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Mapping soil organic carbon stocks 
in Nepal’s forests
Shiva Khanal 1,2*, Rachael H. Nolan 2, Belinda E. Medlyn 2 & Matthias M. Boer 2

Comprehensive forest carbon accounting requires reliable estimation of soil organic carbon (SOC) 
stocks. Despite being an important carbon pool, limited information is available on SOC stocks in 
global forests, particularly for forests in mountainous regions, such as the Central Himalayas. The 
availability of consistently measured new field data enabled us to accurately estimate forest soil 
organic carbon (SOC) stocks in Nepal, addressing a previously existing knowledge gap. Our method 
involved modelling plot-based estimates of forest SOC using covariates related to climate, soil, 
and topographic position. Our quantile random forest model resulted in the high spatial resolution 
prediction of Nepal’s national forest SOC stock together with prediction uncertainties. Our spatially 
explicit forest SOC map showed the high SOC levels in high-elevation forests and a significant 
underrepresentation of these stocks in global-scale assessments. Our results offer an improved 
baseline on the distribution of total carbon in the forests of the Central Himalayas. The benchmark 
maps of predicted forest SOC and associated errors, along with our estimate of 494 million tonnes (SE 
= 16) of total SOC in the topsoil (0–30 cm) of forested areas in Nepal, carry important implications for 
understanding the spatial variability of forest SOC in mountainous regions with complex terrains.

Accurate and robust estimation of national soil organic carbon (SOC) stocks is crucial for reporting in the context 
of the United Nations Reducing Emissions from Deforestation and Forest Degradation (REDD+) program1 and 
several other initiatives2. Assessing carbon stocks in forest ecosystems requires understanding biomass in trees, 
belowground biomass, and soil carbon, as well as the fluxes. Estimating belowground biomass is more chal-
lenging and costly than aboveground biomass3. Several REDD+ countries have omitted soil carbon pools from 
emission reporting due to technical challenges in monitoring stocks4 and have focused mainly on aboveground 
biomass. Spatially explicit SOC estimates improve our understanding of the carbon cycle5, support monitoring 
of changes over time, and inform national and international climate change mitigation policies6. However, esti-
mating SOC stock for an entire country is a major challenge due to the lack of reliable data in many regions and 
high uncertainty in existing estimates, mainly due to limited observations7. Additionally, assessments of carbon 
dioxide uptake have neglected the role of soil carbon stocks and their climate sensitivity8. The highly variable 
nature of this carbon stock, as demonstrated by contrasting estimates for different forest types across the world9, 
highlights the importance of producing reliable estimates specific to different regions.

The knowledge of the spatial distribution of soil organic carbon (SOC) in mountainous regions is currently 
limited, partly due to the challenges in sampling complex terrain with limited accessibility10,11. Extrapolating 
findings on the distribution and expected changes in SOC stocks from well understood regions elsewhere may not 
be suitable for mountainous regions in other continents, due to variations in climate, topography, and land-use 
history12. Natural and human-made disturbances such as landslides13, erosion14, fire15, and land-use changes16,17 
can cause forest SOC loss. The effects of climate change, including rising air temperatures and increased decom-
position rates can also increase CO2 emissions18,19. Improving our understanding of the spatial variation of 
carbon stocks in mountainous regions will guide adaptation and mitigation measures for climate change impacts.

Soil formation depends on many factors and can be expressed as a function of several key controls20:

In order to make a spatially explicit prediction of soil attributes, location information is required in addition 
to attributes such as type of parent material, climate, relief and land-use history. Building on Eq. (1), the ‘scorpan’ 
model21 is expressed as:

(1)soils = f (parent material, climate, relief , organisms, humans, time)

(2)Sa = f (s[x;y t], c[x;y t], o[x;y t], r[x;y t], p[x;y t], a[x;y t], n[x;y t])
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where Sa is the soil attribute at a location; s is the soil type or other soil properties; c is the climate or climatic 
properties of the environment; o are the organisms, vegetation, fauna or human activity; r is topography or 
landscape attributes; p is parent material or lithology; a is the substrate age or the time factor, and n represents 
the spatial location. Variables x, y and t represent observations at a specific point in space and time, respectively. 
Soil attributes, such as carbon content, observed in limited sample locations can be used to predict soil carbon 
for the broader spatial area using their relationships with the ‘scorpan’ factors22.

A simple model of forest SOC, for example, could be that the total SOC is a function of carbon inputs from 
vegetation debris and outputs through decomposition. We can assume that vegetation litter-fall is proportional 
to vegetation density and its turnover. Quantitative information on these processes is rarely available at the 
spatial extent and scale required for estimates of national SOC stocks; alternatively, these processes can be 
captured by a set of proxies that are strongly related to these processes. The variation in forest carbon stocks is 
expected to be related to proxies of forest habitat conditions, in terms of climatic energy and water availability, 
and disturbance probability. We can also expect that relatively fine-scale variations in topography, combined with 
broad-scale orography and climate, will determine local temperature, radiation, and moisture conditions. Thus, 
we assumed that the combination of coarse-resolution gridded climate data and high-resolution topographic 
attributes provides critical information for predicting fine-scale variations in soil-forming processes and soil 
properties, including SOC.

