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Large scale sequence alignment 
via efficient inference in generative 
models
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Hosein Mohimani 1*

Finding alignments between millions of reads and genome sequences is crucial in computational 
biology. Since the standard alignment algorithm has a large computational cost, heuristics have been 
developed to speed up this task. Though orders of magnitude faster, these methods lack theoretical 
guarantees and often have low sensitivity especially when reads have many insertions, deletions, and 
mismatches relative to the genome. Here we develop a theoretically principled and efficient algorithm 
that has high sensitivity across a wide range of insertion, deletion, and mutation rates. We frame 
sequence alignment as an inference problem in a probabilistic model. Given a reference database of 
reads and a query read, we find the match that maximizes a log-likelihood ratio of a reference read and 
query read being generated jointly from a probabilistic model versus independent models. The brute 
force solution to this problem computes joint and independent probabilities between each query and 
reference pair, and its complexity grows linearly with database size. We introduce a bucketing strategy 
where reads with higher log-likelihood ratio are mapped to the same bucket with high probability. 
Experimental results show that our method is more accurate than the state-of-the-art approaches in 
aligning long-reads from Pacific Bioscience sequencers to genome sequences.

Aligning millions of DNA sequences is significant for identifying functional and evolutionary relationships 
between organisms, assembling genomes, and analyzing single-nucleotide  polymorphisms1,18. Many methods 
have been developed for solving the sequence alignment problem over the past  decades3,4,7,9–12,15. Currently, the 
most popular alignment algorithms use the seed-chain alignment procedure. In this procedure a set of subse-
quences are extracted from the reference genome and indexed. Likewise a set of subsequences are extracted 
from a batch of query reads. Then each query read is only compared to sections of the reference genome that 
have subsequences in common. The assumption is that each read can only map to sections of the genome which 
share exact subsequences with the read. This assumption, however, is violated when error rate is high and thus 
the most popular alignment algorithms fail to identify a large portion of true alignments. One way to identify 
more true alignments in the high error rate regime is to relax the requirement that read and genome share exactly 
matching subsequences to read and genome share similar subsequences (not identical). However, methods for 
speeding up alignments of reads with high error rates using this relaxation are not available.

Sequence alignment has been studied from a statistical inference  perspective8,9. It has been shown that optimal 
inference is equivalent to the dynamic programming solution to the sequence alignment problem. In order to 
overcome the low true positive rate of existing sequence alignment methods when the error rate is high, we first 
model sequence alignment as an inference problem in a latent variable generative model (Figs.  1 and  2) and 
then develop “asymetrical” hashing techniques for fast inference in this model. These asymetrical hashes can 
hash two reads to the same bucket or value whenever the two reads contain a pair of k-mers that are similar (but 
not necessarily identical). The set of non-matching pairs used for asymetrical hashing is optimally chosen with 
respect to the latent variable generative model.

In our model, we assume that pairs of sequences with high alignment scores are generated jointly from a 
generative model, and pairs of sequences with low alignment scores are generated independently of each other. 
Here we denote the probability that a pair of sequences X and Y are generated under the joint model as P(X,Y) . 
The probability that X and Y are generated independently of each other is thus Px(X)Py(Y) where Px denotes 
the marginal of P along the x variable and Py denotes the marginal of P along the y variable.
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Given this model, a natural algorithm to find aligned sequences is the following: for each pair of sequences 
X and Y, compute CX,Y = P(X ,Y)

Px(X)Py(Y) . If CX,Y is high, then X and Y are more likely to be generated from the joint 
model, rather than the independent model. Therefore, CX,Y can be used as an alignment score between X and Y.

A naive implementation of this natural algorithm suffers from the fact that CX,Y needs to be computed for each 
pair of sequences X and Y in the database. To overcome this challenge, we further propose a bucketing method 
inspired by locality sensitive hashing. In this strategy, we put each sequence X into several buckets (likewise for 
Y). For each X, we compute CX,Y only for the sequences Y that are in the same buckets as X. This strategy signifi-
cantly reduces the number of sequence pairs for which CX,Y is computed, without missing true positive pairs.

