. The, and 
only the, primary ions with the boosted intensity are used in peptide scoring.
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low percentage of common PSMs across search engines (Fig. 2c, Supplementary Notes 2, 3). Within the six data-
sets, Mzion is in general the top performer in term of PSM, peptide and sequence identifications. It also regularly 
yielded the fewest numbers of proteins with single-peptide identifications (Supplementary Fig. 3). Analogous 
traits can be established with a pancreatic cancer dataset Panc_G1 (Supplementary Fig. 4).

We next tested Pearson correlations between the first two WHIM2 replicates in each of the six global datasets. 
Note that data stretching by extreme values can amplify correlations (Supplementary Note 4). We quantified addi-
tionally the data similarity by measuring the Manhattan distance of log2FC (less affected by reference choices) 
between replicated samples. We observed that Mzion confers high correlations and short similarity distances 
that are comparable to other search engines (Fig. 2d, Supplementary Fig. 5a,b).

We further assessed the precision in peptide and protein identifications against the global datasets using an 
entrapment strategy20. Different to the estimates of FDR using a reversed database21, the entrapment approach 
introduced an intermediate step by appending a low homology database to a target database. The combined 
database was then reversed and served as a decoy for FDR controls. Under 1% FDR of proteins, we observed that 
the entrapment rates of Mzion progressed comparably to the other four search engines (Supplementary Note 
5). We also applied an orthogonal entrapment strategy by specifying the variable modification of TMTzero™ 
(TMT0) to peptide N-terminal and site K in the search. The molecular mass of TMT0 differs to that of TMT-
10plex by 5.01045 Da and are expected to be absent in general from the WHIM_G dataset. Among the five 
search engines, Mzion yielded low entrapment rates that progress consistently along the decreasing peptide 
scores (Supplementary Fig. 5c).

Identities of semi/non-tryptic peptides are among the so-termed dark matter in MS data22. We further 
searched the WHIM_G dataset at no enzymatic specificity (NES). We found that, in general, Mzion outper-
forms other search engines by numbers of PSMs and peptides at higher or comparable precision (Supplementary 
Figs. 6, 7, Supplementary Table 4). For instance with the JHU_G2 subset, Mzion identified twice as many PSMs, 
peptides and sequences than the search engine that reported the second highest correlations (Fig. 2b). Presum-
ably the production of semi/non-tryptic peptides are often less defined than tryptic ones. In line with the notion, 
decreased correlations and increased distances between replicated samples were observed for all search engines 
when comparing the semi/non-tryptic to the tryptic findings (Fig. 2e).

Deeper proteome coverage in phosphopeptides.  Protein phosphorylation is one of the most widely 
explored post-translational modifications in proteomics. We demonstrate the performance of Mzion in the char-

Tryptic Semi (non)-tryptic

Engine PSM Peptide Sequence Protein PSM Peptide Sequence

proteoM 264,293 161,793 194,833 13,078 26,636 22,511 23,173

Mascot 221,259 135,858 164,941 12,488 14,905 12,654 13,133

MaxQuant 207,395 129,029 139,532 12,110 11,730 9,419 9,569

MSFragger 245,990 153,978 181,313 13,095 23,579 20,133 20,693

MS-GF+ 212,594 139,441 163,218 13,480

…

…

…

…

Figure 2.   Performance of Mzion on the global dataset JHU_G2. (a) The workflow. (b) Summary in peptide 
and protein identifications. Peptide: without modification information in the literal of a peptide representation; 
Sequence, with applicable modification information in the literal. (c) Significant PSMs by four previously 
established search engines. (d,e) Pearson correlation (ρ) and Manhattan distance (δ) of log2FC. (d) tryptic; (e) 
semi/non-tryptic.
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acterization and quantitation of immobilized affinity chromatography (IMAC) enriched phosphopeptides, using 
the six datasets of 10-plex TMT under WHIM_P. We noted that Mzion in most cases is the leading search engine 
in PSM, peptide and sequence identifications (Supplementary Fig. 8a). We further observed that Mzion yielded 
short similarity distance between replicated samples, when compared to the search engine that reported the sec-
ond highest depth in phosphopeptides (Supplementary Fig. 8b). In the example of the JHU_P2 dataset, Mzion 
characterized 10.1% more peptides than the search engine that yielded comparable entrapment rate, and yet at 
higher correlation and shorter similarity distance (Fig. 3). Interestingly, the greater number of peptides can be 
explained by 11.1% fewer proteins.