The mean annual air temperature can be expected to be the most important predictor of variation in forest 
SOC observed at the forest inventory plot level. However, existing gridded datasets characterize the air tem-
perature at a coarse spatial resolution, for example, 1 km23,24. In most mountain ranges, including the Central 
Himalayas, the mean annual air temperature is strongly correlated with elevation and can vary by hundreds 
of meters within a square kilometer. To capture some of the associated variations in air temperature, we used 
a high-resolution digital elevation model (DEM) as a predictor layer. Other terrain attributes derived at a fine 
spatial resolution (e.g., 30 m) can provide a detailed characterization of landforms and associated drainage and 
insolation patterns25. In addition, several other satellite-derived proxies of vegetation productivity, such as spec-
tral vegetation indices, are available at fine spatial resolution. Previous attempts at spatially explicit modelling of 
soil information have typically used predictors related to terrain parameters derived from DEMs and remotely 
sensed surface reflectance26.

Various methods have been developed to generate spatial predictions of soil properties using spatially explicit 
covariates and georeferenced plot-level soil data. Over the last few decades, geostatistical approaches such as 
regression kriging27 and multiple linear regression28 have been commonly applied. However, recent research has 
shown that machine learning (ML) techniques, like random forest (RF), provide higher accuracy in predicting 
soil attributes than regression kriging6,29,30. Although ML models can be challenging to interpret31, they provide 
higher prediction accuracy than parametric models by fitting complex partitioning trees32,33. Thus, RF has become 
a popular approach for soil attribute modelling, including SOC stocks, and provides a higher accuracy in soil 
attribute modelling, including SOC stocks, and outperforms most other methods26,34–36.

A variant of RF, quantile regression forest (QRF), can estimate the full conditional distribution of a response 
variable, providing prediction intervals37. QRF can provide reliable estimates of uncertainty in the mapping of 
SOC and other soil properties compared to conventional regression kriging38. However, ML techniques, like RF, 
which handle high dimensionality and multicollinearity, are sensitive to spatial sampling design39. For example, 
modelling and predicting SOC over a large area is often based on plot data collected at regular intervals or in 
clusters, leading to spatial correlation. Failure to account for this spatial autocorrelation in the data can under-
estimate the prediction error40,41. Hence, it is important to consider the uncertainty introduced by the modeling 
approach, including spatial autocorrelation in the input data, when predicting soil attributes22,42.

A large range of potential sources of uncertainty exists in soil data analyses43,44. The uncertainty in the predic-
tion of SOC is typically high in highly heterogeneous environments45. Quantifying the uncertainty in SOC esti-
mates is a key requirement for evaluating the reliability of the results46 and for making the results usable. Broadly, 
uncertainties can be introduced due to: (1) inaccuracies in field observations, (2) poor model performance, and 
(3) inaccuracies in the input covariates. For robust quantification of prediction uncertainty, the magnitude of 
each source of uncertainty must be addressed. Furthermore, expressing prediction errors as maps helps in the 
robust evaluation of the spatial variability of uncertainty. However, it is often not feasible to quantify all sources 
of uncertainty due to the time and cost involved47. This is especially true when using SOC observations from field 
sampling and lab analyses from different projects that use different methods, standards, and sampling designs.

The primary aim of this paper is to provide the most accurate estimate of Nepal’s national forest SOC stock 
based on the available field observations and existing layers of covariates. To achieve this, we focused on building 
a statistical model for the spatially explicit prediction of current SOC using existing field observations of SOC 
and a range of variables that influence SOC, following the ‘scorpan’ model. In cases where the national scale SOC 
maps are unavailable, global soil maps can provide a useful overview of soil properties and conditions, although 
they may have some limitations in accurately representing national conditions. We also aimed to evaluate the 
global SOC products for the study area by comparing them with our predicted forest SOC map. With the addi-
tional considerations covering good practices in machine learning based spatial predictions, we demonstrated 
an improved approach for predicting forest SOC in highly heterogeneous countries.

Materials and methods.  Study area.  Nepal is located in the Central Himalayas, with latitude extending 
from 26◦ 20 ′  53′′ N to 30◦ 26 ′  51′′ N, and longitude extending from 80◦ 03 ′  30′′ E to 88◦ 12 ′  05′′ E. The country 
covers a large elevational gradient from 59 masl in the southern Indo-Gangetic Plain to 8849 masl at the top of 
Mount Everest in the North. The pronounced topography and associated climate gradients/patterns sustain a 
highly diverse flora and fauna. With over 85% of Nepal characterized by mountainous landscapes48, this study 
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area serves as an ideal test case to examine how well the distribution of forest SOC can be predicted in extremely 
heterogeneous environments.

Field data.  We used the existing field-based forest SOC stock data for topsoil (0–30 cm), which was collected 
as part of the national forest resource assessment conducted between 2010 and 2014. The details regarding the 
sample plot selection, soil sample collection, and lab analysis for SOC estimates are available in the field data set 
that has been submitted as a data paper, currently under review49. The plot-level estimates of forest SOC used in 
this study can be accessed at: https://​doi.​org/​10.​6084/​m9.​figsh​are.​21959​63650. The distribution of sample plots 
with SOC observations in the study area is shown in Fig. (1).

Selection of environmental predictors.  We selected predictors based on the ‘scorpan’ framework (as listed in 
Table 1 and as maps in Supplementary Material Figure S1). Although predictors related to substrate age were not 
available, we expected that the other environmental variables such as topography, parent materials and soil types 
would provide constraints for the long-term potential or maximum amount of SOC expected at a location51. 
These environmental predictors are commonly used in spatial modelling of SOC52.

