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Comprehensive prediction 
of immune microenvironment 
and hot and cold tumor 
differentiation in cutaneous 
melanoma based 
on necroptosis‑related lncRNA
Miao Zhang , Lushan Yang , Yizhi Wang , Yuzhi Zuo , Dengdeng Chen  & Xing Guo *

As per research, causing cancer cells to necroptosis might be used as a therapy to combat cancer drug 
susceptibility. Long non‑coding RNA (lncRNA) modulates the necroptosis process in Skin Cutaneous 
Melanoma (SKCM), even though the precise mechanism by which it does so has yet been unknown. 
RNA sequencing and clinical evidence of SKCM patients were accessed from The Cancer Genome 
Atlas database, and normal skin tissue sequencing data was available from the Genotype‑Tissue 
Expression database. Person correlation analysis, differential screening, and univariate Cox regression 
were successively utilized to identify necroptosis‑related hub lncRNAs. Following this, we adopt the 
least absolute shrinkage and selection operator regression analysis to construct a risk model. The 
model was evaluated on various clinical characteristics using many integrated approaches to ensure it 
generated accurate predictions. Through risk score comparisons and consistent cluster analysis, SKCM 
patients were sorted either high‑risk or low‑risk subgroups as well as distinct clusters. Finally, the 
effect of immune microenvironment, m7G methylation, and viable anti‑cancer drugs in risk groups and 
potential clusters was evaluated in further detail. Included USP30‑AS1, LINC01711, LINC00520, NRIR, 
BASP1‑AS1, and LINC02178, the 6 necroptosis‑related hub lncRNAs were utilized to construct a novel 
prediction model with excellent accuracy and sensitivity, which was not influenced by confounding 
clinical factors. Immune‑related, necroptosis, and apoptosis pathways were enhanced in the model 
structure, as shown by Gene Set Enrichment Analysis findings. TME score, immune factors, immune 
checkpoint‑related genes, m7G methylation‑related genes, and anti‑cancer drug sensitivity differed 
significantly between the high‑risk and low‑risk groups. Cluster 2 was identified as a hot tumor with 
a better immune response and therapeutic effect. Our study may provide potential biomarkers for 
predicting prognosis in SKCM and provide personalized clinical therapy for patients based on hot and 
cold tumor classification.

Melanoma is a type of skin cancer that has a poor prognosis due to its susceptibility to metastasis, its tendency to 
spread, and its difficulty in detecting in its early  stages1,2. According to projections released by the International 
Agency for Research on Cancer, the mortality rate for SKCM patients will rise to 17% in  20203. Even though 
the pathogenesis is unclear, the potential factors include ultraviolet radiation, melanocytic nevi, dysplastic nevi, 
genetic susceptibility, and a personal or family history of  melanoma1. Early and precise diagnosis and targeted 
treatment planning are essential in preventing tumor  progression4. With the development of targeted and immu-
notherapy, patients’ overall survival (OS) has improved. However, drug resistance has become more and more 
 common5. Therefore, new biomarkers must be explored to improve melanoma’s diagnostic and therapeutic 
accuracy.
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Necroptosis is a unique form of programmed cell death that involves a caspase-independent molecular and 
cellular mechanism, while it is also interconnected to apoptosis and  pyroptosis6. The activation of receptor-
interacting protein kinases 1 (RIPK1) and RIPK3, which in turn triggers alterations in the conformation of mixed 
lineage kinase domain-like (MLKL) and its translocation to the plasma membrane, is the primary initiating event 
in necroptosis. Damage-associated molecular patterns (DAMPs) trigger the release of a flood of cytokines, which 
eventually causes membrane permeabilization to be changed and thereby induce an inflammatory  response7,8. 
Necroptosis would have either a pro-tumorigenic or an anti-tumorigenic effect on cancer, relying on the specifics 
of the tumor’s kind, stage, and  grade9,10. Lack of RIPK1, RIPK3, or MLKL activity is prevalent in some cancers, 
revealing that induced necroptosis may replace apoptosis as a potential therapy in  tumors11,12. Researches show 
that the function of necroptosis in Immuno-Oncology is not unidirectional. The DAMPs-induced inflamma-
tion response may promote the progression and metastasis of cancer. On the other hand, it may also promote 
anti-tumor immunity circumstance according to elevating the cross- stimulation of CD8+ T  cells9,13,14. Although 
reactivation of RIPK1 and RIPK3 can lure necroptosis in a melanoma tumor cell to delay tumor progression, the 
correlation between necroptosis and melanoma still needs further  exploration15,16.

