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A novel HIV model 
through fractional enlarged 
integral and differential operators
M. A. Barakat 1,2*, Abd‑Allah Hyder 3,4 & Areej A. Almoneef 5

This article presents a novel mathematical fractional model to examine the transmission of HIV. The 
new HIV model is built using recently fractional enlarged differential and integral operators. The 
existence and uniqueness findings for the suggested fractional HIV model are investigated using 
Leray–Schauder nonlinear alternative (LSNA) and Banach’s fixed point (BFP) theorems. Furthermore, 
multiple types of Ulam stability (U‑S) are created for the fractional model of HIV. It is straightforward 
to identify that the gained findings may be decreased to many results obtained in former works of 
literature.

Numerous dangerous infectious diseases are mostly brought on by bacteria and viruses. The impact of infec-
tious illnesses on society is enormous. Approximately one-fourth of all mortalities globally are caused by these 
infections. HIV which induces immunodeficiency syndrome (AIDS) killed the lives of 36.3 million people, is 
still a significant global health issue. HIV specifically harms CD4+ T-cells (CDFP-TC), which are the invulner-
able system’s essential component and targets the human body’s immune system. The virus reduces the body’s 
defenses, making the affected person more vulnerable to other illnesses. HIV replicates and targets CDFP-TC 
when it enters the human body.

The HIV life cycle involves a number of  stages1. First, once HIV connects to CDFP-TC receptors, the virus’ 
envelope starts to meld with the cell’s membrane. The virus may get into the cell at this stage, which is referred 
to as binding and fusion. Second, HIV uses the reverse-transcriptase enzyme to mutate its genetic code from 
RNA into DNA by releasing it from the CDFP-TC. Reverse transcription is the process that enables HIV to enter 
the CDFP-TC nucleus. Third, when HIV enters the nucleus of the CDFP-TC, it releases an extra enzyme known 
as integrase. To join the DNA of the CDFP-TC and the virus, the latter utilizes this enzyme. Even cutting-edge 
lab testing can’t detect the virus at this point since it is considered latent. This phase is known as integrating and 
transcription. Fourth, HIV may now be capable to employ the CDFP-TC mechanism to produce viral proteins 
since it has been incorporated into the latter’s DNA. At this time, HIV may also create more of its genetic mate-
rial (RNA). It is possible that these two conditions will drive it to manufacture more virus particles. This phase 
is known as replication. Fifth, the newly created HIV proteins and RNA are transported to the CDFP-TC edge 
where they grow to unripe HIV. As those viruses are not yet contagious, this phase can be referred to as the assem-
bly. Lastly, the unripe virus exits the CDFP-TC. The viral proteins are then modified by the release of the pro-
teolytic enzyme, which makes the virus infectious. This phase is called upgrowth. Antiretroviral therapy (ART) 
is the use of HIV medications for treating HIV infection and protecting the impregnable system by preventing 
the virus shape from replicating at several phases of its cycle. For more details  see2–5. A crucial technique for 
predicting the likelihood and severity of infections as well as understanding their dynamic behavior was the use 
of mathematical models and simulations. These models are useful instruments and essential for understanding 
the mechanics of the immunological respond to HIV’s infection. Readers are advised to read some literature  as6–9.

Based on several earlier publications about the model of HIV, researchers frequently used differential equa-
tion systems to show how HIV and uninfected CDFP-TC are related, as well as how medication therapy affects 
infected cells. A straightforward model for HIV infection was put up  in10 to study various dynamic characteristics 
of HIV infection of CDFP-TC. A mathematical coupled model for the initial progression of HIV of the first sort 
was put out by Tuckwell et al.11. Regardless of the numerical solvability of their model, nonlinear effects allow for 
general theoretical generalizations. Rong et al. used a model  in12 to examine the initial limitations that might lead 
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to viral resistance to antiretroviral medications. An initial HIV infection model has been proposed and looked at 
by Srivastava et al.13 during therapy. In their model, only reverse transcription inhibitors were included, and the 
pharmaceutical therapy model was built correctly. Moreover, the well-posedness of the HIV fractional model was 
proved by Jleli and Samet  in14. They employed Grönwall’s formula and Perov’s theorem to acquire their results.