Prediction of forest SOC stock and uncertainty.  Quantile regression forest (QRF) was used to model spatial 
variation in forest SOC as a function of gridded predictors at 30 m spatial resolution. We fitted the QRF model 
using functions implemented in the R package quantregForest68 and evaluated the importance of the gridded 
variables. This model follows a geostatistical approach that integrates field measurements, predictors related to 
terrain, climate and computer algorithms to develop models to predict values of interest for the study area69. All 
analyses were performed using the R software package70.

After fitting the QRF, prediction uncertainties were quantified. Uncertainty in digital soil maps comprises 
four major components related to uncertainties in the model, spatial distribution of sample plots in geographic 
space, soil data and covariates used in the model. Here, we focused on two major sources of uncertainty: (a) 
model uncertainty (variability in prediction) and (b) sensitivity (variability due to sample plot distribution). 
Additional uncertainties are related to input soil data and covariates, which we have not addressed in this paper 
due to the unavailability of information to quantify their contribution to the total uncertainty.

Spatial cross-validation was used to evaluate the effect of sample plot distribution on the accuracy of predicted 
forest SOC. The clustered sampling design field observation of forest SOC used in this study62 is common in 
national forest inventories to collect tree and soil samples71,72. In such cases, random sampling for data partition-
ing into training and test data is not ideal because it can introduce over-fitting due to spatial autocorrelation. In 
these cases, spatial k-fold cross-validation is recommended73. Evaluation of different strategies for evaluating map 
accuracy with clustered data show that different strategies are necessary to address varying levels of clustering, but 
blocked spatial cross-validation works best for strong clustering74. The k-fold cross-validation (CV) procedure, 
where k is the number of groups the data is split into, was used to evaluate model performance. Partitioning 
data within spatial CV considers the cluster or block information and iteratively leaves out all plots belonging 
to a randomly selected group of clusters. Here, the CreateSpacetimeFolds function in the CAST package75 was 
used to create spatial folds for CV by specifying a plot cluster id as the spatial units of sample plots. This data 
partitioning provided two lists for model training and model validation used as index and indexOut in caret’s 

Figure 1.   The distribution of field inventory plots with observations of SOC.

https://doi.org/10.6084/m9.figshare.21959636
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trainControl function76. Each resampling iteration for model training and validation used the list of elements 
representing the training and validation sets. The details on the quantification of the two major prediction 
uncertainties are as follows:

(a) Model uncertainty QRF provides the full conditional distribution for each of the prediction locations, 
allowing the examination of variability in the predicted forest SOC across the entire covariate space. We esti-
mated model uncertainty using the standard deviation (SD) of this conditional distribution. A QRF model was 
fit with a 10-fold spatial CV and selected a model with the smallest Root Mean Squared Error (RMSE). Then, 
the conditional distribution was predicted using fitted QRF. In this step, the gridded mean and SD of SOC were 
predicted by taking into account the effect of sample plot design (sensitivity) since the final QRF was selected 
based on spatial CV. RMSE was used to examine the average prediction error of the model when predicting the 
independent observations set aside for testing:

where yi is the observed value and ŷi is the predicted value for the ith observation.
(b) Sensitivity The sensitivity refers to the uncertainty in model prediction due to the spatial sampling design. 

Using the covariates listed in Table 1, we fitted a QRF model with a 10-fold spatial CV and ten realisations of 
the predicted SOC maps. This method of CV is also termed as 10-fold Leave-Location-Out cross-validation75. 
Then, we derived the sensitivity of the model due to the spatial sampling design as the SD of 10 realisations of 
predicted SOC.

We then combined both sources of error, model uncertainty and sensitivity, and expressed as a percentage:

where the predicted mean and uncertainty of the model are the predicted mean and SD of conditional distri-
bution from the fitted QRF, respectively. Sensitivity is the standard deviation of SOC predicted using a 10-fold 
spatial CV.

(3)RMSE =

√

∑n
i=1 (yi − ŷi)2

n

(4)Percent Error =
(Model Uncertainty + Sensitivity)

Mean Prediction

Table 1.   Details of predictors selected for spatially explicit modelling of SOC. The spatial resolution of all 
predictors is 30 m.

Scorpan factors Predictors Description Relationship to SOC

s Dominant soil 21 types, soil and terrain database (SOTER) for Nepal53 SOC varies with soil type. E.g. clay soils have a much higher SOC 
than sandy loam54

c, r, a Elevation Digital elevation model, 30 m spatial resolution, ASTER55 Related to mean annual air temperature; higher elevation areas have 
a lower temperature

o NDVI
Based on cloud-free Landsat 7 median composite image for ca. 
2000, computed from cloud-free imagery acquired in the period 
1999–201256, version 1.6

NDVI is a proxy of landscape-scale photosynthetic activity forest57, 
and thus, long-term NDVI can be used as a proxy for net primary 
productivity58 and inputs of organic matter into the soil

o, a Cost surface
Cost surface calculated using GRASS r.walk59. It represents the time 
in seconds needed to reach each grid cell from the road network 
based on national road data60. The slope (derived from DEM) was 
used as a friction surface

In a human-dominated landscape, the proximity of forest increases 
the likelihood of disturbance

o, a Protected Status
Binary protected/non-protected area mask. Polygon layer from Dept 
of National Parks and Wildlife Conservation, Nepal, rasterised to 
30 m pixel