Long non-coding RNA(LncRNA), low coding or not translating into protein, is a type of transcript with more 
than 200 nucleotide  sequences17,18. Most literature thus far suggests that lncRNA aberrant expression and muta-
tions are critical for carcinogenesis, metastasis, and therapeutic resistance in  cancer19,20. As high-specific tissue 
and cell drivers of cancer phenotypes, LncRNAs can become a class of potential biomarkers for prognosis and 
therapy of  cancer21,22. Moreover, Immunological cell activity and immune response in the tumor microenviron-
ment (TME) can also be altered by lncRNAs, which in turn influencing the efficacy of cancer  immunotherapy23–25. 
Several lncRNAs have been associated with melanoma, such as ANRIL, HOTAIR, MALAT1, SAMMSON, etc.26,27. 
However, there is currently no conclusive evidence as to the role of necroptosis-related LncRNAs into melanoma.

This present study attempted to discover some specific necroptosis-associated hub lncRNAs that can predict 
prognosis, immune environment, and drug sensitivity, alleviating the negative impact of immunotherapy failure 
in SKCM patients by providing better options. Furthermore, these analyses were also conducted in subgroups, 
classified as hot and cold tumors, to achieve the purpose of individualized therapy.

Materials and methods
Data integration. The RNA sequence datasets were acquired from the TCGA-SKCM cohort and the GTEx-
Skin cohort, respectively. Then, we make the data (FPKM values) normalized by the limma R package. Overall 
samples from both categories added up to 471 tumors and 813 healthy skin samples. Furthermore, the TCGA 
database was also mined for clinically relevant data on SKCM patients.

Identification of necroptosis‑related lncRNAs. We screened Necroptosis-related genes from the Gen-
eCards database (https:// www. genec ards. org) according to a correlation score of > 0.5, and searched the Gene 
Set Enrichment Analysis website (GSEA) (https:// www. genec ards. org) using the keyword “Necroptosis”. In total, 
206 Necroptosis-related genes were collected by the above approach.

Necroptosis-related lncRNAs were detected by Pearson correlation analysis based on coefficients > 0.4 and 
P < 0.001. Next, differential expression necroptosis-related lncRNAs were identified using the limma R package, 
in which the screening standard is |log2 fold change|> 2 and false discovery rate (FDR) < 0.05.

Construction of the risk model. Merge clinical information from tumor samples with all differentially 
expressed lncRNAs data. Overall prognostic impact of necroptosis-associated lncRNAs was evaluated using uni-
variate Cox (uni-Cox) regression analysis to filter potential lncRNAs (p < 0.05). Next, a least absolute shrinkage 
and selection operator (LASSO) regression analysis was run on candidate necroptosis-associated lncRNAs to 
identify hub lncRNAs and to create a prediction model through multivariate Cox regression. 1000 cycles of 
LASSO regression analysis were performed using tenfold cross-validation at a significance level of 0.05. Each 
cycle was randomly grouped 50 times, dividing the sample equally into two groups each time. Furthermore, the 
LASSO regression results were output only when the error was minimum. The risk score formula is as described 
below:

where exp(lncRNA) is the relative expression of signature lncRNAs, and coef (lncRNA) is the weighted correla-
tion coefficient of signature lncRNAs. Risk classification of SKCM patients by comparing the risk score of the 
patient with the median score.