Numerous scholars have recently been studying the subject of fractional calculus, which has proved crucial 
to science and engineering. Recently, There have been applications of fractional calculus in many disciplines. 
Additional details on fractional calculus and its uses may be found in the  sources15–21. Several academics looked 
into the numerical fractional estimates, equilibrium conditions, and disease-free stability for certain epidemic 
fractional  models22,26. Using fractional calculus for examining HIV models has produced a number of different 
study conclusions. By employing fractional Caputo operators, Lichae et al.27 studied the effects of antiviral drug 
medicament on an HIV-1 infection model of CDFP-TC. An approximative solution was derived using Laplace 
transform and the Adomian decomposition procedure. Based on Srivastava’s  research13, Ferrari et al.28 have 
created an HIV model using fractional Caputo operators that suggests the possibility of a reverse-transcriptase 
inhibitor. They showed positive invariance of the model, its existence, and its uniqueness. Also, they examined the 
stability cases of this model. Researchers are now particularly interested in the qualitative theories for mathemati-
cal fractional models. A fractional HIV model using Caputo-Fabrizio operator was discussed by Nazir et al29. 
Using fixed point method, they discovered several requirements for solutions’ existence. For a fractional model of 
HIV-TB built on Mittag-Leffler formulation, Khan et al.30 researched and analyzed several stability and existence 
discoveries. Additionally, numerical results are attained.  In31 A fractional HIV infection treated with antiretro-
viral drug has been presented and examined by Kongson et al. using a fractional generalized Caputo operator.

In the current study, we provide a novel mathematical fractional model for HIV contagion using recently 
fractional enlarged differential and integral operators. This model includes four nonlinear fractional differential 
equations with fractional enlarged derivatives. We investigate the existence and uniqueness findings of the sug-
gested fractional HIV model using Banach’s and LSNA fixed point theorems. Additionally, we look into several 
U-S types for the offered HIV fractional model. Furthermore, we demonstrate how the attained may be compared 
to certain outcomes from other earlier published works.

Principal tools
Fractional enlarged operators. The current section covers definitions, concepts, and key discoveries of 
the fractional enlarged operators, that will be employed during this study.

Definition 2.1 32 Assume ρ ∈ (0, 1] , η belongs to C , and Re(η) > 0 . The modified integral fractional operator 
of the function A is recognized by:

where Ŵ indicates the typical Gamma formula, �(t,κ, ρ) =
∫ t
κ

dv
ϑ(v,ρ) and ϑ depends continuously on 

(t, ρ) ∈ R+ × (0, 1] . Also, ϑ(t, 1) equals one for all t in R+ , ϑ(t, ρ)  = 0 for all t ∈ R+ , ρ ∈ (0, 1] and 
ϑ(., ρ1)  = ϑ(., ρ2) whenever ρ1  = ρ2.

In33, the authors proposed a new fractional enlarged integral operator as follows:

where κ  = p ∈ R and ̺ p : R+ × (0, 1] → R is a continuous mapping with the following features:

• ̺p(t, 1) = 1;   t ∈ R+,
• ̺p(t, ρ)  = 0;   t ∈ R+, ρ ∈ (0, 1],
• ̺p(., ρ1)  = ̺p(., ρ2);   ρ1, ρ2 ∈ (0, 1],
• ̺0(t, ρ) = ϑ(t, ρ);   t ∈ R+, ρ ∈ (0, 1].

We may repeat the integral (2) k times using the Cauchy formula for sequential integrals, and the outcome is as 
follows.

where

(1)
(

η
I
ρ
ϑA

)

(t) =
1

Ŵ(η)

∫ t

0

�η−1(t,κ, ρ)
A(κ)
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ρA(t) =

∫ t
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∫ t
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0
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We define the fractional enlarged integral by changing the positive integer k to a complex number η.

Definition 2.2 34 The fractional enlarged integral of a function A is given by

where η ∈ C with Re(η) > 0 and p� is given by Eq. (4).

Definition 2.3 34 The fractional enlarged derivative of the function A, in Riemann-Liouville style, is given by:

where Z =
(

(κ−p)̺p(κ,ρ)

(κ−p(1+̺p(κ,ρ))

)

d
dt.

Definition 2.4 32 The fractional enlarged operator for a function A, in Caputo style, is given by:

where k = 1+ [Re(η)] . For η ∈ (0, 1) , we obtain

Now, consider the space

where

The following theorems provide an alternate form for the fractional enlarged Caputo operator.