The sites under the protection have lower disturbance and higher 
SOC stocks than comparable sites. For e.g. sites outside the protected 
area can lose twice the amount of SOC compared to protected sites 
in the humid tropical forest61

o Distance from edge
Distance from the edge of the forest boundary towards the core 
using a forest mask62. This raster proximity map was derived by 
applying the gdal:proximity function63

The likelihood of disturbance is higher near the edge of the forest 
patch than near the core

r Slope Slope gradient derived from the digital elevation model
The erosion potential increases with slope gradient, and thus steep 
slopes are likely to have shallow soils. The shallow soils have a small 
water storage capacity and generate runoff more frequently than 
deeper soils

r, c Wind exposure
The average ‘Wind Effect Index’ for all directions using an angular 
step. A dimensionless index. Values below 1 indicate wind shad-
owed areas, whereas values above 1 indicate wind-exposed areas. 
Derived using the SAGA-GIS package64

Considers aspect. Sites North-facing slopes can have three times 
higher SOC levels than South-facing slopes65

r, c TWI
Topographic wetness index (TWI) indicates the potential for water 
to accumulate. A high index value indicates the high water accumu-
lation potential. Unitless. Computed using the SAGA-GIS package64

Higher soil moisture availability favours plant productivity and thus 
more carbon inputs to soil

r TPI

Topographic position index (TPI) compares the elevation of each 
cell in a DEM to the mean elevation of a specified neighbourhood 
around that cell. A 100 m × 100 m neighbourhood was used. Posi-
tive TPI values represent locations that are higher than the average 
of their neighbourhood window (e.g. ridges), negative values are 
lower (e.g. valleys), and flat areas are close to66

Curvature controls the water redistribution and substrate thickness 
and is an important determinant of SOC65

p, a Parent materials Soil and terrain database (SOTER) for Nepal53 provides a parent 
material type map representing eleven types based on lithology

Parent materials determine the soil properties and determine SOC 
distribution67
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We computed the total national forest SOC and standard error (SE) by summing all predicted SOC and SE 
for all individual grid cells. The standard errors for all grid cells were aggregated and expressed as a relative 
percentage error.

To compare the performance of random CV with that of spatial CV, we fitted a QRF model using a 10-fold 
random CV with the createFolds function in the R package caret76. The presence of spatial autocorrelation in 
input data leads to the autocorrelation of residuals, which can influence the modelling results and interpretation 
of the results77. To assess this, we computed the semivariance, a measure of average dissimilarity between field 
observations collected at locations separated by a certain distance, for the residuals obtained from both spatial 
and random CV approaches. An experimental semivariogram was used to examine the variance between pairs 
of data over a varying range of distances. The R package geoR78 was used to examine the semivariogram of the 
residuals from both CV approaches. Semivariance was computed up to a maximum distance of 25 km, and the 
default 99 random permutations were used to allocate data to the spatial locations, compute the empirical vari-
ogram for each permutation, and derive the envelope for the empirical variogram.

Representativeness of the prediction space covered by training data We evaluated the representation of the 
prediction space in the study area by using input field training data and the spatial prediction model used for 
estimating model uncertainty. This analysis is important because when predicting forest SOC over a large geo-
graphical region, some areas or part of the multivariate predictor space may be under-represented by training 
data. In such cases, the model fitting does not consider the characteristics of these under-represented areas, and 
the prediction for those areas can be highly uncertain. The AOA (Area of Applicability) concept can be used to 
evaluate this source of uncertainty79. The approach involves (a) calculation of the Dissimilarity Index (DI), which 
is the minimum distance to the training data in the multivariate predictor space and then (b) using the 0.95th 
quantile cut-off of the DI in the training data (on the multiple DI generated for each site with cross-validation). 
AOA and DI were calculated using the aoa function in the R package CAST75. The AOA analysis produces a 
binary map with ‘1’ representing the area inside the AOA, where we can have confidence in the model prediction, 
while areas with ‘0’ represent the area outside the AOA, where the model prediction is uncertain.

Comparison of forest SOC predictions with existing global SOC estimates.  We compared forest SOC predicted by 
this study against two existing global data sets. The first global dataset provides estimated SOC stocks in topsoil 
(0–30 cm depth) at 1 km spatial resolution by FAO80. This data was derived by compiling and harmonising exist-
ing national scale SOC estimates. For the countries that do not have national mapping of SOC, spatial model-
ling was done using publicly available data. In the case of Nepal, SOC estimates for 6000 sample plots collected 
between 1990 and 2000 for croplands, not forests, were used for spatially explicit mapping. The second global 
dataset, SoilGrids250m 2.026, also provides estimates of SOC for topsoil (0–30 cm depth) but at 250 m spatial 
resolution. It uses available observations from the World Soil Information Service (WoSIS) Soil Profile Database 
and a range of environmental covariates for spatial prediction of SOC globally. The spatial map of both of these 
global data sets covering Nepal is presented in Supplementary Material Figure S3. The spatial resolutions of these 
existing global datasets are much larger than the SOC predicted by this study (30 m). To deal with the differences 
in the spatial resolution between my model prediction and these global datasets, we aggregated predicted forest 
SOC to the larger grids ( ∼ 1 km and ∼ 250 m) using the mean function and then compared the values for all the 
resampled predictions against the subset of existing global datasets covering the study area.

