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Eye‑based communication languages such as Blink‑To‑Speak play a key role in expressing the needs 
and emotions of patients with motor neuron disorders. Most invented eye‑based tracking systems are 
complex and not affordable in low‑income countries. Blink‑To‑Live is an eye‑tracking system based 
on a modified Blink‑To‑Speak language and computer vision for patients with speech impairments. 
A mobile phone camera tracks the patient’s eyes by sending real‑time video frames to computer 
vision modules for facial landmarks detection, eye identification and tracking. There are four defined 
key alphabets in the Blink‑To‑Live eye‑based communication language: Left, Right, Up, and Blink. 
These eye gestures encode more than 60 daily life commands expressed by a sequence of three eye 
movement states. Once the eye gestures encoded sentences are generated, the translation module 
will display the phrases in the patient’s native speech on the phone screen, and the synthesized 
voice can be heard. A prototype of the Blink‑To‑Live system is evaluated using normal cases with 
different demographic characteristics. Unlike the other sensor‑based eye‑tracking systems, Blink‑
To‑Live is simple, flexible, and cost‑efficient, with no dependency on specific software or hardware 
requirements. The software and its source are available from the GitHub repository (https:// github. 
com/ ZW01f/ Blink‑ To‑ Live).

Amyotrophic Lateral Sclerosis, ALS, and Primary Lateral Sclerosis, PLS are progressive neuron diseases that affect 
the brain and spinal cord cells and gradually cause the loss of muscle control and develop speech impairment 
symptoms. Patients can communicate with their caregivers in the later disease stages through eye  gestures1,2. 
Translating eye gestures into a communicated speech invented a plethora of Augmentative/Alternative Com-
munication (AAC) devices that have different designs and usability concepts ranging from control panels with 
letters and numbers, touch and gaze-sensing screens, eye tracking systems and consequently modified mouse 
cursor techniques are introduced to control different computer applications. Commercial gaze-sensing keyboards 
are very expensive; for example, Tobii  Dyanvox3 has a cost ranging from 5K$ to 10K$ according to different 
configuration models. Eye  Transfer4 (E-tran) board is an alternative low-cost solution ($260) where a caregiver 
holds a transparent plastic board of printed letters and observes the patient’s eye gestures on the board. The 
head-mounted eye gaze  trackers5 required some static, adjusted settings according to the camera and patient’s 
eye during the head movement.

Thoughts and intentions are another communication approach for patients with speech impairments. Brain-
Computer Interface (BCI) is utilized brain activity (i.e., EEG signals) to control external devices, such as typing 
words by selecting letters on a digital  keyboard6 or performing complex tasks such as browsing a web  page7 or 
painting an  image8. Some brain spellers have different communication  rates9,10, which increased recently by 
combining the language model and deep  learning11,12. Research studies stated that most ALS/PLS patients have 
a good acceptance rate of using technologies based on eye tracking to initiate communications with their sur-
rounding  world13–15, and tracking the patient’s eyes is much simpler than tracking or detecting other signals, 
such as EEG/ECG16,17.

Patients with speech impairments lose their natural speaking  abilities18. Accordingly, many modified speak-
ing languages that utilize the available moving organs such as the head, facial gestures, eyes, or brain signals 
are  proposed19,20. Eye-based communication languages are introduced in different forms encoding different 
eye gestures to easily and efficiently synthesize a communicated  speech21–23. Morse code is one of the proposed 
approaches for encoding the short and long eye blinks as a sequence of dots and dashes, and the alphabets/sen-
tences are constructed  accordingly22,23. Blink-To-Speak is another proposed eye language with eight alphabets 
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according to eight eye gestures (Shut, Blink, Left, Right, Up, Down, Wink, and Roll). The most daily life phrases 
(i.e., 50 commands) are encoded using these defined eye alphabets in an online book in different native languages 
to train and teach the patients/caregivers how to use the language easily and  efficiently24. Most of the proposed 
eye languages for speech impairments are implemented in specialized hardware devices with specific sensors 
(eyeglasses with infrared, eye gaze keyboards, head-mounted eye trackers, etc.) that complicate the communica-
tion process with less usability and accessibility for the patients and  caregivers14,25,26. Also, some of these devices 
are expensive and not affordable in low-income counties such as Egypt.

Further, the eye blinking is the only considered state in the previously proposed eye language, which can 
limit the application’s usability by discarding other eye gestures (i.e., left, up, right, etc.) that can encode more 
different phrases and daily life  commands14,22,23. While Blink-To-Speak eye language has more alphabets than 
other eye-based communication languages, which can encode more phrases, the caregivers can only understand 
the patient’s intended speech by observing their eyes, and the patients/caregivers are trained through a manual 
book to speak/understand the language. Also, the defined communicated sentences in the book may have a long 
sequence of different eye gestures that need more training time and can exhaust the patient’s eyes.