Constructing and evaluating the nomogram. Univariate cox (uni-Cox) and multiple cox (multi-Cox) 
regression analyses were performed to assess the relationship between risk score and clinical features. And based 
on these results, a nomogram was created to predict patient outcomes using the RMS R package. Furthermore, 
the correction curves were constructed based on the Hosmer–Lemeshow test to verify the predictive reliabil-
ity regarding the nomogram. The model’s 1-, 3- and 5-year time-dependent receiver operating characteristics 
(ROC) curves were built by the timeROC R package. Finally, we used decision curve analysis (DCA) to further 
assess the predictive accuracy of this nomogram.

risk score =

n
∑

i=1

exp
(

lncRNAi
)

∗ coef
(

lncRNAi
)
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Gene set enrichment analysis. Determine if there are significant differences throughout the functional 
pathways between high- and low-risk subgroups, the GSEA 4.2 software was used to discover the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways notably enriched in the two risk groupings (the criterion was 
defined as FDR < 0.05).

Correlation analysis of immunologic characteristics and m7G methylation. Immune infiltra-
tion by different algorithms was downloaded from TIMER2.0 (http:// timer. cistr ome. org/) and merged with the 
risk score. Then, the association between the risk model and immune infiltration was estimated derived from 
Spearman’s rank correlation coefficient. The two risk subgroups were also compared using a single-sample gene 
set enrichment analysis (ssGSEA) to assess whether or not there was a massive distinction in immune function 
and immune cell enrichment. Moreover, the high- and low-risk group were compared in relation to the tumor 
microenvironment (TME) score, and expression of immune checkpoint-related genes. To explore the relation-
ship between necroptosis-related lncRNAs and m7G methylation, we compared the expression of m7g-related 
genes between high- and low-risk group segmented according to this risk signature.

Estimation of anticancer drug sensitivity for SKCM. The “pRRophetic” R package, founded by 
Genomics of Drug Sensitivity in Cancer (GDSC)(https:// www. cance rrxge ne. org/), was employed to forecast the 
difference in drug sensitivity for both risk groups.

Consensus cluster analysis based on the hub lncRNAs. The ConsensuClusterPlus R package was 
implemented to separate SKCM patients into potential subgroups depending on the expression of hub lncRNAs 
by the k-means clustering algorithm. We set the maximum k value as 9 and determine the optimal K value 
through the combination of CDF and consensus matrices. Through using Rtsne and survival R package, we 
examined the subtype distribution and assessed the classification effectiveness including using t-distributed sto-
chastic neighbor embedding (t-SNE), principal component analysis (PCA), and Kaplan–Meier survival analysis. 
Moreover, the immune status, m7G methylation-related genes, and clinical potential chemotherapeutic drug 
clusters were also analyzed simultaneously.

Results
Identify necroptosis‑related lncRNAs in SKCM. There are 386 necroptosis-related lncRNAs identified 
from the data of TCGA and GTEx, as the standard is the coefficients > 0.4 and P < 0.001. After that, flowing the 
differential expression analysis, 87 necroptosis-related lncRNAs were found to display significantly differential 
expression with the screen value as |logFC |> 2 and FDR < 0.05. Among the expression profile of these lncRNAs 
in tumor samples was 57 upregulated and 30 downregulated. The network map, heat map, and volcano map are 
shown in Fig. 1.

Construction and verification of prognosis risk model. On the basis of uni-cox regression analy-
sis, 33 potential necroptosis-related lncRNAs that are substantially linked with overall survival were reported 
(p < 0.05) (Fig.  2A). we also produced a heat map which shows how these lncRNAs were conveyed in both 
cancer and normal samples (Fig. 2B). Then, to construct the risk model, 6 hub necroptosis-associated lncR-
NAs were selected through LASSO regression analysis. Furthermore, we visualized the results of Lasso regres-
sion and cross-validation (Fig. 2C,D). Among these hub lncRNAs, only the relationship between LINC01711 
with BCL2 and AXL was negative, while the rest were positive (Fig. 2E). The risk score was calculated by for-
mula: USP30-AS1 × (− 0.6073) + LINC01711 × (− 0.3162) + LINC00520 × (0.2742) + NRIR × (− 0.6839) + BASP1-
AS1 × (0.3524) + LINC02178 × (1.0015). The results of scatter plots and risk curves, which were consistent 
across the training, testing, and overall set, show that patients have shorter survival times as risk scores increase 
(Fig.  3A–F). USP30-AS1, LINC01711, and NRIR were clearly downregulated in the high-risk group, while 
LINC00520, BASP1-AS1, and LINC02178 presented opposite results in the heatmaps (Fig. 3G–I). The K–M 
curves were consistent across the training, test, and total pools, showing that patients with low-risk scores had 
significantly better overall survival (OS) than the high-risk group, implying a worse prognosis for high-risk 
patients (Fig. 3J–L). Furthermore, the K–M curves’ results among the tumor’s different stages were consistent 
with the front results (Fig. 3M,N).