Results.  Spatial distribution of forest SOC stocks.  The spatial distribution of predicted SOC and prediction 
error showed some association with major physiographic regions (Fig. 2). The distribution of predicted forest 
SOC showed an increase along the elevational gradient, which increases from South to North across Nepal. This 
variation follows the distinct physiographic regions occurring at varying elevational ranges. The predicted for-
est SOC showed a bimodal distribution, indicating the presence of two different groups represented by the two 
peaks of data, with relatively low SOC values (approx. 10 t C ha−1 ) in lowland forests and relatively high SOC 
values (approx. 125 t C ha−1 ) in high elevation forests. Along the elevational gradient, increasing from South to 
North, the results showed a drop in forest SOC in the middle mountain region of Nepal (Fig. 2A Histogram). 
The results also showed that the forest SOC reaches maximum in the 3000–4000 masl elevation range of > 4000 
masl. The locations with the highest prediction error of forest SOC are predominantly located in the lower foot-
hills (Fig. 2B). The total estimated SOC in topsoil (0–30 cm) and the standard error as a percentage of the total 
estimate for the entire forested area of Nepal was estimated at 494 Mt C (SE = 3.46%), an average of 75 t C ha−1.

Evaluation of uncertainty.  Despite reasonable prediction accuracy, the spatial CV showed lower agreement 
with observed SOC compared to random CV indicating pessimistic map accuracy results (Fig. 3). Models using 
both CV approaches underestimated SOC for plots with more than 150 t ha−1 . However, only 4% of the sample 
plot observations were in this high SOC range. The model error component, as quantified by the standard devia-
tion of 10-fold CV prediction using QRF (Supplementary Material Figure S2A), was much larger than the error 
due to the sampling design (sensitivity) (Supplementary Material Figure S2B). The model uncertainty was larger 
than the uncertainty due to the sampling design (sensitivity). The higher model uncertainty can be interpreted 
as the effect of weak relationships between SOC and environmental predictors that are built into the QRF model, 
which indicates that the input data only partly capture the processes that control spatial variation in SOC over 
the highly heterogeneous study area. The low elevation forests have lower forest SOC than high elevation forests. 
Therefore, the relative error expressed as a percentage is much larger in low-elevation forests than in high-
elevation forests. Due to the differences in the range of forest SOC with high stocks in high elevation forests, the 
larger absolute prediction errors occur for plots with high SOC, mostly at high elevation.
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The semivariance of model residuals showed a similar pattern for both random and spatial CV (Fig. 4). The 
shaded area represents envelopes for the empirical variogram derived by random permutation of the residuals. 
Thus, the envelope represents the situation of no spatial autocorrelation. The observations in the variogram 
show the semivariance, which is the squared differences between residuals as a function of the distance between 
sample sites84. Following the established rule in geography that objects in closer proximity are similar, we expect 
the semivariance to increase with distance and stabilise at a certain distance. Ideally, we are interested in exam-
ining the sill (the semivariance at which the variogram first flattens out) and the range (the distance at which 
the variogram first flattens out). We typically expect observations at distances within the range to be correlated, 
but plot-level forest SOC observations used in this study did not show a strong correlation. Along the entire 
distance lags, the semivariance of residuals for the model fitted using both spatial and random CV have largely 
overlapping confidence intervals. The two semivariograms are practically flat, showing that the residuals contain 
very little spatial autocorrelation in both cases, spatial and random CV. The largely ‘flat’ semivariogram of the 
residuals shows that the model has captured most of the spatial variation.

Area of applicability of spatial prediction model.  The spatial distribution of both Area of Applicability (AOA) 
and Dissimilarity Index (DI) showed that the prediction space not represented by training data is a small frac-
tion of the total forest area and concentrated in the highest elevation zones (Fig. 5). AOA with value 0 indicates 
the sites that are not represented by training sample plots. The obvious association between DI and AOA exists 

Figure 2.   Predicted SOC stocks and the percentage prediction error based on the 10-fold CV. Panel (A) shows 
the mean SOC predicted using quantile regression forest (QRF), and Panel (B) shows the prediction error 
expressed as a percentage. The histogram in the legend shows the distribution of the data presented on the map. 
All figures were created using tmap package81 in R82.
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as the binary AOA is derived from the DI values. The spatial pattern of DI values also shows that the DI with 
high values are particularly concentrated at high elevation forests. Further, high DI values are also observed in 
the Churia hills, located in the low elevation zones of Southern Nepal. The forest stands with large values of DI 
correspond to AOA = 0 values and indicate that these stands are not represented by the training data used in 
modelling forest SOC.

Variable importance.  The input covariates in the QRF model used for forest SOC prediction showed varying 
relative influence on the predicted SOC (Fig. 6). The importance values for each variable represent the Mean 
Decrease Accuracy and express the decrease in model accuracy when each variable is removed. The higher 
values of importance indicate the higher importance of the variable to the model. The elevation showed the 
highest relative importance, the protected status showed the least importance, and the relative importance of the 
remaining variables varied marginally in the QRF model. Though elevation, a proxy of climatic conditions, was 
observed as the most important variable, parent material, dominant soil, and terrain attributes are similar and of 
intermediate importance. The partial dependence plots also confirmed the the marginal effect of each variable 

Figure 3.   Comparison between observed and predicted SOC using K-fold CV for all input plots (1156). Panel 
(A) compares observed SOC against the prediction based on 10-fold spatial CV and Panel (B) against the 
prediction based on 10-fold random CV. RMSE in t ha−1 and R2 represents the coefficient of determination. 
Figure was created using ggplot2 package83 in R82.