In this paper, we proposed Blink-To-Live, an eye-tracking system based on a modified Blink-To-Speak lan-
guage for patients with speech impairments. A handheld mobile device with supported cameras captures real-
time video frames and sends them to computer vision modules for facial landmarks detection, eye identification 
and tracking. The Blink-To-Live communication system has four eye movements: left, right, up, and blink. These 
eye gestures encode more than 60 daily life commands expressed by a sequence of three eye movements. The 
speech generation and translation modules decode the recognized eye movements into corresponding phrases, 
display them on the mobile screen in a patient’s native speech, and their synthesized voice can be heard accord-
ingly. Unlike the other sensor-based eye-tracking systems, Blink-To-Live is simple, flexible, and cost-efficient, 
with no dependency on specific software or hardware requirements. Also, compared to the original Blink-To-
Speak, the proposed eye-based communication language has more commands with a short sequence of eye 
movements to increase its usability for the patient to speak faster in less training time.

Our paper is organized as follows: Section “Related work” provides a summary of the previously related work, 
Section “Materials and methods” presents the big picture of our proposed system architecture with its internal 
modules and sub-modules that are discussed in detail in the following subsections, Section “Experimental results” 
demonstrates the main experimental results of our proposed communication system including different user 
interfaces, basic services provided to patients/caregivers, and different usability and accessibility issues, Section 
“Conclusion” concludes the paper and highlights some future insights for improving the Blink-To-Live system.

Related work
Eye tracking technologies are utilized in many sciences such as cognition, psychology, computer, and medicine 
to digitize how people interact with their living  environment27,28. Tracking human eyes, which implies recording 
their different movements, is essential for many pervasive applications such as eye-based communications and 
computer environment  interactions29,30. Three types of eye-tracking approaches were introduced previously (see 
Fig. 1): one relies on devices attached to the eyes directly, such as special lenses or glasses with infrared sensors 
that track and record eye positions. The second approach targets the eyes as a source of electrical field that can be 
detected in the darkness even when the eye is closed and measures the electrical potentials by positioning some 
electrodes around human eyes, the example of this approach is the electrooculogram (EOG)  technique22,27. Since 
the previous two mentioned approaches rely on some sensors such as infrared or electrodes, they can be grouped 
under the term sensor-based eye tracking technologies. The other eye-tracking methods rely on computer-vision 
techniques for detecting and tracking the human eyes in the captured video frames by a camera in real-time 
without direct contact with human eyes or using extra hardware  sensors31–33.

One proposed human–computer interaction method is positioning nearly five electrodes around the patients’ 
eyes to detect their blinks and movements to control the cursor and different desktop  applications34,35.  Some 
applications have a user interface with a keyboard to enable the patients to use their eyes to look at the intended 
letters and select based on eye blinks and movements for a predefined time slot (i.e., one second). Also, electro-
myography systems can detect facial muscle signals and control the mouse cursor and computer applications 
 accordingly36. The eye gestures and signals from facial muscles are incorporated to increase the reliability of 

Figure 1.  Eye-tracking systems for patients with speech impairments.
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applications that support people with speech impairments in communication and cursor control. While com-
bining these two techniques has high accuracy, it still suffers from a slow communication speed and high  cost22. 
Direct-eye contact approach targets designing hardware devices such as eyeglasses with an infrared sensor that 
translates eye blinks into a sequence of alphabets using a Morse code with variations that the alphabets are 
displayed on the LCD  screen23, or the synthesized phrases are displayed on a mobile phone  screen22.  EyeLive37 
is another eye-tracking system based on measuring eye reflections by the infrared sensor. The system has a user 
interface with a keyboard to let the patient selects the intended letters using their eye gestures. While the infrared 
sensor facilitates eye gesture detection by increasing the reflection light from the eyes, it has some limitations, 
such as interference with sunlight in outdoor usage, and the relative eye positioning for the infrared sensor will 
affect the tracking performance. The direct-eye contact approaches have an extra cost of using external hardware 
devices for eye tracking with less reliability and robustness according to inaccurate sensor measurements.