Theorem 2.1 32 Assume ρ, Re(η), c > 0 and k = 1+ [Re(η)] . For A ∈ Y
k,ρ
̺p ([0, c]),the fractional enlarged operator 

for a function A, in Caputo style, is alternatively provided by:

Theorem 2.2 32 Assume ρ, Re(η), c > 0 and k = 1+ [Re(η)] . For A ∈ Y
k,ρ
̺p ([0, c]),the following equality holds:

Particularly, If η ∈ (0, 1) , we obtain

Model characterization. The current study is based on the HIV models given  in13,28,31, which are consid-
ered an antiretroviral treatment of reversed transcriptase antagonists. The next are the unknown parameters that 
the model might include: 

I(t):  is the overall number of CDFP-TC that are susceptible.
J(t):  represents the number of CDFP-TC infected before reverse transcription (pre-RT division).
L(t):  is the total number of CDFP-TC that are infected and finished reverse transcription (post-RT division) 

and eligible to produce the virus.
M(t):  indicates the virus’s density.
γ:  denotes the CDFP-TC inflow rate.
l:  is the CDFP-TC interaction-infection rate.
δ1:  represents the typical CDFP-TC rate of death.
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ǫ:  is the RT inhibitor’s potency ( 0 < ǫ < 1).
ς:  is the quantity of infected CDFP-TC that are transmitted from pre-RT division to pose-RT division.
a:  Tmeasures how quickly infected cells revert to their uninfected state as a result of inadequate 

reverse-transcription.
δ2:  is the death rate for the infected CDFP-TC.
D:  represents the death rate for CDFP-TC that are actively infected.
S:  is the total number of virus particles produced by the infected CDFP-TC.
b:  is the virus’s clearance rate.

We examine the following HIV model infection with CDFPP-TC in light of all the aforementioned charac-
teristics and functions.

where η̺,pD
ρ
C is the recent improved fractional derivative in Caputo form. For easy procedures, consider model 

(12) as the next shape:

where �i(i = 1, 2, 3, 4) are nonlinear functions given by:

with the conditions (I(0), J(0), L(0),M(0))T = (I0, J0, L0,M0)
T and the superscript T denotes the transpose.

Analysis of existence and uniqueness
The examination of the solution to the given HIV model (12) will be done in this part utilizing a variety of fixed 
point results.

Suppose that b ∈ R
+ , µ = (I , J , L,M)T , and �(t,µ(t)) = (�j(t, I , J , L,M)) , j = 1, 2, 3, 4 . Also, Suppose that 

the Banach space W = C([0, b],R) of all functions µ that are continuous and

where |µ(t)| = |I(t)| + |J(t)| + |L(t)| + |M(t)| and I , J , L,M ∈ W . Consequently, the initial value problem for 
the HIV model (12) might be expressed as follows:

where µ0 = (I0, J0, L0,M0)
T .

HIV model (16) can be equivalently replaced by the integral equation shown below, which relates to 
Theorem 2.2:

It is possible to identify the operator T : W → W as

In the light of this, the corresponding HIV model (16) has a singleton solution if T has a fixed point.
Now, A nonlinear alternative fixed point theory called Leray–Schauder, is employed to illustrate that a solu-

tion to the HIV model (12) exists.

Theorem 3.1 If the two prerequisites listed below are satisfied:

(C1 ) ∃ a function X : [0,∞) → [0,∞) that is continuous and nondecreasing, and another function θ ∈ C
(

[0,T],R+
)

 , 
such that
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(C2 ) ∃ G,E > 0 such that

where θ0 = supt∈[0,T]{θ(t)}.Then, there is one solution to the IVP problem (16), which is identical to the model 
(12), exists on [0, T].

Proof Choose a real number ω > 0 such that the collection B̄ω = {µ ∈ W : �µ� ≤ ω} is a bounded ball in W . 
Given the condition (C1) with t ∈ [0,T] , we obtain

hence,

 Thus, each bounded sphere in W is converted to a bounded sphere via the operator T.
Take m1,m2 ∈ [0,T] such that m1 < m2 and µ ∈ Bω , we get

In the light of this, every bounded set can be converted into an equicontinuous set in W by using the operator 
T . Additionally, according to the Arzel-Ascoli formula, the operator T is continuous completely. Take µ ∈ W 
such that µ is a solution to µ = kT(µ) with 0 < k < 1 . Then, ∀m ∈ [0,T] , we obtain

Thus, we have

Using condition (C2) , we obtain that �µ� �= G . Take U := {µ ∈ W : �µ� < G} . Since T : Ū → W is completely 
continuous. In view of the collection U , for some 0 < k < 1, there is no µ ∈ ∂U with µ = kTµ . Then, using the 
(LSNA) theorem, we come to the conclusion that the HIV model under investigation has one solution on [0, T]. 
So, the result is now proved.   �

Now, The uniqueness of the solution to the under-studied HIV model is demonstrated in the following 
theorem utilizing the BFP formula.