Construction of nomogram. Compared with age, gender, and cancer stage, the hazard ratio (HR) of the 
risk score in uni-Cox and multi-Cox regression were 1.269 and 1.257 (p < 0.05) (Fig. 4A,B). Therefore, this risk 
signature may act as stable and specific biomarkers to predict the OS of melanoma patients. Upon the basis of 
risk score, age, and cancer stage, a nomogram was constructed to estimating the 1-, 3- and 5-year OS occur-
rences of SKCM patients (all p < 0.05 in multi-Cox) (Fig. 4C). Furthermore, the calibration curve result shows 
that the nomogram with an excellent concordance for 1-, 3- and 5-year (Fig. 4D). Additionally, by comparing 
the ROC curves of risk signature with age, gender, and cancer grade at 1-, 3- and 5-year, where the risk scores at 
1-,3- and 5-year with AUC values of 0.704, 0.685 and 0.715 respectively, were significantly better than the other 
three clinical characteristics (Fig. 5A–C). We also constructed DCA curves for the nomogram at 1-, 3-, 5-year 
compared to age and cancer grade, all of which showed that the risk profile had a more accurate predictive power 
(Fig. 5D–F). These findings suggest that the Nomogram derived from this risk signature can accurately predict 
the prognosis of melanoma patients over the next 5 years.

http://timer.cistrome.org/
https://www.cancerrxgene.org/
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GSEA. The KEGG pathway enrichment analysis was carried out in the overall set to analyze the biological 
function of the risk signature. The top 10 pathways increased in the low-risk group were mainly associated with 
immunity function, including those involved in B cell, T cell, Toll-like receptor signaling, and natural killer 
cell-mediated cytotoxicity. Besides, the rest of the pathways were concerned with apoptosis, Cytokine-cytokine 
receptor interaction, and inflammation-induced immune response. Incredibly, there was no significant path-
ways enrichment in high-risk groups (FDR < 0.05) (Fig. 6).

Investigation of immune factors and m7G methylation‑associated genes in risk models. From 
the results on the bubble plot, the vast majority of immune cells were correlated with the low-risk group. The 
high-risk group was associated with a few immune cells, such as T cell NK and Mast cell at XCELL, Myeloid 
dendritic cell at QUANTISEQ, and Macrophage M1, M2 at CIBERSORT (Fig. 7A). For CIBERSORT platform, 
immune cell infiltration prediction showed that T cell CD8+, T cell CD4+ memory activated, Macrophage M1, 
NK cell activated, T cell gamma delta, and B cell memory was negative with risk scores. B cell naive, Mye-
loid dendritic cell activated, T cell CD4+ naive, Mast cell activated, Eosinophil, Macrophage M0, Macrophage 
M2, and NK cell resting were positive with risk scores (P < 0.05) (Fig. 8). The TME scores (containing stromal, 
immune, and ESTIMATE scores) were substantially higher in the low-risk group (P < 0.05) (Fig. 7B–D). We 
further observe that compared to the high-risk group, the low-risk group demonstrated significantly elevated 
levels of 15 immune cells score and 12 immune functions (***P < 0.001, **P < 0.01) (Fig. 7E,F). Only the scores 
of mast cell and type II IFN responses did not differ in the two groups. Above of this suggests that the low-risk 