It is worthwhile to note the greater discrepancy in the identities of sequences than peptides. For instance, 
26.6% of sequences versus 7.3% of peptides were missed from Mzion when compared to the findings from Mas-
cot (Fig. 3). The observation is consistent with the documentation of low correlations in the phosphorylation 
site specificity between search engines23. The localization probability by Mzion is modified from the AScore 
algorithm24. Instead of assuming binomial probabilities, Mzion applied alternatively a counting statistics to 
weigh the localization probability25. For instance, at a 2:1 counts of localization-specific observations, the former 
will be given a 0.67% probability in localization. Analogous at a 1:0 ratio, the former will be 100% responsible 
for the site specificity. Different to the binomial model in AScore, the localization score with Mzion will be the 
same at either ratio 1:0 or 2:0.

We further tested the accuracy of phosphopeptide identification with Mzion using dataset Ferries_spikes. 
The dataset comprises 191 spiked phosphopeptide sequences with variations in phosphosites. We found that 
all search engines performed comparably in the numbers of identified phosphopeptides and sequences (Sup-
plementary Table 5). Among the five engines, Mzion identified 180 phosphosequences, a number that is fewer 
than the expected value (of 191).

PSM Peptide Sequence Protein

Engine PSM Peptide Sequence Protein ! Q% ! C% ! Q% ! C% ! Q% ! C% ! Q% ! C%

Mzion 64,738 29,844 47,850 6,553

Mascot 59,181 27,114 44,779 7,374 8.1 0.6 7.3 0.5 26.6 9.8 23.9 1.2

MaxQuant 58,735 27,130 39,354 7,284 31.8 8.2 15.8 2.1 34.4 12.3 30.2 1.9

Figure 3.   Performance of Mzion on the phosphopeptide dataset JHU_P2. (a) Pearson correlation (ρ) and 
Manhattan distance (δ) of log2FC. (b) Entrapments of PSMs, peptides, sequences and proteins by database 
Arabidopsis thaliana. (c) Summary in PSM and peptide identifications.
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General purpose searches with Mzion.  Mzion is a general purpose search engine currently for closed 
searches of tandem mass spectra. For instance, it is readily applicable to feature matching of acetylome and 
ubiquitylome, as well as SILAC experiments (Supplementary Table 6). In the examples of small datasets from 
single-cell proteomics, we observed that all search engines performed comparably with Mzion reported the few-
est proteins at single-peptide identifications (Supplementary Fig. 9).

Discussion
We have shown that Mzion is capable of in-depth characterization and quantitation of peptides and proteins 
from DDA data. We further showed that Mzion regularly captures DDA peptides and proteins at high precision. 
The depth and precision may facilitate biological research by generating novel insights with reliable proteomic 
discovery.

The outputs of Mzion (psmC.txt) contains both target and decoy findings and can be readily coupled to post-
search algorithms, such as Percolator for re-scoring26. In the example of Percolator post-processing of dataset 
JHU_G2, 38,804 PSMs that can be assigned to 27,988 peptides and 31,691 sequences were characterized addi-
tionally using the two predictors of precursor mass errors and retention times. To avoid the probable confusion 
that the gain by Mzion algorithm is due to post processing, we restrict ourselves in this work to assess the kernel 
performance of Mzion without Percolator. The quality output of Mzion, psmQ.txt, is derived from the complete 
output, psmC.txt.Comprehensive analyses of Mzion outputs are, however, performed with proteoQ (http://​
github.​com/​qzhan​g503/​prote​oQ) with additional measures in quality metrics and capabilities in bioinformatics.

Part of the reason for the popularity of DDA may be ascribed to its compatibility to high-throughput, multi-
plex TMT workflows. Data independent acquisition (DIA) methods, on the other hand, allow all precursors in a 
wide isolation window of m/z over a wide dynamic range of intensity being fragmented simultaneously for MS2 
interrogation27. It may seem intuitive that spectrum simplifications analogous to the intensity tally by Mzion may, 
to some extents, aid the separations of signals from background noises in more complex DIA spectra18,28–31, and 
reduce the chance of matching everything to everything. However, the potential benefits are yet to be explored, 
especially with regard to DIA signals at low MS2 intensities within a given isolation window. A future direction 
with Mzion may include additional DIA scoring algorithms, aided by spectrum simplification.