Some machine learning techniques are introduced to detect and track the human eyes, such as principal 
component analysis, which detects the first eye’s six principal components in the captured images. The eye’s 
pupil position is classified using the artificial neural network  model38. The system required a special hardware 
configuration such as a head-mounted camera and wearing glasses that complicate the communication process. 
Some machine learning models are used to predict the eye’s directions, gaze angles, and movements, such as 
Adaptive Linear Regression,  ALR39, K Nearest Neighbors,  KNN40, and Random Forest,  RF41, which suffer from 
inaccurate prediction accuracy due to insufficient training samples, parameters setting, noisy images, or com-
plex feature extraction  process31. Also, Support Vector Machine, SVM, is used to classify the five eye directions 
after the eye region is detected by modifying the characteristics of the active appearance  model42. A deep learn-
ing Convolution Neural Network, CNN, with multi-layer architecture, is used to predict different eye gestures 
based on training the CNN with a large number of samples with known eye states as predicted labels, which 
can achieve good performance but require a large number of training samples, long training time, and tune the 
model’s parameters  accordingly43. The eye-tracking technology is applied in non-communication tasks such as 
understanding the factors that influence comprehension by investigating how developers comprehend query 
syntax and method syntax in Language-Integrated Query (LINQ), which is a popular technology for querying 
data in .NET programming languages such as C# and VB.NET44. Also, the eye-tracking technology is integrated 
with Virtual Reality (VR) head-mounted displays for rendering the VR senses, assisting the user interaction with 
the  environment45 or supporting the vision  screening46.

Materials and methods
Blink-To-Live is a mobile application based on computer vision techniques for patients with motor neuron 
disorders such as ALS and PLS. These patients gradually develop speech impairment symptoms. In the final 
paralyzed stage, eye gestures are the only methods to initiate communication. The Blink-To-Live communication 
system relies on the four eye gestures: Left, Right, Up, and Blink (Table 1), defining the language’s key alphabets 
for encoding more than 60 daily life communicating sentences, such as those presented in Tables 2 and 3.

As depicted in Fig. 2, Blink-To-Live has two basic system components: a mobile application developed by 
a Google  flutter47 framework and the other is a backend python module for video frames image analysis and 
processing. The patient’s interactions with the Blink-To-Live system start with a caregiver’s opening the phone 
camera to track the patient’s eye gestures. Once the video frames are captured correctly in real-time, they are 
automatically sent to computer vision modules to detect and track the patients’ eye movement states.

The first module is facial landmarks detection, which has two sub-modules: face detection and facial land-
marks prediction. This module aims to detect the patient’s face and extract the locations of 68 facial coordinates 
representing different facial structures such as eyes, mouth, nose, etc. The next module detects the patients’ eyes 
and tracks their movements according to the Blink-To-Live four key alphabets: Left, Right, Up, and Blink. The 
patient’s communicated speech is generated according to the predefined dictionary of sentences encoded using a 
combination of three eye movement states. Once the sentences are synthesized, a translation module displays the 
phrases in the patient’s native language, such as Arabic, German, etc. Also, the text-to-speech module generates 

Table 1.  Four defined eye alphabets in the Blink-To-Live eye-based communication system.

Eye alphabets Eye states

Blink

Left

Right

Up
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a corresponding lifelike speech that helps the patients to communicate easily and efficiently. The detailed imple-
mentations of each module will be discussed in the following sections.

Blink‑To‑Live eye‑based communication language. Blink-To-Live eye-based communication lan-
guage has four eye alphabets (i.e., Blink (B), Left (L), Right (R), and Up (U)). We modified a previously proposed 
Blink-To-Speak eye language according to the four eye movements recognized by our system to simplify the 
patient communication process by expressing more statements with less sequence of eye gestures and transi-
tions. In the Blink-To-Live eye-based communication language, each communicated sentence is expressed as a 
sequence of three eye states, and each state could be one of the four states (B, L, R, and U). The four defined states 
will generate exactly 64 daily life-communicated phrases for ALS/PLS patients (Tables 2 and 3). This configura-
tion can be mathematically defined as follows: If you have n recognized eye states and a group of communicated 
sentences, each sentence will be expressed by k words ( k sequence of states), the total number of uniquely com-
municated sentences will be nk . By increasing the number of n recognized eye states and the k expressed words, 
more statements are added to the modified Blink-To-Speak language. We found that when n = 4 , k = 3 , the 
total number of defined statements equals 64, sufficient to express most of the required daily life communication 
speech for ALS/PLS patients with less training time. The same eye states (i.e., all three states are left, right, up, 
or blink) with no transition in between are devoted to the basic patient needs such as food, water, toilet, I am 
okay, etc. Also, the states with low transitions are dedicated to the most important command, such as changing 
a diaper, calling a relative, taking medication, etc. Usually, the sequence of the same eye states will be expressed 
faster by patients and take less training time than the sequence of eye states that transition from one eye state 
to another. The proposed Blink-To-Live eye-based communication language will be simpler, more flexible, and 
usable as the patient’s eyes could be exhausted by a long sequence of eye gestures and transitions defined in the 
original Blink-To-Speak book. Table 4 shows the key differences between Blink-To-Speak24 and Blink-To-Live 
systems.