In this paper, we introduce Distribution Sensitive Bucketing (DSB), a novel technique for efficient and accu-
rate alignment of large read datasets against genomes. To do this, we first formulated the sequence alignment 
problem as an inference in two types of latent variable models, Hidden Markov Models (HMMs) and pair Hid-
den Markov Models (pair-HMMS). For both probabilistic models, we developed an efficient inference algorithm 
and derived its complexity. We further designed a family of asymmetric bucketing functions that minimize the 

Figure 1.  We model sequence alignment as an inference problem in a latent variable model. We assume the 
true alignments are generated through a joint model, while random pairs are generated through independent 
models. In the joint model, a latent variable H = {i,m, d}S is first sampled from a multinomial distribution. 
Here, “m”, “i”, and “d” represent match/mismatch, insertion and deletion. Then sequences X̄H and ȲH are 
generated based on sequence H and probability matrices Pm , Pi , and Pd . Whenever we have “m” at a position in 
H, the corresponding positions in X̄H and ȲH are sampled jointly from Pm . Whenever we have “d” at a position 
in H, the corresponding position in X̄H is sampled from Pd , while we have “−” for ȲH . Whenever we have “i” at 
a position in H, the corresponding position in ȲH is sampled from Pi , while we have “−” for X̄H . Then sequences 
X and Y are formed by removing “−” from X̄H and ȲH . For the independent model, X and Y are independently 
sampled from PXr  and PYr .

Figure 2.  In the joint model, a latent variable H = {i,m, d}S is first sampled, and then X̄H and ȲH are generated 
based on H. X and Y are generated by removing “−” from X̄H and ȲH . Here, “m”, “i” and “d” stand for match/
mismatch, insertion and deletion.
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complexity. Several alignment software packages have been developed using HMM like probabilistic  models1–3. 
Algorithms based on HMM like probabilistic models are either slow or require  heuristics1,3 with no theoretical 
bound on performance. The area of asymetric bucketing is relatively  underexplored4. In order to detect homolog 
sequences, Mak et al.4 introduced a method that would put pairs of sequences in the same bucket if they shared 
the same subsequence plus or minus a few deletions and insertions. However, Mak et al. does not consider that 
computational complexity may increase due introducing this procedure and do not provide a methodology that 
adjusts the subsequence length and number of indels considered to various indel probabilities.

DSB is an algorithm that given indel probabilities will generate a bucketing data structure for sequence 
alignment that aims to keep sensitivity high while keeping computational complexity of sequence alignment 
low. Like Mak et al., DSB will compare reads that share similar subsequences, not just identical ones. Our results 
show that the DSB algorithm is at least as sensitive as competing methods in aligning reads at low error rates, 
and outperforms all methods when the error rates are high. When aligning reads to distant homologs, the DSB 
algorithm is 10 percent more sensitivity than the closest competitor.

For the sake of presentation clarity, we provide bodies of algorithms in Supplementary Materials and their 
summaries in the main text. Additional figures and tables are also provided in Supplementary Materials.

Results
We benchmarked DSB-SA against popular alignment methods in several scenarios. The scenarios include align-
ing simulated reads against a reference genome, aligning experimental reads against corresponding genomes, 
and aligning E. coli reads against reference genomes of distance homologs. In each scenario both Sensitivity and 
False Positives are reported. Sensitivity is measured as the proportion of aligned regions (read to genome) in 
the reference that are reported by the corresponding method. A sensitivity of 1 means that every region in the 
reference is recovered while 0 means no regions in the genome are recovered.

Brief overview of distribution sensitive bucketing. Distribution Sensitive Bucketing (DSB) consists 
of the following steps (see details in the Method Section). First, a directed graph is constructed, where each sink 
node represents a bucket. Then, starting from the source node, query and reference reads are mapped to one or 
several buckets through the decision graph (at each node in the graph, the decision graph might route a read to 
more than one direction). Finally, all the buckets are explored, and pairs of query and reference reads in each 
bucket are reported as matches. In the following, DSB-HMM refers to DSB algorithm in case of HMM model 
(Algorithms 1 and 2), while DSB-SA refers to DSB algorithm in case of string alignment model (Algorithms 3 
and 5).