Mzion is developed under the R software environment: an interpreted programming language that is com-
monly used in statistical computing and data analysis. The language may not yet be rated among the fastests 
for reasons such as limited supports of reference semantics. In spite, with the broad community efforts, many 
R libraries are rooted in compiled languages such as C and C++. The underlying mechanisms allow Mzion to 
execute suitably in proteomics database searches where the speed of analysis is an important dimension in tool 
performance. In the example of dataset BI_G1 (number of RAW files: 25; databases: Refseq human mouse and 
cRAP; enzyme: trypsin/P; number of missed cleavages: 4; precursor mass error tolerance: 20 ppm; product 
ion mass error tolerance: 20 ppm, fixed and variable modifications: Supplementary Table 2), the forward and 
reversed matches of b- and y-ions are typically done in about 65 min (the complete process in about 101 min or 
97 min with cached precursor masses) when using an 8-core (Intel i7-7820 × CPU, 3.6 GHz) PC at 32 GB RAM. 
The corresponding search times are approximately 85 min with Mascot (without post-processing), 500 min with 
MaxQuant, 45 min with MSFragger and 220 min with MS-GF+. Currently the search speed of Mzion is limited 
by the generation of theoretical MS/MS ions that are subject to heavy permutations of variable modifications 
and sites (e.g. searches of phosphopeptides). We conceive further performance improvement upon rewriting the 
permutations in C++ or by adapting pre-computed permutations.

Methods
Workflow of Mzion.  Software environment and input data.  Mzion was developed under the free software 
environment R32 and Posit/RStudio33. It processes peak lists from MSConvert34 for searches of experimental 
mass spectra. When converting RAW MS files, the peak lists can be at either Mascot generic format (MGF) or 
mzML format. The option of TPP compatibility needs to be checked (as defaulted) at either format for down-
stream parsing of the title lines in the peak lists with proteoQ (http://​github.​com/​qzhan​g503/​prote​oQ). With 
mzML outputs, the default of Use zlib compression needs to be unchecked (opposite to the default) for proper 
decoding of binary data to MS2 m/z and intensity values.

Compilation of fixed and variable modifications.  The same site, including “N-term” or “C-term” of a peptide, at 
multiple variable modifications are allowed (for example variable TMT10plex modification and acetylation both 
at site K). However, the same site being specified under both fixed and variable modifications are considered 
initially incompatible in that the addition of the variable mass to the fixed mass may be chemically unsound (for 
example fixed TMT10plex modification and variable acetylation of K). To handle this, Mzion first coerces the 
incompatible fixed modifications, Fx , to the category of variable modifications. Sets of combinatorial variable 
modifications are then computed. Among them, combinations containing multiple “N-term” or “C-term” modi-
fications are removed (for example TMT10plex modification at “N-term” and acetylation at “Protein N-term”). 
The program next looks for a coerced site at position “Anywhere” and removes the combinations without the site 
(for example removals of combinations lacking K with the fixed-to-variable coercion of TMT10plex modifica-
tion of K). The same rule applies to coerced terminal modifications. In case of multiple coercions of “Anywhere” 
sites, combinations that do not contain all of the coerced sites are removed. Finally for each combination, the 
coerced Fx are reverted back to fixed modifications if there are no site violations (for example Fx is TMT10plex 
modification at “N-term” and there is no other variable “N-term” modifications). Note that to obtain an additive 
effect, a new Unimod35 entry containing multiple modifications to the same site can be constructed (for example 
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TMT10plex modification at “N-term” and the formation of pyro-glutamic acid from N-terminal glutamine). The 
Mzion utility add_unimod can be used for the purpose.

Amino‑acid look‑ups.  Look-ups of amino-acid residues are stored as named vectors for each combination of 
fixed and variable modifications (for example, twelve modules of look-ups when instantiating the modifications 
specified in Supplementary Table 2). Sites and variable modifications are in names and the corresponding mono-
isotopic masses are in values. For example with the specification of variable “Oxidation (M)”, both unmodified 
“M” and “Oxidation (M)” are available in the look-up at masses of 131.0405 and 147.0354, respectively. Masses of 
fixed modifications are applied directly to the corresponding sites. Titles, positions and sites of modifications are 
linked to the look-ups as R-language attributes. Additional attributes include sites of coercion, sites with neutral 
losses, etc. The attributes were calculated once and can be re-used when needed. For instance when calculating 
the theoretical MS2 ions, an attribute of “nl+” prompts the calling of utilities that consider the permutation of 
neutral losses”.