Table 2.  Encoded sentences by four eye gestures—Part 1 (L: Left, R: Right, U: Up, B: Blink).

Eye states Eye-movements encoded sentences

L L L Water

L L R Adjust my Specs

L L U Feeling Cold

L L B Feeling Hot

L R L Emergency

L R R Nose Block

L R U Palpitations

L R B I am not Okay

L U L Choking

L U R Heartache

L U U Danger

L U B Dizziness

L B L Headache

L B R Breathless

L B U Cramps

L B B Let’s Talk

R L L I Want to Go Home

R L R Wipe

R L U Wash

R L B Scratch

R R L Change Clothes

R R R Food

R R U Change Position Sitting

R R B Change Position Lay straight

R U L Let’s Go Out in the Open

R U R Open the Door

R U U Open the Window

R U B Television

R B L Music

R B R Light

R B U Air Conditioning

R B B Newspaper
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Facial landmarks detection module. Facial landmarks detect important parts of the face, such as the 
nose, eyes, eyebrows, mouth, etc. Our system’s most important facial structure is the patient’s eyes. The facial 
landmarks module in our proposed framework has two basic steps: detecting the face from the images collected 
from video frames and localizing the important facial structures on the face region of interest accordingly.

Face detection module. Face detection is accomplished with a pre-trained model called Histogram of Oriented 
Gradients with Linear SVM (HOG + SVM). HOG descriptor of a human face can be built by dividing the face 
image into small blocks, and for each block, the gradients (i.e., small changes in the pixel values in terms of x 
and y directions) are computed. Then, the histogram is generated for each block separately. Finally, the gradient 
vectors are normalized and combined into a single HOG feature descriptor fed into a linear SVM for face/non-
face object  classification48.

Facial landmarks detection module. Given that the face region is detected, the next step is detecting the facial 
landmarks by localizing and labeling the mouth, left and right eyebrows, left and right eyes, nose, and jaw. A set 
of manually labeled key facial structures in terms of x and y coordinates, along with the pixels’ intensity values 
and the prior probabilities of the distance of the pixel values corresponding to the facial landmarks pairs, are 
fed into an ensemble model of regression  trees49 to train a model for facial landmark detector. The model is 
implemented in the dlib  library50 and trained on iBUG 300-W  dataset51 for estimating the locations of 68 facial 
landmark coordinates in terms of x and y values. Our proposed system used the dlib pre-trained model to detect 
facial landmarks on real-time images extracted from video frames (see Fig. 3).

Eye detection, tracking, and blinking module. Eye detection and tracking module. The patient’s eyes 
are detected using the facial landmarks module, which locates the indexes of left and right eyes in the space of 
68- (x, y) coordinates. Each eye is detected by 6 coordinates drawn on the created black mask of the same di-

Table 3.  Encoded Sentences by Four Eye Gestures – Part 2 (L: Left, R: Right, U: Up, B: Blink).

Eye states Eye-movements encoded sentences

U L L Comb my hair

U L R I Want to Spit

U L U Change Bedsheet or Pillow

U L B Someone is hurting me

U R L Call a Doctor

U R R Take a Shower

U R U Food Stuck in Teeth

U R B I Need a Hug

U U L Call the Police

U U R Call a Relative

U U U Toilet

U U B Change Diaper

U B L My Phone Camera is not Working

U B R My Computer is not Working

U B U Good to See You

U B B My Wheelchair is not Working

B L L No

B L R Hello

B L U Long time no see

B L B I Want to Sleep

B R L I Want to meet my Pet

B R R Yes

B R U I Want to Pray

B R B The Internet is not Working

B U L Congratulation

B U R I am sorry

B U U I love you

B U B How are you

B B L I am in Pain

B B R Medication

B B U Thank You

B B B I am Okay
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Figure 2.  Blink-To-live Communication System Architecture.

Table 4.  The key differences among Blink-To-Speak and Blink-To-Live systems.