Theorem 3.2 Postulate that the continuous function � : [0,T] ×W → R
4 meets the coming provision.

for some constant K� that fulfills

Then, there is just one solution on [0, T] for the HIV model (12).

Proof Set G = supt∈[0,T] ��(t, 0)� < ∞ , and choose w1 ≥
||µ0||Ŵ(η+1)+Gp�

η(T ,0,ρ)

Ŵ(η+1)−K� p�η(T ,0,ρ)  such that
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(19)
{

X (lµ) ≤ lX (µ), forall l ≥ 1 and µ ∈ W,
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(26)(C3) : ��(t,µ1(t))−�(t,µ2(t))� ≤ K��µ1(t)− µ2(t)�, ∀µ1,µ2 ∈ W, t ∈ [0,T].
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∀µ ∈ B̄ω1 , we get

This proves that, TB̄ω1 ⊂ B̄ω1.
On the other hand, ∀µ1,µ2 ∈ B̄ω1 for each u ∈ [0,T] , we have

This leads us to the conclusion that T is a contraction operator based on equations (32) and (29). Consequently, 
a single solution for the HIV model (12) exits on [0, T] in view of the (BFP) theorem.   �

We can acquire a special case of our findings if we set p = 0 in the operators (5) and (10). Applying these 
operators in the prior theorems and model (12), we obtain the following corollaries, which concern the correct 
version of the results  in32.

Corollary 3.2.1 If the two prerequisites ( C1 ) and ( C′
2 ) are satisfied:

where

(C′
2 ) ∃ G,E > 0 such that

Then, there is one solution to the model (12) defined by the operator (1), exists on [0, T].

Corollary 3.2.2 Postulate that the continuous function � : [0,T] ×W → R
4 meets the coming provision.

for some constant K� that fulfills

Then, there is just one solution on [0, T] for the HIV model (12) which derived by operator (1).

Stability results
The local and global stability of biological models has recently piqued the interest of several  researchers35,36. In 
this section, we set up certain necessary conditions for model (12) to satisfy various stability hypotheses. Ulam-
Hyers stability (U-HS), extended Ulam-Hyers stability (EU-HS), Ulam-Hyers-Rassias stability (U-H-RS), and 
so on (EU-H-RS). Before presenting the stability theories, the following definitions must first be stated.

Consider the continuous functions χ : [0,T] → R+ and the real positive constant ε̃ . To lay the groundwork 
for the stability definitions, we offer the ensuing inequalities
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(29)

|(Tµ1)(u)− (Tµ2)(u)|

≤
1

Ŵ(η)

∫ u

0
p�

η−1(u,κ, ρ)(||�(κ,µ1(κ))−�(κ,µ2(κ))||)
(κ − p(1+ ̺p(κ, ρ))dκ

(κ − p)̺p(κ, ρ)

≤
K�

Ŵ(η)

∫ u

0
p�

η−1(u,κ, ρ)|µ1(t)− µ2(t)|
(κ − p(1+ ̺p(κ, ρ))dκ

(κ − p)̺p(κ, ρ)

≤
K�p�

η(T , 0, ρ)

Ŵ(η + 1)
�µ1 − µ2�.

(30)�µ0� +
θ0X (G)�η(T , 0, ρ)

Ŵ(η + 1)
< E.

(31)(C′
3) : ��(t,µ1(t))−�(t,µ2(t))� ≤ K��µ1(t)− µ2(t)�, ∀µ1,µ2 ∈ W, t ∈ [0,T].

(32)K� �η(T , 0, ρ) < Ŵ(η + 1).