Figure 1.  Identify necroptosis-related lncRNAs in SKCM. (A) Volcano diagram. (B) Heatmap of 87 lncRNAs’ 
expression. (C) Network map of the link between lncRNAs and genes.
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Figure 2.  Screen and validate the necroptosis-related hub lncRNAs in SKCM. (A) 33 prognostic lncRNs in 
SKCM patients. (B) Expression of 33 prognostic lncRNAs in samples. (C) The LASSO model’s tenfold cross 
verification results. (D) The optimal LASSO coefficients for risk model construction. (E) The relationship 
between 6 hub lncRNAs with necroptosis genes.
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group appears to be more strongly associated with the immune microenvironment. Furthermore, by differential 
expression analysis, the two groups showed significant differences in the expression profiles of 44 immune-
related checkpoint genes (***P < 0.001, *P < 0.05) (Fig.  7G). Among them, TNFRSF14, CD276, VTCN1, and 
CD44 were enriched in the high-risk group, whereas the rest genes were concentrated in the low-risk group. 
Therefore, we can use risk grouping to rationalize the selection of immune checkpoint inhibitors. Between risk 
groups, there were statistically significant changes in the expression levels of 17 genes involved in m7G meth-
ylation. In comparison to the low-risk subgroup, the high-risk subgroup exhibited markedly lower amounts of 
DCP2, IFIT5, NCBP2, and EIF4E3, while higher levels of EIF3D, EIF4A1, NSUN2, GEMIN5, AGO2, EIF4E, 
NCBP3, WDR4, LARP1, SNUPN, NUDT3, DCPS, and METTL1 (***P < 0.001, **P < 0.01, *P < 0.05) (Fig. 7H).

Figure 3.  Forecasting capacity of the risk model. (A–C) Risk classification of SKCM patients in the training, 
testing, and overall set. (D–F) Relationship between survival condition and risk score in the training, testing, 
and overall set. (G–I) Different expressions of 6 hub lncRNAs in distinct risk scores of the training, testing, and 
overall set. (J–L) K–M curves’ results of SKCM patients in the training, testing, and overall set. (M–N) K–M 
curves’ results of SKCM patients in different cancer stages.
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Relevance between risk model and drug sensitivity. Necroptosis-related hub lncRNAs correlate with 
several common melanoma therapeutic agents. Low-risk patients were more responsive to Axitinib, Bosutinib, 
Cisplatin, Dasatinib, Gefitinib, Nilotinib, and Sunitinib than than high-risk patients. In contrast, the finding for 
imatinib was polar opposite (P < 0.05) (Fig. 9). Therefore, individualized selection of sensitive drugs for the risk 
subgroup was expected to improve the effectiveness of clinical treatment.

Differentiate between cold and hot tumors. According to the results shown in the CDF diagram, 
consensus matrix plots, and fragment plots, the optimal K value was 2 (Fig. 10A,B). Then, we reclassified SKCM 
patients into two clusters depending on the expression of hub lncRNAs. The results of PCA and t-SNE show 
that the distribution of samples in clusters does not exactly match the risk subgroups (Fig. 10C–F). The Sankey 
plots show the relationship between the two grouping methods, where Cluster1 strongly linked to the high-
risk group and Cluster 2 to the low-risk group (Fig. 10G). Following the K–M analysis, Cluster 2 exhibited a 
superior survival outcome (P = 0.002) (Fig.  10H). By evaluating the immune microenvironment for clusters, 
we found that Cluster 2 had a higher degree of immune infiltration and a significantly higher TME score than 
Cluster 1 (P < 0.05) (Fig. 11A–D). Only TNFRSF14, CD276, and VTCN1 were significantly expressed in Cluster 
1. Conversely, most immune checkpoint genes were significantly activated in Cluster 2 (***P < 0.001; **P < 0.01; 
*P < 0.05) (Fig. 11E), especially the HAVCR2, LAG3, and CD274 genes, which were thought to contribute to 
important functions in hot tumors. Accordingly, cluster 2 was considered the hot tumor. The expression levels of 
m7G methylation-related genes DCP2, IFIT5, AGO2, NCBP2, EIF4G3, NUDT4, and EIF4E3 were higher, while 
NSUN2, EIF4E, WDR4, DCPS, and METTL1 were lower in cluster 2 in comparison with cluster 1 (Fig. 11F). 
We also analyzed the differences in drug IC50 between clusters and showed that AKT.inhibitor.VIII, Axitinib, 
Cisplatin, Dasatinib, Gefitinib, and Nilotinib had a higher score in cluster 1 than in cluster 2 (P < 0.05) (Fig. 12). 
As a result, the above-mentioned 6 drugs were more effective against cluster 2, the hot tumor. These drugs may 
be used as an adjunctive treatment option to reverse the poor outcome of immunotherapy resistance.