Blink-To-Speak Blink-To-Live

50 commands 64 commands

Manual online book Desktop and mobile application

Alphabets of eight eye states Alphabets of four eye states

Communicated sentences have a variable sequence length of words 
(i.e., eye states) and could be a long sequence of eye states with many 
transitions

Communicated sentences have a fixed sequence length of words (i.e., 
three eye states) with fewer transitions

Complex non-automated system Simple automated system

Long training time Less training time

Caregiver support is required Caregiver support is not required after the camera is opened

No priority is given to some sentences compared to others Sentences expressing the patient’s basic needs are encoded by the 
same sequence of eye states with fewer transitions to speak quickly

The patient’s eyes could be exhausted by expressing long sequence of 
eye states

The short sequence of eye states might save the patient’s eyes from 
exhaustion

Figure 3.  Facial landmarks detection module, where dots represent the 68 coordinates of different facial 
structures such as mouth, left right eyebrows, nose, etc.
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mension for each reading frame corresponding to a patient’s image. The only white region on the created black 
mask surrounds the eye and expands using dilate morphological operation. The eyes are segmented through the 
bitwise-and operation with the created mask on the original image. All zeros pixel values are converted to 255 to 
localize the eyeball, the only black region left on the mask. The resulting eye mask is converted into grayscale to 
prepare the image for segmenting the eyeball from the eye and locating its center. We used a fixed threshold to 
create a binary mask to find the largest contour containing the eyeball and segment it accordingly. After the eye-
ball is detected, its position (in terms of x and y coordinates) is computed and returned as three values mapped 
to three directions: left (1), right (2), and up (3). The eye-down state is not detected in this version of the Blink-
To-Live application since it conflicts with an eye-blinking state.

Eye blinking module. Each eye is detected by 6 coordinates using the facial landmarks module, and the relation 
between the eye height and width can be encoded by the ratio called Eye Aspect Ratio,  EAR52,53, that is computed 
by the following equation:

where  p1,  p2,  p3, etc., are the coordinates of the eye’s landmarks, as depicted in Fig. 4.
EAR is always constant when the eye is open, and it has an approximate value of zero when it blinks. Conse-

quently, the ratio can determine whether the patient is blinking. A specific threshold value, t  , is computed (i.e. 
0.2 in our application). Suppose the EAR value is decreased by less than 0.2 and then increased above 0.2, a single 
blink is detected and can be counted as many as blinks have occurred. The following equation explains how the 
eye’s opening and closing states are detected based on comparing EAR with the t  threshold value.

The normal blink lasts from 100 to 400 ms, which is very fast compared to the intended blink (i.e., lasts 
800 ms). We used the approach explained  in53 to distinguish the normal blink from the patient’s blink, which is 
used as an alphabet in the Blink-To-Live eye-based language. The solution implies inspecting the EAR value in 
the predefined number of video frames (i.e. 13 frames) and if the EAR is still less than 0.2, then it’s the intended 
language blink. If the number of inspecting frames are less than 13 frames, the blink is very fast and might be a 
normal one considering that the camera captures 25 frames per second.

Eye speech generation and translation module. From the previously discussed modules, the four 
eye alphabets (i.e., Blink (B), Left (L), Right (R), and Up (U)) can be detected and registered in an eye tracking 
list. The eye tracking list stores different eye-recognized states and generates the corresponding encoded phrases 
according to Tables 2 and 3. A python library translate is used to translate these phrases into different native 
languages such as Arabic, German, etc., according to different patients’ cultures and  nationalities54. Further, the 
generated phrases text is converted to a lifelike synthesized speech using a Text-to-Speech module developed 
by Microsoft  Azure55. The local registry keys of the Microsoft library for Text-to-Speech can also be used and 
imported directly into any python code.

Blink‑To‑live system deployment. Blink-To-live is a flutter-based mobile application for helping 
patients with speech impairments to communicate with their families and caregivers. A mobile phone camera 
will be opened, and a stream of video frames will be captured and sent to a backend model via a web socket with 
 FastAPI56. The two-way communication channel between a client (mobile application) and server (backend 
model) is established using a web socket with FastAPI that quickly sends images in real-time without going 
through all HTTP protocol layers. The web socket will efficiently handle a backpressure problem that is resulted 
from receiving more video frames than the expected number to be handled by the backend model. Also, this 
problem occurred when the model was busy processing existing frames and running face/eye detection modules, 
predicting the eye movements, and translating the recognized states into a communicating speech while receiv-
ing new frames from the mobile application. A queue or buffer with a limited size will be created to solve this 
problem. When the queue is full, some video frames will be dropped without affecting the application’s efficiency 
since its details can be restored or created virtually from the previously stored ones. Two methods are imple-
mented concurrently and running in parallel: receive and process. Receive method is used to read newly captured 
frames encoded by raw bytes. In contrast, the process method detects face/eyes in the previously received frames, 
tracks the eye gestures, and sends the translated eye’s speech back to the mobile application screen.