Peptide scores.  Experimental tandem spectra are first searched against theoreticals by primary ions. Additional 
searches are performed against tandem spectra with a minimum of n matched primary b and/or y ions ( n = 6 
by default). Experimental intensities of the matched secondary ions are ascribed to those of the corresponding 
primary ions, for example,

where I stands for experimental intensity and I ′bi is the boosted experimental intensity upon summing Ibi , Ib∗i  etc. 
Theoretical m/z are next ordered decreasingly according to the boosted intensity.

m/z (Expt) Intensity (Expt) m/z (Theo) k x p

248.1809 88,320 14 0

376.2761 81,536 376.2757 15 1 0.3460

863.4354 65,913 863.4348 16 2 0.1077

305.1691 65,251 17 2

551.8666 59,457 18 2

396.2363 54,537 19 2

291.1717 49,432 20 2

551.8262 49,064 21 2

331.2138 48,669 22 2

551.6346 46,109 23 2

505.3192 45,770 505.3183 24 3 0.0520

470.3096 42,045 25 3

551.9680 41,824 26 3

343.2545 40,270 343.2543 27 4 0.0150

490.3232 38,931 490.3227 28 5 0.0028

552.3222 36,185 29 5

Hypergeometric probabilities ( p ) are assessed progressively against the numbers of matched primary ions ( x ) 
versus the numbers of MS2 features ( k ). The best (minimum) probability, P , is applied and the corresponding 
entrenchment scores is −10 · log10(P) . By default, the FDR is estimated by a target-decoy approach against the 
subclass of search results that yields the maximum number of matches. The estimated FDR are then transferred 
to all results36.

Protein groups.  Identities of proteins and peptides are arranged in a sparse logical matrix (R package Matrix) 
with column and row associations to proteins and peptides, respectively. A logical value of 1 in the matrix stands 
for the presence of a peptide under a protein. The matrix is next divided rowly by unique (r1) and shared (r2) 
peptides (Fig. 4). The submatrix r2 is further separated columnly by proteins with (c1) or without (c2) peptide 
counts. The same column separation applies to the submatrix of unique peptides (r1). Note that values in the 
submatrix intersecting r2 and c2 are all logical zeroes and each of the c2 proteins forms their own group. Further 
note that unique peptides have no effect on the grouping of proteins by distance.

It is sufficient to perform protein-peptide grouping against the submatrix intersecting c1 and r2, followed by 
additional increments in cardinal numbers for proteins with single peptide identifications. Pairwise distance of 
proteins are first assessed (R package proxyC) by the logical condition !any(A & B) (not any “both A and B are 
1”). It returns 0 if protein A and B share peptides and 1 if not. The dichotomy distance matrix is next clustered 
hierarchically with the agglomeration method of single link. The cluster is then cut at an arbitrary height greater 
than 0 (heights are 0 between proteins that share peptides). Finally, essential proteins are determined using a 
greedy set cover algorithm37.

Database searches.  MS data were converted to peak lists using MSConvert (v3.0.22279). The MS/MS 
spectra were analyzed using Mascot (v2.8.0.1), MaxQuant (v2.0.2.0), MSFragger (v18.0), MS-GF + (v20230112) 

I
′

bi
= Ibi + Ib∗i + Ib0i

+ Ib2i
+ Ib∗2i

+ Ib02i
, i = 1, 2, 3, . . . ,
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and Mzion (v1.2.3). The top-100 most abundance product ions were used with MSFragger and Mzion. The 
allowance in mass error was set to ± 20 ppm for both precursor and product ions. A maximum of 4 missed 
cleavages was allowed for searches assuming the digestion enzyme of trypsin/P. The range of peptide lengths 
was between 7 and 40 residues and the range of precursor masses between 700 and 4500 Da (Supplementary 
Fig. 11). In multiplex TMT studies, the tolerance in reporter-ion mass error was set to ± 10 ppm with Mascot, 
MS-GF + and Mzion, 0.003  Da with MaxQuant and ± 20  ppm with MSFragger. A maximum of five variably 
modified sites per peptide sequence was allowed with a maximum of three positions at the same modification 
and 64 permutations in positions.