(33)�
η
̺,pD

ρ
Ch(t)−�(t, h(t))� ≤ ε̃, ∀t ∈ [0,T],

(34)�
η
̺,pD

ρ
Ch(t)−�(t, h(t))� ≤ ε̃χ(t), ∀t ∈ [0,T],
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Now, we offer a few prerequisites that are necessary for model (12) to satisfy the (U-HS)and (EU-HS) assump-
tions. These several types of stability are what we define first.

Definition 4.1 37 The equation (16) is stable under U-HS, if it has a solution µ ∈ W ∀ ε̃ > 0 , and the accompa-
nying inequality, along with inequality (33) as well, are both true.

where C� = max
(

C�j

)T

, j = 1, 2, 3, 4.

Definition 4.2 37 The equation (16) is stable under EU-HS, if it has a solution µ ∈ W , and the accompanying 
inequality, along with inequality (34) as well, are both true.

where χ = max
(

χj
)T

, j = 1, 2, 3, 4, with χ(0) = 0.

We now present a crucial feature that can be used to achieve U-HS and EU-HS.

Lemma 4.1 Consider η > 0 and ρ ∈ (0, 1] . If h ∈ W is a solution of (33), then h fulfills the coming inequality

Proof Using inequality (33), ∃ x ∈ W such that

Hence, we get

Applying Theorem 2.2 for (40) we obtain

Hence,

  �

We are now prepared to demonstrate the U-HS and EU-HS.

Theorem 4.1 Let �(t,µ(t)) be continuous. If both (32) and C3 are achieved, then model (12) is stable under U-HS 
and EU-HS conditions.

Proof Choose h ∈ W to be a solution of Eq.(33), and µ ∈ W to be a solution of Eq. (16). as claimed by Lemma 
4.1 and Eq.(17), we get

(35)�
η
̺,pD

ρ
Ch(t)−�(t, h(t))� ≤ χ(t), ∀t ∈ [0,T].

(36)�h(t)− µ(t)� ≤ ε̃C� , t ∈ [0,T], ∀ h ∈ W,

(37)�h(t)− µ(t)� ≤ χ(t), t ∈ [0,T], ∀ h ∈ W,

(38)
∥

∥

∥

∥

h(t)− h0 −
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))�(κ,µ(κ))

(κ − p)̺p(κ, ρ)
dκ

∥

∥

∥

∥

≤
ε̃p�

η(T , 0, ρ)

Ŵ(η + 1)
.

(39)�x(t)� ≤ ε̃, ∀ t ∈ [0,T], x = max{x1, x2, x3, x4}.

(40)
{ η

̺,pD
ρ
Ch(t) = �(t, h(t))+ x(t), t ∈ [0,T],

h(0) = h0 ≥ 0.

(41)

h(t) = h0 +
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))�(κ,µ(κ))

(κ − p)̺p(κ, ρ)
dκ

+
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))x(κ)

(κ − p)̺p(κ, ρ)
dκ.

(42)

∥

∥

∥

∥

h(t)− h0 −
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))�(κ,µ(κ))

(κ − p)̺p(κ, ρ)
dκ

∥

∥

∥

∥

≤
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))�x(κ)�

(κ − p)̺p(κ, ρ)
dκ

≤
ε̃p�

η(T , 0, ρ)

Ŵ(η + 1)
.
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Hence, �h(t)− µ(t)� ≤ C�ε̃ , where

Thus, Eq.(12) is stable under U-HS. On the other hand, by putting χ(ε̃) = C�ε̃ with χ(0) = 0 implies that (12) 
is EU-HS stable.   �

Corollary 4.1.1 Achieving both criteria (32) and C′
3 makes the HIV model proposed by Hyder et al.,32 stable under 

U-HS and EU-HS conditions.

Proof Placing p = 0 in the argument of Theorem 4.1 will allow us to prove this corollary.   �

Definition 4.3 37 The equation (16) is stable under U-H-RS, if it is has a solution µ ∈ W ∀ ε̃ > 0 , and the accom-
panying inequality, along with inequality (34) as well, are both true.

where Mχ > 0.

Definition 4.4 37 The Eq. (16) is EU-H-RS stable if it has a solution µ ∈ W, and the accompanying inequality, 
along with inequality (35) as well, are both true.

Here, we highlight a key feature that can be used to distinguish between U-H-RS and EU-H-RS.