We benchmarked DSB-SA against  MHAP5,  Minimap26,  DALIGNER7,  BlasR8,  MMSeqs29,  GraphMap10, CD-
HIT11, and  Winnowmap12. MHAP is the state of the art algorithm for aligning reads with high insertion, deletion, 
and mismatch rates, that is based on compressing sequences to their representative fingerprints and detecting 
overlaps by estimating Jaccard’s similarity using min-wise  hashing13. Minimap2 is a general-purpose alignment 
program for mapping DNA reads to reads/large reference databases, that is based on collecting and indexing 
minimizers in a hash  table6. DALIGNER is based on an efficient and highly sensitive filter that predicts points 
between pairs of reads that are likely to have a significant local alignment passing through  them7. BlasR first 
finds clusters of short exact matches between the read and the genome using a suffix array, and then perform a 
more detailed alignment of the regions where reads are  matched8. MMSeqs2 is a sensitive and fast alignment 
program that utilizes k-mer matching and ungapped alignment to speed up mapping without losing  sensitivity9. 
GraphMap is a fast and sensitive reads mapping program which is designed to analyze sequence data with high 
error such as nanopore sequencing  data10. CD-HIT is a clustering algorithm that group reads together based on 
their pair-wise  similarity11. Winnowmap is a direct descendent of Minimap2, and it uses weighted frequently 
occurring k-mers to reduce excessive false  positives12.

Benchmarking DSB-HMM in matching simulated data. In this experiment, we compared the per-
formances of DSB-HMM (Algorithms 1 and 2) against the brute force search (Algorithm 4). Data is simulated 
from a HMM with hidden state ht ∈ {0, 1} for 0 ≤ t ≤ T and the following parameters:

where Ptrans represents the transition matrix of the hidden states, i.e. Ptrans(i, j) = P(ht+1 = j | ht = i) and Pemit 
represents the emission probabilities, i.e. Pemit(i, j | h) = P(xt = i, yt = j | ht = h) . Here, ǫ is the error rate, and 
δ is the probability of transition to an alternative state. In hidden state 0, the HMM mostly generates matching 
nucleotides whereas in hidden state 1 the HMM generates mostly mismatching nucleotides.

We first simulate the hidden states using the transition probabilities, and then simulate data using the emis-
sion probabilities for various values of ǫ and δ . We run for 1000, 2000, 5000, 10 000, 50 000, 100 000, and 
here T = 2000 . The brute force algorithm has a quadratic growth in complexity with respect to the number of 
sequences N, while our method has a sub-quadratic complexity (Fig. S1).

(1)Ptrans =

[

1− δ δ

δ 1− δ

]

(2)
Pemit(xt , yt | ht = 0) =

[

0.5− ǫ ǫ

ǫ 0.5− ǫ

]

Pemit(xt , yt | ht = 1) =

[

ǫ 0.5− ǫ

0.5− ǫ ǫ

]
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Benchmarking DSB-SA in aligning simulated reads against genomes. We benchmarked the dif-
ferent methods in mapping N = 5000 PacBio simulated reads against the E. coli reference genome. We used 
recommended settings for all methods. The reads are simulated using  PBSIM14 and the E. coli reference genome, 
with a mean length of 700 bps. Figure 3 shows the sensitivity, the percentage of reads mapped correctly to the 
genome.

We observe that DSB-SA maintains high sensitivity as the error rate increases. BlasR has a lower sensitivity 
compared to DSB-SA, and its performance decreases substantially for higher error rates. DALIGNER, Minimap2, 
Winnowmap and MMSeqs2 show similar low sensitivity across different error rates. The false positive rate for 
all methods is nearly zero (Fig. 4).

Figure 3.  Benchmarking different methods on mapping simulated reads against the genome. We use PBSIM 
to simulate PacBio reads from the E. coli reference genome. Indel and substitution errors are introduced, and 
the error rate on reads is the sum of these errors. In this experiment, we simulated the reads with an average 
length of 700 bps and average read errors from 0.25 to 0.45. Sensitivity versus error rate for DSB-SA, Minimap2, 
Winnowmap, DALIGNER, BlasR, MMSeqs2, and GraphMap are shown. Details of the PBSIM simulation are 
provided in the Supplementary Note 4.