Datasets WHIM_G and WHIM_P.  The global WHIM_G dataset was set up to search against a Refseq data-
base of human mouse proteins (ver Jul. 2018; 56,789 entries) and common contaminant proteins (cRAP, v1.0 
Jan. 2012; 116 entries). The Refseq database was changed to Uniprot human mouse (ver Oct. 2020; 37,522 entries) 
when searching against the phosphopeptide WHIM_P dataset. Cysteine carbamidomethylation was specified as 
a fixed modification. TMT10plex modification of peptide N-terminals and K were specified under the quantita-
tion method with Mascot and MaxQuant. The TMT10plex modification of K and peptide N-terminals were set 
as fixed modifications with MSFragger, MS-GF+ and Mzion. Methionine oxidation, asparagine deamidation, 
N-terminal glutamine to glutamic acid conversion and protein N-terminal acetylation were specified as vari-
able modifications. Phosphorylation of S, T and Y were specified additionally as variable modifications when 
searching against the WHIM_P dataset. The specifications of variable asparagine deamidation and N-terminal 
glutamine to glutamic acid conversion were removed in the searches of WHIM_G at no enzymatic specificity. 
Results were filtered at 1% FDR at proteins (also met at the levels of PSM and peptide) with the exception of 
Mascot and MS-GF+ results being reported at 1% engine-specified PSM FDR. MSFragger PSMs were further 
processed with PeptideProphet.

Additional datasets.  The Uniprot database was subset by species human (20,512 entries) when searching 
against the datasets of lung (acetylome Lung_A1_A10 and ubiquitylome Lung_U) and pancreatic (Panc_G1) 
carcinomas, as well as datasets Ferris_spike, single-cell Hela at 200 pg and 2 ng inputs. Lysine acetylation (K-Ac) 
and carbamylation were both set to variable modifications in acetylome searches. Lysine ubiquitylation (K-GG) 
with and without TMT10plex were set to variable modifications in ubiquitylome searches. The search param-
eters against the WHIM_P were used for the searches of dataset Ferries_spike with the exclusion of TMT10plex 
modifications. The Dong_SILAC dataset was searched against a Uniprot database of E-coli (Jul.  2022; 4,564 
entries) and the cRAP. The same fixed and variable modifications specified in the global WHIM_G searches were 
used except for TMT10plex.

Entrapment analysis by species was performed against the combined database of Refseq human mouse (or 
Uniprot human mouse with dataset WHIM_P), Uniprot arabidopsis thaliana (Sept. 2022; 16,312 entries) and 
cRAP with the identical sets of fixed and variable modifications specified in the WHIM_G (or WHIM_P) 
searches. Entrapment analysis of global data by TMT0 modifications was performed with the same settings in 
the WHIM_G searches, with the additional variable TMT0 modification to both K and peptide N-terminal.
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Figure 4.   A schematic of peptide-to-protein grouping. Proteins and peptides entries are represented by 
columns and rows, respectively. The peptide-to-protein grouping is only affected by the intersection of protein 
columns with shared peptides and peptide rows that are shared by proteins (c1 × r2).
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Data analysis.  Results from Mascot and MaxQuant were filtered by a minimum of 6 matching product 
ions (the same applied to MSFragger and Mzion via search arguments). Note that the tolerances in precursor 
and product-ion mass errors can be interpreted differently by search engines. Results of Mascot, MSFragger, 
MS-GF+ and Mzion were further filtered by ± 10  ppm in precursor mass errors. With quantitative multiplex 
TMT data, PSMs without peptide N-terminal modifications were also removed from MSFragger (filtered by 
“N-term” under column “Assigned Modifications” in the psm.tsv output) and Mzion (automated with the latter 
when compiling fixed and variable modification sets). PSMs with all missing precursor intensity across samples 
were removed from quantitative analysis. Protein identifications were summarized to gene products.

User‑interface utilities.  The main utility of Mzion is matchMS for database searches. Additional user-
interface utilities include table_unimod that tabulates titles, sites, positions and monoisotopic masses of all Uni-
mod modifications, find_unimod that extracts the information of a specific Unimod entry with additional speci-
fications in neutral losses, parse_unimod that checks the grammar of a user-specified modification, load_fasta2 
that loads FATSTA databases, calc_unimod_compmass that calculates the monoisotopic mass of a modification 
by a chemical composition, add_unimod, remove_unimod and remove_unimod_title that add or remove Uni-
mod entries. Utility mapMS2ions maps MS2 ions between theoreticals and experimentals and make_mztab 
prepares mzTab files for publication compliance. Utilities calc_monopeptide and calc_ms2ionseries calculate the 
possible precursor masses and MS2 product ion series for a peptide sequence at a given set of fixed and variable 
modifications.

Data availability
The codes for Mzion is freely available at http://​github.​com/​qzhan​g503/​mzion under MIT license. All data gener-
ated or analysed during this study are included in the published articles summarized in Supplementary Table 3.
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