Figure 4.  Nomogram and evaluation of the risk model. (A, B) Uni- and multi-Cox analysis of clinical variables 
and the risk score for OS. (C) Nomogram diagram of the risk model. (D) Calibration curves for 1-, 3-, and 
5-year OS.
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Discussion
For melanoma, the most lethal skin cancer, benefits for patients have vastly improved since the introduction of 
targeted treatments and  immunotherapy28–30. However, the problems of inadequate response and drug resist-
ance to BRAF/MEK and CTLA-4/PD-1 inhibitors are becoming increasingly  tricky31,32. Necroptosis, as a form of 
immunogenic cell death, can overcome apoptosis resistance and effectively facilitate anti-cancer  immunity33,34. 
Some lncRNAs have been found to have tumor-suppressor functions, which can eliminate adverse effects of 
immunotherapy resistance for cancer. On the other hand, some lncRNAs were known to help induce immune 
system evasion for cancer  cells24,25. Therefore, the based targets of necroptosis-related lncRNAs would assist with 
immunotherapy in melanoma as a potential strategy to evade therapy failure.

In the present study, USP30-AS1, LINC01711, LINC00520, NRIR, BASP1-AS1, and LINC02178 were selected 
as the final components of the risk model. The Sankey diagram shows that only LINC01711 was negatively cor-
related with BCL2 and AXL among the hub lncRNAs. Silencing of BCL2 in melanoma cells inhibits the polariza-
tion of M2 macrophages, promoting anti-cancer immunity and interfering with tumor  progression35. AXL was 
prominently expressed in the sentinel lymph nodes of melanoma, suggesting a correlation with  metastasis36. 
Overexpression of both genes would affect the outcome of anti-PD-1  immunotherapy37,38. LINC02178 has been 
shown to be associated with lung adenocarcinoma and endometrial cancer, which may serve as a specific prog-
nostic marker for  cancer39,40. NRIR, firstly found to be associated with melanoma by our study, was positively 
correlated with CYLD, MLKL, STAT1, and TNFSF10. These genes interfere with melanoma cell progression, 
epigenetic alterations, the microenvironment of tumor cells, and the effect on  immunotherapy16,41,42. Besides 
above 3 lncRNAs, the remaining hub lncRNAs have been linked to the development of melanoma. Existing stud-
ies suggest that USP30-AS1 and BASP1-AS1 may be interfere in melanoma cancer cell  autophagy43,44. Multiple 
researches have demonstrated that cancer cells with high expression levels of RIPK3 and MLKL are more likely 
to undergo necroptosis and trigger immune responses that fight  tumors11,45. USP30-AS1 was highly correlated 
with RIPK3 and MLKL in the present investigation, however the risk score decreased with increasing USP30-
AS1 expression. However, the specific regulatory pathways of USP30-AS1 interfering with RIPK3 and MLKL in 
melanoma still need further investigation. LINC00520 may interfere with melanoma progression through the 
miR125b-5p/EIF5A2  axis46. LINC00520 expression was positively correlated with AIFM1, and high-risk scores, 
suggesting a poor outcome. However, the relevance of AIFM1 in melanoma remains uncertain. These obtained 
hub lncRNAs may provide a foundation for research addressing melanoma treatment failure.

Immune checkpoint inhibitors have transformed the treatment of patients with advanced melanoma, provid-
ing many patients with the opportunity to extend their  survival47. However, many patients do not respond to 
treatment, and others experience varying degrees of adverse drug effects. Therefore, differentiating between cool 
and hot tumors by evaluating the immune microenvironment helps better direct immunotherapy  interventions48. 

Figure 5.  Verification of risk score as an independent predictor. (A–C) ROC curves for Nomogram at 1, 3 
and 5 years compared to age, cancer stage and gender. (D–F) DCA curves for Nomogram at 1-, 3- and 5-year 
compared with age, cancer stage, and risk.
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Hot tumors tend to have a high degree of immune infiltration and are enriched in many immune  functions49. 
Necroptosis, a potentially novel mechanism of immune cell death, releases large amounts of immunogenic 
DAMPs. Stimulation of DAMPs may alter the immune resistance of the tumor, transforming it from a cold to a 
hot tumor. For these reason, necroptosis activation in cancer cells may boost immunotherapy’s  effectiveness34.