Lemma 4.2 If η > 0 , ρ ∈ (0, 1] , and h ∈ W is a solution of (34), and the following condition is achieved

(C4)

Where, �χ > 0 . Then h fulfills the next inequality

Proof Using inequality (34), ∃z ∈ W such that

Then, we have

Applying the integral operator for (50) and utilizing (49) we get

  �

U-H-RS and EU-H-RS can now be demonstrated for model (12), as follows.

(43)

�h(t)− µ(t)� ≤

∥

∥

∥

∥

h(t)− µ0 −
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))�(κ,µ(κ))

(κ − p)̺p(κ, ρ)
dκ

∥

∥

∥

∥

≤

∥

∥

∥

∥

h(t)− h0 −
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))�(κ, h(κ))

(κ − p)̺p(κ, ρ)
dκ

∥

∥

∥

∥

+
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)��(κ, h(κ))−�(κ,µ(κ))�
(κ − p(1+ ̺p(κ, ρ))

(κ − p)̺p(κ, ρ)
dκ

≤

∥

∥

∥

∥

h(t)− h0 −
1

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))�(κ, h(κ))

(κ − p)̺p(κ, ρ)
dκ

∥

∥

∥

∥

+
K�

Ŵ(η)

∫ t

0
p�

η−1(t,κ, ρ)
(κ − p(1+ ̺p(κ, ρ))

(κ − p)̺p(κ, ρ)
�h(t)− µ(t)�dκ

≤
ε̃p�

η(T , 0, ρ)

Ŵ(η + 1)
+

K�p�
η(T , 0, ρ)

Ŵ(η + 1)
�h(t)− µ(t)�.

(44)C� =

p�
η(T ,0,ρ)

Ŵ(η+1)

1−
K�p�η(T ,0,ρ)

Ŵ(η+1)

.

(45)�h(t)− µ(t)� ≤ Mχ ε̃χ(t), t ∈ [0,T], ∀ h ∈ W,

(46)�h(t)− µ(t)� ≤ Mχχ(t), ∀ h ∈ W, t ∈ [0,T],

(47)η
̺,pI

ρχ(t) ≤ �χχ(t) t ∈ [0,T].

(48)
∥

∥h(t)− h0 −
η
̺,p I

ρ�(t, h(t))
∥

∥ ≤ ε̃�χχ(t).

(49)�z(t)� ≤ ε̃χ(t), z = max(z1, z2, z3, z4), ∀t ∈ [0,T].

(50)
{ η

̺,pD
ρ
Ch(t) = �(t, h(t))+ z(t), t ∈ [0,T],

h(0) = h0 ≥ 0.

(51)
∥

∥h(t)− h0 −
η
̺,p I

ρ�(t, g(t))
∥

∥ ≤
η
̺,pI

ρ�z(t)� ≤ ε̃
η
̺,pI

ρχ(t) ≤ ε̃�chiχ(t).
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Theorem 4.2 The model(12) is stable under U-H-RS and EU-H-RS conditions, if it fulfills conditions (C3) , (C4) 
and Eq.(32).

Proof By using Eq. (17), inequality, Lemma 4.2, and (35), we get

Therefore,

where

Model (12) is therefore stable under U-H-RS condition. Moreover, the model (12) is stable under the EU-H-RS 
condition when ε̃ = 1 in (52) with χ(0) = 0 .   �

Corollary 4.2.1 The HIV model due to Hyder et al.,32 is stable under U-H-RS and EU-H-RS conditions, if it fulfills 
conditions (C′

3) Eq. (32).

Conclusion
In the current paper, the prospect of developing a creative mathematical fractional model for HIV infection 
was considered. Recent enlargements in fractional operators were used to construct this fractional model. The 
existence and uniqueness findings of this fractional model have been investigated using Banach’s and LSNA 
fixed point theorems. U-S of various forms is also examined for the suggested fractional HIV model. Com-
paring the outcomes from the current studies with those from the earlier literature, one may observe that if 
p = 0, 0̺(t, ρ) = t1−ρ , then 0�(t,κ, ρ) = 1

ρ
(tρ − κ

ρ) , and the fractional concepts in 2.2 and 2.3 concur with 
that explored by Jarad et al.  in38. In this context, the conclusions reached in Theorems 3.1, 3.2, 4.1, and 4.2 match 
those established  in31 for HIV infection. Further, if ρ → 1 , results 3.1, 3.2, 4.1 seem to confirm the conventional 
conclusions about HIV infection that were reached using the standard Newton’s derivative.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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