Figure 4.   Variogram of residuals from QRF models using spatial CV and random CV. The points in the plot 
show semivariance at 50 regular distance bins, and envelopes show the variability of the empirical variogram. 
Figure was created using ggplot2 package83 in R82.
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Figure 5.   Area of applicability plot. Panel (A) shows the Area of Applicability (AOA), and panel (B) shows the 
Dissimilarity Index (DI) for the forest SOC prediction model. All figures were created using tmap package81 in 
R82.

Figure 6.   Variable importance of the SOC prediction model. Figure was created using ggplot2 package83 in R82.
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on the prediction of forest SOC (Supplementary Material Figure S7) The order of the variable importance in the 
model thus is relatively consistent with the inputs of the ‘scorpan’ framework.

Comparison of model predictions with existing global SOC data products.  Large deviations were observed when 
the predicted forest SOC was compared with two existing global SOC data products (Fig. 7). Particularly, the 
deviations differed significantly across the elevational zones, with the highest elevation zones having the largest 
deviation between global and national observations (Supplementary Material Figure S4). Field observations and 
predicted forest SOC stocks were compared with existing global SOC data products, revealing significant devia-
tions, especially in high-elevation forests (Supplementary Material Figures S5, S6, respectively).

Discussion.  The primary aim of this paper is to provide the most accurate estimate of Nepal’s national for-
est SOC stock. The total SOC in topsoil (0–30 cm) for the forested area in Nepal was estimated at 494 Mt C (SE 
= 16). Using the same set of field data, Nepal’s national forest resource assessment derived the total forest SOC 
as 422 Mt C by multiplying the average forest SOC density with the total forest cover area62. The aggregation of 
SOC estimates in existing global data over forested grids of Nepal shows much lower estimates, i.e. 58 Mt C85 
and 6 Mt C80. This significant variation is driven by the underestimation of forest SOC across Nepal (Fig. 7). The 
spatial distribution of predicted SOC stocks showed that the largest forest SOC stocks occurred in forests of the 
high elevation zones (Fig. 2A). This spatial distribution pattern is consistent with decomposition rates tending to 
increase with mean annual air temperature, and thus long-term accumulation of organic matter (e.g. leaf litter, 
wood debris, twigs) to be higher in the cold climatic regions of the mountains than in the tropical lowlands. This 
finding agrees with other studies showing the negative relationship between air temperature changes and sensi-
tivity of organic matter decomposition86. In the context of climate change, the understanding spatial distribution 
of SOC in the mountain is important because it is very vulnerable to warming. Increasing air temperature leads 
to an exponential increase in organic matter decomposition12,87. In the case of mountain soils, the projected ele-
vation-dependent warming88, combined with the presence of a high portion of the carbon in a labile fraction12, 
are projected to experience a large loss in SOC in high latitude areas89. Previous studies have observed large SOC 
stocks in forests compared to other land-use in the mountainous region52.

The average forest SOC for 0–30 cm depth, estimated from the national forest inventory plot (67.14 t C ha−1)62  
is comparable to the average forest SOC for Bhutan (64 t C ha−1)90 and Swiss forests (76 t C ha−1)91 for 0–30 cm 
depth. SOC in mountain forest areas is likely to play a significant role in the global carbon balance context92,93 
and deserves attention in the light of projected climate change impacts. The spatially explicit prediction of SOC 
and the uncertainty presented in this study provide a benchmark map that provides a basis for assessing the 
expected impact of future climate changes in the Central Himalayas.

The Central Himalayas are among the most rugged regions on Earth, and the elevational gradient in the 
study area is one of the largest globally. The results showed elevation as the most important predictor of the 
spatial variation in forest SOC (Fig. 6). This trend is due to the gradient in mean annual air temperature, which 
typically decreases by 0.5 ◦C for every 100 m increase in elevation in Nepal94. The observed increase in forest 
SOC stocks with elevation is consistent with elevation being a proxy for mean annual air temperature and, 
hence, lower decomposition rates at higher elevations95. Using elevation as a predictor is recommended for 

Figure 7.   Comparison of predicted forest SOC against existing global-scale data products. The colour 
gradient represents the elevation of the input plot location. Panel (A) compares predicted SOC against existing 
predictions by GSOCmap80 and (B) against SoilGrids250m26. The Red line is the 1:1 line, and RMSE is in t ha−1 . 
Figures were created using ggplot2 package83 in R82.
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spatial modelling of SOC96 because, besides the elevational gradient, the digital elevation model captures vari-
ation in the topographic position, which also controls the spatial distribution of SOC9,97. As SOC is a function 
of litter production (inputs) and decomposition rates (outputs), the high elevation forests combine relatively 
high productivity with relatively low decomposition rates and thus high SOC stocks. However, above the alpine 
treeline, air temperatures decline along with plant growth, litter production and decomposition, resulting in 
expected lower SOC. Nevertheless, this trend cannot be confirmed in this study as the forest inventory data do 
not represent conditions above the treeline.