Figure 4.  Benchmarking the false positive rate of different methods on mapping simulated reads against the 
genome. We use PBSIM to simulate PacBio reads from the E. coli reference genome. Indel and substitution 
errors are introduced, and the error rate on reads is the sum of these errors. In this experiment, we simulated 
the reads with an average length of 700 bps and average read errors from 0.15 to 0.40. False positive rate of all 
methods is nearly zero.
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Benchmarking DSB-SA in aligning pacbio reads to distant homologs. In this experiment, we 
compared the performances of DSB-SA with various methods on mapping PacBio reads of the E. coli genome 
to two genomes of related species. The ground truth is inferred by aligning the reads against the genomes with 
 LALIGN15. LALIGN is a brute force method that finds all local alignments between given queries and targets. 
We use default settings for DALIGNER, BlasR, MMSeqs2, GraphMap and Winnowmap, and PacBio preset for 
Minimap2. Figure 5 illustrates the sensitivity of the examined methods.

With the exception of MMSeq2, DSB-SA is significantly more sensitive than the other methods (Fig. 5a). 
While DSB-SA is nearly as sensitive as MMSeq2, it produced three orders of magnitude fewer false positives 
(Fig. 5b). Runtimes for all the methods are shown in Table 1. False negatives and true positive rates for all meth-
ods are shown in Supplementary Tables S1, S2, and S3.

Benchmarking DSB-SA in aligning PacBio reads to corresponding genomes
We benchmarked DSB-SA against other methods in mapping PacBio reads of S. Cerevisiae, chromosome 12 of 
H. Sapiens, and chromosome 12 of M. Musculus to their respective genomes (Fig. 6). DSB-SA is significantly 
better than all the other methods with exception of MMSeq2 and DALIGNER. DSB-SA is comparable (or bet-
ter) than MMSeq2 and DALIGNER, and produces significantly fewer false positives. False negatives and true 
positive rates for all methods are shown in Supplementary Tables S4, S5, and S6.

Figure 5.  Comparison of sequence alignment methods in (a) sensitivity and (b) false positives. Here, Pacbio 
reads from E. coli are searched against the genome of Citrobacter and G. endobia to assess the power of various 
methods in identifying distant homologs.
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Table 1.  Runtime/memory analysis of various methods for mapping PacBio long reads of E. coli to the E. coli 
genome. The runtime is recorded in seconds (s), and the memory usage is recorded in megabytes (MB).

E. coli

runtime (s) memory (MB)

LALIGN 1587806.20 -

DSB-SA 174.22 2022.54

Minimap2 1.79 71.14

DALIGNER 11.92 761.04

BlasR 482.95 104.89

MMSeqs2 64.80 8314.44

GraphMap 102.53 369.94

Winnowmap 1.41 60.05

Figure 6.  Comparison of (a) sensitivity and (b) false positives of various sequence alignment methods. Here, 
Pacbio reads from S. Cerevisiae, H. Sapien, and M. Musculus are searched against their respective genomes.
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Discussion
In recent years, various efficient methods have been introduced for aligning large number of reads against 
reads/genomes. However, majority of these techniques are limited to the cases where reads are mapped to close 
homologs (low mutations, insertions and deletions) and they do not generalize to alignment of reads to distant 
homologs. Furthermore, most of the methods that are used in practice use heuristics to speed up alignment.

Many approaches also use decision trees to solve the string alignment problem. The main contribution of the 
presented work is in modeling the string alignment problem as a statistical inference problem and applying a 
general hashing strategy for efficient inference. Since we use pair-HMMs to model the joint distribution of aligned 
reads, the final hidden state of a pair of aligned reads can be a deletion, insertion, or match/mismatch. Thus, there 
are three pairs of subsequences that are predecessors of a sequence pair (note that in traditional HMM, there is 
only a single predecessor). Thus the hashes for pair-HMMs are decision graphs (Fig. S4) rather than decision trees.

The sequence alignment problem has been modeled as a statistical inference problem, and dynamic program-
ming solutions have been proposed to achieve optimal inference. Since these statistical models can be param-
eterized by different insertion, deletion, and mutation rates, the dynamic programming solutions are capable 
of discovering alignments between distant homologs. Still dynamic programming is very slow and runtime 
grows linearly with the size of reference. Inspired by locality sensitive hashing, in this paper we introduced the 
distribution sensitive bucketing paradigm for efficient subquadratic inference in latent variable models. In this 
paradigm, given a joint and an independent model for true and random pair of sequences, the sequences are 
mapped to buckets in a way that pairs of sequences from the joint model are more likely to fall into the same 
bucket than random ones. By focusing on pairs that fall into the same bucket, Distribution Sensitive Bucketing 
(DSB) can not only find read/genome pairs over a wide range of insertion, deletion, and mutation rates, but also 
avoids many unnecessary computations.