(1)EAR =
�p2 − p6� + �p3 − p5�

2�p1 − p4�

(2)
{

Eye_closed EAR ≤ t
Eye_open EAR > t

}

Figure 4.  The 6-coordinates of left and right eyes, which are used in the Eye Aspect Ratio, EAR, computation.
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Blink‑To‑Live system interaction with patients/caregivers. In this paper, we developed a mobile 
application called Blink-To-Live to help patients with speech impairments to communicate easily and efficiently. 
The patient’s caregiver only needs to open the mobile phone camera to capture and track the patient’s eye move-
ments according to the Blink-To-Live four key alphabets: Left, Right, Up, and Blink. The patient’s communi-
cated speech is generated according to the predefined dictionary of sentences encoded using a combination of 
three eye movement states. Once the sentences are synthesized, a translation module displays the phrases in the 
patient’s native language and the text-to-speech module generates a corresponding lifelike speech accordingly. 
Figure 4 shows different application screens, from the user’s registration to the screen that displays the eye move-
ments encoded phrases.

In Fig. 5, users can register with their phone numbers and emails. Depending on the registration process, 
customized information, such as the patient’s nationality, culture, etc., can be inferred. The following application 
screens (i.e., Fig. 5) show that when the camera is opened, the application starts to track the eye movements and 
display them on the screen, and after all eye gestures are recognized, their corresponding synthesized phrase, 
according to Tables 2 and 3, is displayed on the application screen and its lifelike speech is heard.

Also, the application has a learning module with animated graphs, which will help and motivate the patients 
and caregivers to learn more about the Blink-To-Live four eye movement alphabets and the corresponding 
eye-based generated speech. Further, the generated speech could be translated into different native languages 
according to the patient’s registration information (see Figs. 6 and 7).

Figure 8 shows the interactions between the Blink-To-Live mobile application and the patient as a sequence 
of exchange messages. When a user profile is created for a patient by his caregiver, the login information can 
be used to start the Blink-To-Live application. Depending on the paralyzed stage, the patient or his caregiver 
can open the phone camera, and the application starts to track the patient’s eye and record each recognized 
movement in the eye tracking list. Every three recognized eye movements are translated into a corresponding 
phrase using the Blink-To-Live dictionary encoded by Tables 2 and 3. The encoded phrase is displayed on the 
application screen, and its corresponding voice is heard. The dictionary was encoded using three eye states to 
simplify communication without exhausting the patient’s eye by making a long sequence of eye movements. 
After the patient’s encoded speech is displayed on the screen, the eye tracking list is cleared to start recording 
a new sequence of three eye gestures. Suppose the patient accidently makes an erroneous eye movement not 
recognized by the Blink-To-Live system. In that case, the application’s screen will not display the unrecognized 
state, and the patient will be assigned a five-second interval to express the correct one.

Different eye-tracking approaches are compared according to criteria such as communication speed, cost, 
caregiver dependency or special hardware devices for initiating the communication. Blink-To-Live follows an 
Indirect-eye contact tracking approach called a computer-vision-based eye-tracking approach. The comparison 
considered the results reported from different studies that evaluate different eye-tracking approaches for ALS 
patient  communication15,19,35,57,58. The Blink-To-Live system does not rely on special hardware devices or sensors 
to initiate the patient’s communication. The patients/caregivers can use their mobiles with supported cameras 
to track the patient’s eyes, generate the intended speech, and translate it into the patient’s native language. No 
eyeglasses, electrodes, or gaze-sensing screens are needed; hence our application has the lowest cost compared 
to the other proposed ones. Blink-To-Live suffers from a small delay since extensive computer vision backend 
modules process the video frames in real-time and send the results back to the mobile application, so the com-
munication speed will be slow compared to the direct-eye contact tracking systems (see Table 5).

Figure 5.  Blink-To-Live mobile application user interface (i.e., patient’s registration and eye tracking interfaces) 
along with the one displayed phrase “I am not Okay”.
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Ethics declarations. All experiments were carried out by the relevant guidelines and regulations. Also, 
they were approved by the Scientific Research Ethics Committee, Faculty of Computers and Information, Man-
soura University, Egypt. Also, the informed consent was obtained from all subjects to publish the information/
image(s) in an online open access publication.