RNA methylation, a type of RNA modification, happens in both mRNA and lncRNA. Although m7G-related 
tumor research is still in its infancy, current studies indicate that it interfered with cancer development and can 
regulate the immune environment of cancer cells by regulating the expression of  genes50,51. N7-methylguanosine 
(m7G) has been associated with modifications of a range of genes, particularly METTL1 and  WDR452. Our 
results show that the typical m7G methylation-related genes, METTL1, and WDR4, are more highly expressed 
in high-risk and cold tumors compared to the other two subgroups. This fantastic result suggests that inhibiting 
m7G methylation modifications may promote necroptosis in cancer cells and stimulate anti-tumor immunity. 
However, the concrete mechanisms of these relationships are unclear, which will facilitate future studies of m7G 
methylation of RNA in melanoma.

With the developing knowledge of the biology underlying melanoma, the combination therapeutic strategy 
for targeted genetic inhibitors with immune checkpoint inhibitors can significantly benefit advanced  patients29,31. 
However, the rising incidence of drug resistance and complications has led to treatment failure and increased 
patient burden. In the present study, the sensitivity of some common adjuvant melanoma drugs not only differed 
between high- and low-risk groups but also hot and cold tumors. Therefore, drugs with significant sensitivity 
may modify the immune microenvironment of the tumor and reduce the adverse effects of immune escape as a 
complementary option in order to maximize the efficacy of immunotherapy and the survival time for metastatic 
melanoma patients as much as possible.

Although we attempted to construct the model by increasing the number of random groupings and cross-
validation to make the risk model more accurate, there are still limitations. Above all, as a retrospective study, 
despite the relatively large sample size and the internal validation, external validation of other databases is still 
lacking. The reason is related to other datasets with smaller samples, and less complete information is less suit-
able for validation. Second, there is a dearth of experimental analysis to support the results of bioinformatics 
analyses. The predicted results for drug sensitivity are based on a pan-cancer public database. Hence, multicenter 
trial clinical efficacy data and prospective studies are required to demonstrate its viability. Future challenges 
include a deeper exploration of the mechanisms behind necroptosis-related lncRNAs in melanoma is needed.

Conclusion
Our research successfully predicted the necroptosis-related hub lncRNAs in melanoma, and these lncRNAs 
provide novel potential targets to eliminate the adverse effects of immunotherapy resistance in melanoma. Fur-
thermore, identifying hot and cold tumors and providing personalized treatment plans that improve the immune 
microenvironment would provide more significant benefits for advanced patients. Therefore, we consider that 
necroptosis-related hub lncRNAs have a significant role in aiding earlier detection and improving poor treatment 
outcomes in malignant melanoma.

Figure 6.  Richness of KEGG pathway via GSEA analysis.
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Figure 8.  Prediction of immune cell infiltration. (A–N) Association between risk scores and immune 
infiltration based on the CIBERSORT software.
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Figure 10.  Distinguish between cold and hot tumors. (A, B) The optimal CDF diagram and consensus matrix 
plots of subgroups. (C–F) PCA and t-SNE diagram for risk groups and clusters. (G) Composition relationship 
between risk groups and clusters. (H) K-M curves’ results of SKCM patients in clusters.
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Figure 11.  Potential correlation of immune factors, immune checkpoint genes, and m7G genes with hot and 
cold tumors. (A) Heatmap of immune cells for clusters. (B–D) Boxplot for stromal, immune, and ESTIMATE 
scores between clusters 1 and 2. (E, F) Differentially expressed immune checkpoint genes and m7G methylation 
genes between clusters 1 and 2.
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Data availability
The data that support the findings of this study are available from the first author upon reasonable request. The 
datasets for analysis in this research were obtained from the open TCGA (https:// portal. gdc. cancer. gov/) as well 
as the GTEX database (https:// xenab rowser. net/).
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