Brute force techniques (e.g. LALIGN) are incapable of handling large scale alignment tasks. On the other 
hand, faster methods (e.g. Minimap2 and DALIGNER) can not handle larger mismatch, insertion and deletion 
rates. DSB is capable of recovering a significant portion of alignments with a reasonable computation time. We 
do not advise using DSB in cases where error rates are small (e.g. Illumina reads). In these scenarios, our bench-
mark shows that Minimap2 outperforms other methods while maintaining high accuracy. In case of erroneous 
reads or distant homologs, DSB algorithm achieves high sensitivity, while being orders of magnitude faster than 
the brute force alternatives.

An alternative strategy to the MinHash approach used in MHAP is densified  MinHash16. However, our results 
show that the main disadvantage of MinHash based methods is in their low sensitivity and high false positive 
rate. Switching to densified MinHash can make this problem more severe, since it has been reported that densi-
fied MinHash slightly improves the speed of MinHash while sacrificing  sensitivity17.

Currently, DSB is based on a simplistic assumption that insertions and deletions occur independently. The 
current approach paves the path toward more sophisticated models, such as affine gap penalties and non-uniform 
distribution of nucleotides.

Methods
Inference problem for hidden Markov models. Consider an HMM P with a finite alphabet H of hid-
den states and an alphabet A× B of observations where A and B are finite discrete alphabets. For any pair of 
sequences X = (x1, x2, . . . , xT ) ∈ AT , Y = (y1, y2, . . . , yT ) ∈ BT where T ∈ N , let

where H = (h1, h2, . . . , hT ) ∈ HT denotes hidden states, Pemit : A× B ×H → [0, 1] denotes the emission 
probabilities, Ptrans : H×H → [0, 1] denotes the transition probabilities, and Pinit : H → [0, 1] denotes the 
initial probability of the hidden state h1 . Here all multi-dimensional probabilities are shown with P , while scalar 
probabilities are shown with P. In the context of sequence alignment, one can treat Y as the query sequence and 
X as a sequence in the database. The inference problem for latent variable models is defined as follows: Given a 
latent variable model P(X,Y) , a set of sequences X = {X1, . . . ,XN } ⊆ AT , and a query sequence Y ∈ BT , find 
X∗ satisifying:

where P(X) is the product of background probabilities of each base and insertions/deletions. In the case where 
P(X,Y) is a HMM defined in (3)-(5), the naive method to solve this optimization problem requires computing 
P(Y | Xi) for each Xi ∈ X  using the classic forward  algorithm18, and then finding Xi that maximizes P(Y | X) 
(see Supplementary Algorithm 4). However, since the complexity of the forward algorithm is O(T|H|2) , the 
complexity of this naive method is O(NT|H|2) (computing P(Y|X) for all X ∈ X  ). This solution thus cannot 

(3)P(H) = Pinit(h1)

T−1
∏

t=1

Ptrans(ht+1 | ht)

(4)P(X,Y | H) =

T
∏

t=1

Pemit(xt , yt | ht)

(5)P(X,Y) =
∑

H∈HT

P(X,Y | H)P(H)

(6)X∗ = argmax
X∈X

P(Y | X)
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scale to cases where the number of sequences N is large. Also note that the forward algorithm is not applicable 
to the string alignment problem with insertions and deletions.

Database search by distribution sensitive bucketing for HMMs. Here we introduce decision trees 
with bucket data structures, and show how they can be used for mapping database sequences X ∈ X  and query 
sequences Y ∈ Y to buckets in a way that for pairs (X, Y) with higher P(Y | X) , the chance of mapping to the 
same bucket is higher. Intuitively, each node in the tree contains two subsequences Sx and Sy , and X ∈ X  (resp. 
Y ∈ Y ) falls in a bucket node in the tree if Sx (resp. Sy ) is its prefix. We then use this data structure to design an 
algorithm that solves the inference problem in the case of HMMs.