Experimental results
A prototype of the proposed Blink-To-Live system has been tested using 10 normal cases with different demo-
graphic characteristics such as age, gender, educational level, and technology awareness. The technology aware-
ness is evaluated according to the age, previous experience, cultural background, and the level of education of 
each participant included in the test experiment. Each case had one-week training to learn the different eye 
language alphabets and their related phrases in Tables 2 and 3. Then, each case is asked to speak 27 phrases by 
expressing their corresponding eye language alphabets (i.e., left, right, up, and blink). Each case had five trials 
to speak each one of the tested phrases.

Table 6 presents the recorded results, where each case had a coded symbol in the first column. The average 
communication speed, number of trials, and communication accuracy are reported in the following columns. 
The average communication speed is measured by the processing time required to recognize the eye’s gestures and 

Figure 6.  Blink-To-Live mobile application’s basic services: Reading the eye language book, Detecting the eye, 
and Translating the eye movements into phrases in the patient’s native speech.

Figure 7.  User Interface designs of the patient profile in the Blink-To-Live mobile application.
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display the corresponding phrase on the mobile screen. The communication accuracy is computed by counting 
the number of correctly spoken sentences using the eye alphabets out of the 27 tested sentences.

Cases (P-01 to P-10) have 6 males and 4 females with ages ranging from 21 to 79. Cases P-01, P-02, P-04, P-06, 
P-08, and P-10 successfully express different eye language alphabets and correctly speak most of their related 
phrases in one trial (see Table 6). Cases P-01, P-02, P-04, and P-10, have younger ages compared to P-06 and P-08, 
with ages above 60. They all have a higher education level and technology awareness than the other participants. 
Cases P-03, P-07, and P-09, have intermediate educational level, and low technology awareness, so they needed 
more trials to express the eye language alphabets. Case P-05 has the worst performance as the educational level 
and technology awareness is very low compared to the others. The communication speed ranges from 15 to 25 s 
for expressing one sentence for all cases. This time will vary according to how many transition eye states are in 
the encoded phrase, the person’s ability to move their eyes correctly without moving their heads according to the 
intended speech, and the internet connection speed between the mobile application and the backend system. In 
our experimental results, normal people with high educational levels, technology awareness, good eye language 
training, good internet connectivity, and stability achieve good communication results. With sufficient train-
ing time, people with low educational level and technology awareness can achieve good performance. Patients 
with similar experimental settings will need more training (expected 15 days) to achieve the same performance. 
The patient’s dependency on his caregiver to open the phone camera relies on his ability to control his muscles 
according to different disease stages. Once the camera was opened to track the patient’s eye, there was no need 
for a caregiver to assist with the patient’s communication.

Figure 8.  A sequence diagram that describes the interactions between the patient and the Blink-To-Live mobile 
application.

Table 5.  Comparing different approaches for eye-tracking according to some communication assessment 
criteria. *The proposed Blink-To-Live application follows this approach.

Assessment criteria Direct-eye contact tracking Indirect-eye contact tracking*
Eye tracking with electrical 
potentials

Caregivers are needed to assist the 
communication No No No

Communication Speed Fastest Fast Medium

Special devices/sensors are needed 
to initiate communications Yes No Yes

Cost Low Lowest Medium
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To further evaluate the Blink-to-Live system, we removed any variable external factors such as the network 
speed/bandwidth, the total number of frames sent from a sender (i.e., mobile) to a server (backend model), frame 
resolution, and test the system using its desktop version. Overall, we reached an average time of 3 s for most 
of the communicated sentences with the same eye movement states or at least one transition state. Sometimes, 
blinking states take more time to recognize by our system, and accordingly, their corresponding phrases have 
a long communication time compared to the other phrases with no blinking states. Phrases such as “I Want to 
Sleep”, which is expressed by a sequence of [B L B], failed to be spoken by P-01 and P-04 since the system will 
not be able to recognize the third blinking state when a fast/slow transition was made between two different 
consecutive sates (see Fig. 9). Also, the sentences “Nose Block”, “Palpitations”,” My Computer is not Working”, 
and “I Want to Pray”, which are expressed by the consecutive sequence [L R R], [L R U], [U B R], [B R U], failed 
to be spoken by some participants as they made the fast transition between two consecutive states or moving 
their heads along with their eye’s gestures. Hence, the Blink-To-Live system cannot recognize the sequence of 
intended eye alphabets to decode its corresponding phrase.

Since Blink-To-Live communication speed is affected by many external factors such as the network speed/
bandwidth, the total number of frames sent from mobile application to the server, and the frame resolution. The 
communication speed of the Blink-To-Live system, CSBTL , can be characterized mathematically as the following:

where PBTL is the processing time of the sequence of three eye states on the server side and TBTL is the transmis-
sion time between the mobile application and the server.