The results showed that wind exposure is an important predictor of forest SOC after elevation and parent 
material (Fig. 6). At the alpine treelines, the effect of wind on forest SOC varies with site conditions. For example, 
depending on the slope and curvature, the windward sites experience higher wind erosion potential98 and low 
soil moisture99, while leeward sites often retain snowpacks for a longer duration which favours the survival of 
tree seedlings100. The wind exposure variable is expected to have captured some of this topography induced vari-
ability in solar radiation, precipitation distribution, soil erosion, and hence, forest SOC. Some covariates, such 
as TWI, which show the potential water redistribution in the landscape based on topographic features, had low 
importance for the SOC prediction model. In this highly heterogeneous study area, topographic positions with 
higher potential wetness may not have an abundant water supply. For example, deep gorges in high mountains 
may have high TWI values but scarce rainfall.

Proxies of human disturbance probability (cost surface and distance from forest edge) showed relatively high 
variable importance (Fig. 6). The findings agree with a general observation that disturbances such as fire and 
tree cutting, tend to negatively influence SOC stocks101. Human disturbances, such as fuel-wood and leaf-litter 
collection, livestock grazing and burning reduce the deposition of leaf-litter and coarse woody debris and hence 
SOC accumulation. The input variables captured the expected higher intensity of human disturbance to forests 
in proximity of the forest edge or road network. The observed increase in forest SOC with elevation can be par-
tially attributed to the long-term carbon accumulation but also to lower human-induced disturbances102. The 
elevation gradient also served as a proxy of human-induced disturbance intensity, as with increasing elevation, 
there is a decrease in population density and accessibility. In the middle-mountains of Nepal (< 3300 masl), road 
construction activities are the predominant trigger for landslides103,104 which would also affect forest SOC. The 
strong correlation between elevation and mean annual temperature possibly confounds the variation in human-
induced disturbances along the temperature gradients. However, the low elevation region of the study area with 
higher average temperature and population density would represent a contrasting situation compared to the rest 
of the country. The predictor of binary protected status was found to have low importance indicating that the 
variability of SOC distribution was not necessarily dependent on whether a site is within or outside the protected 
area. This is likely the effect of high environmental heterogeneity of the study area combined with highly vary-
ing protected status, resource use patterns and disturbance history. Given the lack of consistent observations on 
disturbances, the study showed that the use of proxies of disturbance likelihood could capture some proportion 
of disturbance impact on forest SOC.

The spatial representation of the prediction error showed that the pattern of errors varied by region. Despite 
having a large number of sample plots, the lowermost foothills had the highest percentage prediction error 
(Fig. 2B). The lower foothills, called Churia hills in Nepal, have predominantly dry, rocky landforms and dis-
sected landscapes with relatively high erosion rates105 and low forest SOC. The larger uncertainty expressed as 
percentage error in Churia is thus the combined effect of lower average SOC stocks (Fig. 2A) and higher relative 
model uncertainty (Supplementary Material Figure S2). Even for the similar absolute error for forest SOC across 
elevation zones, the percentage error will be higher in the low elevation forests with low SOC. Other metrics 
for quantifying errors, such as mean absolute errors that require individual observed and predicted values, are 
not relevant here as the standard errors of prediction were derived and later expressed as the percentage of the 
average SOC for each grid-cell. High elevation forest sites showed higher model uncertainty which was derived 
as the standard deviation (SD) of predicted conditional distribution (Supplementary Material Figure S2A). The 
SD widened for the larger predicted values of forest SOC at the higher elevation. The mountains have large 
topoclimatic variability introducing high spatial variability in environmental conditions and thus in forest site 
productivity106 and forest SOC stocks107. We can expect higher variability in SOC estimates over smaller dis-
tances for this highly heterogeneous region. Large spatial variability of soil properties is a significant source of 
uncertainty for soil carbon prediction in mountainous regions107. Terrain complexity in the mountains can also 
introduce uncertainty in the input predictors, particularly for satellite-derived variables108, such as NDVI due 
to terrain effects such as illumination109 and viewing angles110.

The differences in uncertainty between spatial and random cross-validation were marginal indicating an 
insignificant effect of clustered sampling design on the prediction of forest SOC (Fig. 3). Earlier studies model-
ling diverse ecological attributes such as air temperature, soil water content73, land cover, leaf area index111, and 
terrestrial radiation112 have shown that the random CV strategy considerably underestimates the model error. For 
example, a large reduction in the agreement between predicted and observed estimates of aboveground biomass 
(AGB) in the Congo basin was observed when comparing spatial CV against random CV40. As the authors used 
the clumped patches of raster grid cells with AGB estimates as the model input, input training data consisted of 
contiguous grid cells with higher homogeneity among nearby cells, and hence high autocorrelation was expected. 
For the present study, since plot-based SOC estimates showed high spatial variability in the mountainous region 
over shorter geographical distances, the cluster design did not significantly affect geographical proximity. Further, 
in clustered sample design adopted for the forest inventory sampling protocol, the distance between plot clusters 
is large enough (i.e. ≥ 4 km) such that we cannot see the significant autocorrelation. The variogram analysis 
also confirmed the lack of a strong autocorrelation in model residuals (Fig. 4). The similarity in the comparison 
between the semivariance of residuals derived from random and spatial CV confirmed the highly variable nature 
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of SOC over a shorter distance. Thus, for the highly heterogeneous sites, forest SOC estimated using clustered 
plots separated at a smaller distance (e.g. 200 m) does not show strong autocorrelation.