The data structure consists of a decision tree G and a set of distinguished leaf nodes of G called “buckets”. 
Decision tree G is a directed tree with a set of nodes V. Each node v ∈ V  is associated with two sequences 
v.Sx ∈ ∪T

t=1A
t and v.Sy ∈ ∪T

t=1B
t (called x-sequence and y-sequence of v). For each v ∈ V  , v.Sx and v.Sy have 

the same size, and this size is equal to their depth in the tree. For the root node, root ∈ V  , root.Sx = root.Sy = ∅ , 
where ∅ is the empty string. Each node v ∈ V  is either a leaf node, or has exactly |A| × |B| children. For each 
child w of v corresponding to a ∈ A, b ∈ B , its x-sequence and y-sequence are defined as follows:

where plus sign stands for string concatenation. In other words, w.Sx and w.Sy are formed by attaching a and b 
to the end of v.Sx and v.Sy strings, respectively. The edge from v to w is indexed by (a, b). Furthermore the set 
of D buckets v ∈ Vbuckets = {v1, . . . , vD} is a subset of the leaf nodes of the tree, where D is referred to as the 
number of buckets. Later we will discuss how to set D and Vbuckets in order to optimize accuracy and efficiency. 
Figure 7 shows the schematic of this data-structure for A = B = {0, 1} . Note that the proposed tree differs from 
suffix/prefix trees in that they are constructed from two distinct databases of strings, and each node in the tree 
corresponds to a pair of substrings.

Given the decision tree G and a set of buckets Vbuckets , we define a natural bucketing strategy for database and 
query sequences in AT and BT . Let’s define:

A sequence X ∈ X  maps to a bucket v in position 1 ≤ j ≤ J if and only if v.Sx is a subsequence of X starting at 
j, i.e. 

x
Prefix(v,X, j) = 1 . A sequence Y is mapped similarly. For example if v.Sx = 1011 and X = 01011100 , then x

Prefix(v,X, 2) = 1 while 
x

Prefix(v,X, j) = 0 for any j  = 2 . We will refer to each position j, 1 ≤ j ≤ J as a band. 
We further refer to the set of bands as J  (here J = {1, · · · , J} ). Intuitively, only a small ratio of true positives 
fall into the same bucket in a single band, and therefore J bands are needed in order to guarantee a true positive 
rate nearly one.

Let’s define the bucketing function hxj (X) (resp. hyj (Y) ) as the set all the buckets in the decision tree that a 
sequence belongs to from its j-th band. That is:

(7)w.Sx = v.Sx + a w.Sy = v.Sy + b

(8)Prefixx(v,X, j) =

{

1, v.Sx is a prefix of j′ th suffix of X
0, otherwise

(9)Prefixy(v,Y , j) =

{

1, v.Sy is a prefix of j′ th suffix of Y
0, otherwise

(10)hxj (X) ={v ∈ Vbuckets | Prefixx(v,X, j) = 1}

Figure 7.  Construction of the HMM decision tree. Examples of accepted, pruned, and branched nodes are 
shown. Refer to Algorithm 3 for further details of the tree construction.
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Given these buckets we can then solve the inference problem using Algorithm 1. In summary, Algorithm 1 first 
maps all sequences in X  and Y to appropriate buckets, which are obtained by growing and pruning the decision 
tree G (Fig. S3). Then, it examines all pairs in each bucket using forward algorithm to compute P(X,Y) , Px(X) 
and Py(Y) , and uses the likelihood ratio to determine if the pairs are likely to have an alignment. Since only 
pairs in each bucket are examined, the complexity is much lower than the brute force strategy from Algorithm 4.

In the special case where for every bucket v, v.Sx = v.Sy , Algorithm 1 will be restricted to finding exact match 
substrings based on prefix trees. Enforcing exact match substrings could results in high false negative rates, as 
distance homolog sequences might not share any substring of certain length. However, by constructing optimal 
trees and buckets that tolerate errors ( Sx not exactly equal to Sy ), Algorithm 1 can achieve lower false negative 
rates than methods that enforce exact matches.

Another naive choice of the decision tree and buckets is a complete tree with all leaf nodes selected as buckets. 
In this case, every pair of sequences will share a bucket, and therefore the complexity of Algorithm 1 would be the 
same as the brute force algorithm. Now we provide a complexity and true positive rate analysis of Algorithm 1. We 
further present an algorithm to select a decision tree and a set of buckets, Vbuckets , that minimizes the complexity 
in Supplementary Sect. 9.6. This algorithm iteratively grows a tree and prunes nodes/buckets that do not have a 
sufficiently high probability of containing pairs of sequences generated under the joint distribution.