On average, PBTL takes from three to four seconds, while TBTL can be defined in terms of the variables: DBTL : 
duration time of the inspected video clip for patient’s eye movements,FRBTL : frame rate, FBTL : total number of 
frames will be sent from the mobile application to the backend system, RBTL : frame resolution characterized by 
a phone camera, XBTL : number of pixels in video frames, BBTL : number of bits in video frames, and N : network 
bandwidth in bps.

In the technical term, we compared two features-extractor approaches implemented in the dlib library. The 
first approach relies on CNN and has an execution time of 3.33 s for only a face detection module, while the 
Blink-To-Live-based approach has an execution time of 0.21 s (see Table 7).

Eye-based tracking applications such as Blink-To-Live have been introduced as assistive communication 
technology for patients with speech impairments. Two elements play a key role in the success of eye-based track-
ing technologies: the hardware device used to track the patient’s eye and the software application used to process 
the collected data. The devices that track the patient’s eye range from expensive gaze-sensing keyboards such 
as Tobii Dyanvox or Eye Transfer to special lenses, electrodes, or glasses with infrared sensors. The proposed 
Blink-To-Live system follows another approach for tracking the patient’s eye using a simple camera without using 
expensive specialized devices or hardware sensors directly positioned to the human eyes.

The software applications that process the collected data rely on the machine and deep learning techniques 
for facial landmarks detection, eye identification, and tracking. The Blink-To-Live system used HOG + SVM, the 
feature extractor approach implemented in the dlib library, for facial landmarks identification and other computer 

(3)CSBTL = PBTL + TBTL

(4)FBTL = DBTL × FRBTL

(5)XBTL = FBTL × RBTL

(6)BBTL = XBTL × 8

(7)TBTL =
BBTL

N

Table 6.  Experimental results of Blink-To-Live mobile application. *These reported results are improved to 27, 
20, 26, and 27, respectively, in one trial test after increasing the training period of these participants to 20 days.

Person ID Educational level Technology awareness
Communication speed in 
seconds Communication accuracy Trial number

P-01 High High 15 26/27 1

P-02 High High 20 27/27 1

P-03 Intermediate Low 15 23/27* 2

P-04 High High 10 26/27 1

P-05 Low Low 25 10/27* 3

P-06 High High 15 20/27 1

P-07 Intermediate Low 23 19/27* 3

P-08 High High 19 25/27 1

P-09 Intermediate Low 24 20/27* 3

P-10 High High 12 27/27 1
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Figure 9.  Blink-To-Live System communication speed of sentences with different transition eye states (i.e., L, 
R, U, and B).

Table 7.  The execution time of the face detection module implemented by two different features-extractor 
approaches: CNN and HOG + SVM. *The proposed Blink-To-Live application follows this approach.

Model CNN HOG + SVM*

Execution time of face detection module 3.33 s 0.21 s
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vision modules for tracking different eye movements and blinking states. The eye-down state is not detected in 
this version of the Blink-To-Live application since it conflicts with an eye-blinking state, which can be resolved 
in the future by using techniques such as reinforcement learning. Also, the Blink-To-Live system suffers from 
a small delay since extensive computer vision backend modules process the video frames in real-time and send 
the results back to the mobile application so that the communication speed will be slow compared to the other 
direct-eye contact tracking systems. Communication speed can be enhanced by developing fast processing 
backend services and web socket communication between the client and server applications.

Conclusion
Blink-To-Live is a simple and cost-efficient mobile application for speech-impairment patients who only have 
their eyes to initiate communication with their surrounding world. It relies on a set of computer vision modules 
and a modified version of the Blink-To-Speak language to translate different eye gestures into a set of daily life 
commands used by the patients to express their emotions and needs. The patients/caregivers will only use their 
phones with supported cameras to track different patients’ eye movements. The synthesized eye-based speech 
will be displayed on the phone screen accordingly. The future improvements of our system are to increase com-
munication speed by developing a fast processing backend system that utilizes modern real-time image analysis 
and processing approaches. Also, reinforcement learning algorithms can enhance eye detection, blinking, and 
tracking modules to achieve high-accuracy results and resolve conflicts among eye movement states. Further, 
each patient has a registered profile in our application. In the future, the application will learn his eye’s attributes, 
movements, and blinking behavior, which can increase the communication speed, and customize the application 
according to different patient needs. The Blink-To-Live could be integrated easily with other systems relying on 
hardware devices to control the patient’s living environment with eye gestures.

Data availability
Blink-To-Live is a free, open-source software released under the GNU GPL license and its source is the GitHub 
repository (https:// github. com/ ZW01f/ Blink- To- Live).
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