Area of Applicability (AOA) analysis revealed that the input training data for the model fitting largely rep-
resents the environmental variability across most of the study area. However, high elevation forests, which 
constituted the areas with the largest Dissimilarity Index (DI) (> 0.3), represent relatively small areas that fall 
outside the AOA. The predominance of these areas outside AOA in locations near and above the alpine treeline 
highlights the impact of the limited number of training sample plots in that elevation range of the study area. Poor 
accessibility, a result of the rugged mountain terrain, is one of the key challenges in field sampling, resulting in a 
smaller number of sample plots at high elevations. The clustered sampling design used in this study, with 150 m 
between plots and ≥ 4 km between clusters, may not be suited to capture fine-scale heterogeneity of topoclimatic 
conditions. Another potential issue that contributes to these locations outside AOA can be related to the inclu-
sion of bare or non-vegetated locations in the forest mask due to potential misclassification of forests at the high 
elevation sites. Although the area outside AOA is much smaller than the country’s total area, one option is to 
include SOC sampling along with the finer elevational transect that is representative. However, sampling in the 
high elevation areas poses considerable logistical challenges due to extreme weather conditions and demand-
ing terrain. Many of these areas will not be accessible for field sampling, even with large resources and efforts.

The cross-validation of the SOC prediction showed a reasonable accuracy of the model. A comparison of 
field observations of SOC in forest inventory plots against two existing global-scale products (Fig. 7) revealed 
that the prediction model using available forest SOC data has enabled us to make an informed quantification 
of SOC across Nepal (RMSE of 25.59 compared to 45.49 and 39.61, Figs. 3, 7 respectively). The magnitude of 
deviation between predicted forest SOC from this study and existing global datasets varied with elevation zone. 
In particular, the high elevation region showed the lowest agreement between predicted SOC from this study 
and existing global SOC data products. The varying regional bias between field plot measurement and global 
data has reported for forest biomass113. Despite a reasonable accuracy of spatially explicit SOC maps produced 
by some initiatives on a global scale26,114, a comparison of global SOC predictions against the predicted SOC as 
well as field observed SOC showed large bias, as expected. Our result agrees with reported underestimation of 
up to 40% in global data compared to local field-based estimates from the USA and Europe115. This observation 
led to the suggestion that the global data sets could not account for the fine scale spatial variation in bulk density 
and organic carbon concentration115. A similar observation was recorded in the case of Tibet, whereby the global 
datasets both over and underestimated SOC, depending on the sub-region, with a larger bias predominantly 
found in sites of complex topography52. Similarly, we found that the global products underestimated forest SOC 
in low elevation zones while overestimated in high elevation zones. For example, the RMSE between predicted 
SOC and global datasets was almost three times larger (15 t ha−1 and 55 t ha−1 ) in the high elevation zones (> 
3000 masl) compared to lower elevation zones (< 1000 masl) (Supplementary Material Figure S5). The large 
bias limits the direct use of global SOC maps to make reliable inferences on the variability of SOC, particularly 
for a smaller geographic region and countries with high environmental heterogeneity. The bias in the global 
prediction is expected as global-scale predictions often rely on limited training datasets available for training 
prediction models80. Field-based SOC sampling is often focussed on arable land for agricultural applications, 
which results in relatively few observations of forest SOC. The observed large deviation in existing global SOC 
estimates from the field-based observations suggested caution is required when using global datasets to make 
inferences about the current stocks and changes in SOC over the mountainous region. This disagreement also 
implies the need for the global models to reduce the uncertainty in the high elevation forest SOC estimates by 
expanding observations from the data gap regions as a priority.

Conclusions.  In this study, we aimed to quantify the spatial distribution of forest soil organic carbon (SOC) 
stocks in the Central Himalayas by predicting their spatial distribution across Nepal. Our predictive model, 
informed by a range of spatial covariates, resulted in spatially explicit predictions of forest SOC with associ-
ated prediction uncertainty. Our study provides benchmark SOC estimates for the Central Himalayas, one of 
the largest elevational gradients on Earth, and highlights regional variation in deviations between global and 
national estimates. By combining our spatially explicit SOC estimates with those of another carbon pool, such as 
forest aboveground biomass, we can achieve a more comprehensive accounting of forest carbon. This study offers 
important implications for REDD+ reporting, forest management, and ecological applications. Our approach, 
which incorporated good-practice in machine learning including quantification of uncertainty introduced by 
model error and spatial sampling design, offers a promising method for higher tier reporting of current forest 
SOC stocks. The findings of this study can inform future research linking the variability in landscape SOC stocks 
to climate ranges and predicting the potential impacts of projected changes in temperature and precipitation. 
Given the vulnerability of mountain ecosystems to climate change, our predicted forest SOC benchmarks offer 
valuable insight into the future of these carbon stocks. In conclusion, this study advances our understanding of 
the spatial variability of forest SOC stocks along the elevational gradients of the Central Himalayas and provides 
a crucial baseline for evaluating the potential impacts of a changing climate on these critical carbon reservoirs.

Data availability
The predicted forest soil organic carbon (SOC) stocks covering Nepal, accompanied by the corresponding predic-
tion uncertainty raster can be accessed at: https://​doi.​org/​10.​6084/​m9.​figsh​are.​22140​233116. The spatial layers are 
in GeoTIFF format with a spatial resolution of 30 m and ESPG:32644 spatial reference system.
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