Complexity and true positive rate analysis. In the Supplementary Materials, we show proofs for the 
complexity and true positive rate under the HMM model. True positive rate (TPR) of Algorithm 1 is the fraction 
of (X, Y) pairs jointly generated under the HMMs that are captured in the same bucket. Using J bands we have

where α is defined as the true positive rate in band j. In order to have a nearly one true positive rate, i.e. 
TPR ≥ 1− ǫ for a small ǫ , we select

With (13), the overall expected computational complexity of Algorithm 1 is

where M is the number of sequences in X  , N is the number of sequences in Y , β is defined as the false positive 
rate in band j, and γ x , γ y are defined as expected numbers of buckets that sequences X and Y in band j fall into, 
respectively.

(11)h
y
j (Y) = {v ∈ Vbuckets | Prefix

y(v,Y , j) = 1}

(12)TPR = 1− (1− α)J ≥ 1− e−αJ

(13)J ≥
− ln ǫ

α
,

(14)O(log(ǫ)((Mγ x + Nγ y)+ βMN)/α)
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Sequence alignment model. Algorithm 1 is limited to standard HMMs, and does not generalize to other 
latent variable models. Unfortunately, standard HMMs are not sufficient for modelling the important features 
of the sequence alignment problem, as they can not model insertions and deletions. Here, we define a natu-
ral probabilistic model (very similar to pair-HMMs) that we refer to as the sequence alignment model, that 
takes into account insertions, deletions, and matches/mismatches between pairs of sequences. Our probabil-
istic model first generates a latent variable H, e.g. H = mmdmmimi . Here, “m”, “i”, and “d” represent match/
mismatch, insertion, and deletion respectively. Given H, the generative model generates pre-sequences X̄H and 
ȲH , e.g. X̄H = AGCGT − A− and ȲH = AG − TTGAC . Note that whenever the tth entry of H is “i” (“d”), the 
corresponding entry X̄H ,t (resp. ȲH ,t ) is “−” . The model generates X and Y by removing all “−” from X̄H ,t and 
ȲH ,t (Fig. 2). In this example, we have:

with Pm : {A,C,G,T} × {A,C,G,T} → [0, 1], Pi , Pd : {A,C,G,T} → [0, 1] , and qmatch , qinsertion and qdeletion are 
positive, qmatch + qinsertion + qdeletion = 1 (Fig. 2). Here Pm , Pd and Pi are the emission probabilities when the 
latent variable is match, deletion, and insertion respectively. qmatch , qinsertion , qdeletion are probabilities of the latent 
variables. Note that qmatch represents the probability for both match and mismatch.

For simplicity we have assumed that insertion, deletion, and match/mismatch events are happening independ-
ent of each other. In practice, these events are usually not independent, and a HMM is used for modeling intervals 
of insertions and deletions, that is equivalent to using an affine gap penalty. While in this paper we will focus 
on the independent insertion and deletion model, the algorithms presented can generalize to arbitrary priors.

So far, we have shown that the sequence alignment model can be stated as a special case of latent variable 
models. We will show how the algorithms we have developed for HMMs (without insertions/deletions) can be 
adapted to the case of sequence alignment models.

Efficient sequence alignment by sub-quadratic inference in sequence alignment model. Here 
we develop analogous methods to solve the inference problem in case of the sequence alignment model. We 
present a method to align sequences via the bucketing strategy (Algorithm 4), and we detail how to construct 
optimal buckets to minimize the runtime (Algorithm 5). Our model relies on pair-HMMs, which are different 
from standard HMMs in that they can also incorporate insertions and deletions. An efficient bucketing strategy 
is designed using a decision graph structure (Fig. S4). Decision graphs are iteratively grown and pruned, in order 
to optimize the theoretical complexity (Supplementary Sect. 9.6).

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.

Code availability
The command-line version of DSB, available from https:// github. com/ mohim anilab/ Distr ibuti onSen sitiv eBuck 
eting, is capable of conducting searches in both all versus all mode (when searching many reads against each 
other) and all versus one mode (searching many reads against a single genome).
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