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The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the 
need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since 
traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly 
appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex 
antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 
13, a unique enzyme that forms α-alkyl β-ketoesters as a direct precursor of mycolic acids which are 
essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like 
compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with 
binding energy value of − 11.25 kcal/mol, − 9.87 kcal/mol and − 9.33 kcal/mol, respectively. The control 
molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable 
with maximum root mean square deviation (RMSD) value of 3 Å. Similarly, the MM-GB\PBSA method 
revealed highly stable complexes with mean energy values < − 75 kcal/mol for all three systems. The 
net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The 
in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable 
candidates for additional experimentations. In summary, the study findings are significant, and the 
compounds may be used in experimental validation pipeline to develop potential drugs against drug-
resistant tuberculosis.

Tuberculosis (TB) is a deadly infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis) and 
listed as the 13th leading cause of mortality worldwide and the 2nd infectious leading killer after COVID-19. 
According to the WHO, it was estimated that 10 million people were infected with TB in 2020, of which 1.5 mil-
lion people died. Global reports indicate that the incidence rate is rising in all countries and among all ages and 
further aggravated by latent infections. Furthermore, it is estimated that 5–10% of world population will develop 
active TB during their  lifetime1. The standard treatment for drug sensitive TB requires 6–9 months regimen 
of antibiotics combination. Essentially, four first-line antibiotics used in the treatment of TB (isoniazid–INH, 
rifampicin–RMP, ethambutol–EMB, pyrazinamide–PZA) and some other drugs which can be administered to 
patients infected with resistant strains M. tuberculosis Although TB is curable and preventable, multidrug-resist-
ant TB (MDR-TB) and extensively drug-resistant strains of M. tuberculosis (XDR-TB) remain a global burden 
rendering the standard treatment  ineffective2. It is estimated that about 0.5 million of MDR-TB cases reported 
annually worldwide and nearly 14,000 XDR-TB cases were originated from 81  countries3,4. Additionally, the 
management of TB was further aggravated as MDR-TB developed resistant to two of the first-line drugs; RMP 
and INH, while XDR-TB is resistant to the four essential antitubercular drugs and at least one of the injectable 
second-line drugs such as amikacin, capreomycin, or  kanamycin5,6. The current guideline of treating MDR-TB 
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and XDR-TB involve pretomanid, and bedaquiline (approved by the US FDA in 2019 and 2012, respectively) 
along with linezolid as the first line tuberculosis  therapy1,7. In consequence to the high number of TB resistant 
cases, the demand to introduce promising antitubercular drugs are urgently needed particularly those that are 
designed to target tuberculosis biomolecules essential for various biological processes.

The cell wall of M. tuberculosis is regarded a rich source of molecular targets that can be exploited to design 
and develop novel antitubercular  drugs8,9. It is a unique structure that contains mycomembrane and peptidogly-
can layer. The former comprised long chains of fatty acids termed as mycolic acids (MAs). These molecules 
are specific lipid components that are essential for the survival and virulence of M. tuberculosis and bind to 
arabinogalactan via ester  bonds10,11. The inhibition of MAs biosynthesis is the main mechanism for the effect of 
the forefront and effective anti-tubercular drug  INH12. Hence, much interest have been devoted to deciphering 
the biosynthesis of MAs to recruit attractive targets for development of unconventional antitubercular drugs to 
tackle the drug-resistant TB.

Polyketide synthase 13 (Pks13) plays a crucial role in the biosynthesis of MAs in which it mediates the con-
densation of two fatty acids to form mycolic β-ketoester, a direct precursor for MAs. It comprises five distinct 
catalytic domains, of which thioesterase domain (TE) plays a dual function where it first acts as a hydrolase to 
break the thioester bond and form an ester bond between mycolic β-ketoesters and the hydroxyl group of Ser1533 
of the TE domain. In the second function, TE acts as an acyltransferase to form trehalose monomycolate (TMM) 
which is then transported and attached to  arabinogalactan13,14. The thioesterase domain of Pks13 (Pks13-TE) 
has been recognized as a druggable target for developing anti-tubercular  drugs15,16. As a result, several poten-
tial compounds have been proposed to interact with the Pks13-TE. These compounds include  thiophenes17, 
 benzofurans18, and β-lactones19.

Conventional drug development is a daunting, time-consuming, and costly task that suffers from high failure 
 rate20–23. In recent times, the computer aided drug design (CADD) techniques have gained considerable attention 
and proved indispensable in drug discovery  process24. CADD methods are in silico approach that can acceler-
ate the drug discovery and shorten the time needed for leads identification to drug marketing. Additionally, 
these computational methods are critical in estimating biological activities of chemical compounds against any 
given biological  target25,26. CADD can also be helpful in determining the binding affinity of compounds when 
it is docked to any target of interest as well as predicting the physicochemical properties of  compounds27–31. 
The CAAD methods have successfully used in the past for discovery of drugs such as nelfinavir, imatinib, 
and  zanamivir32. Considering the vast applications of CADD techniques in drug discovery, we herein targeted 
Pks13-TE domain using a multi-pronged in silico approach. The findings gathered in this study might be useful 
in successful identification of leads that can be further optimized for biological activity as novel anti-tubercular 
therapeutics.

Materials and methods
The study was based on in silico techniques that can be split into following phases;

Asinex library preparation. The Asinex antibacterial library was retrieved from Asinex web available 
at https:// www. asinex. com/. The library contains 6208 compounds of natural product-like scaffolds providing 
diversity and accessibility for experimental studies. The library was imported to LigandScout  software33 where 
the library was filtered based on Lipinski rule of  five34. The filtered library was then subjected to PyRx 0.835 to 
energy minimized the compounds using MM2 force  field36 followed by conversion to .pdbqt format to make the 
compounds ready for docking studies.

Pks13-TE enzyme preparation. For potential leads identification against Pks13-TE, a protein data bank 
(PDB) ID of “7M7V” was chosen based on the fact that the structure is most recent with good resolution of 
2.29 Å37. The enzyme structure was then subjected to energy minimization process in UCSF Chimera 1.1638. The 
energy minimization process was done in two steps: first by steepest descent for 1000 steps followed by conjugate 
gradient algorithm for 1500 rounds. Missing hydrogen atoms were added to the enzyme and charge assignment 
was done through gasteiger method. The RMSD of minimized and non-minimized Pks13-TE was 0.24 Å. After 
energy minimization, the enzyme was saved into .pdb format and converted afterward into .pdbqt format for 
utilization in virtual docking studies.

Structure based virtual screening process. To identify potential leads against Pks13-TE, structure 
based virtual screening process was performed. This was done using coordinates information of Tyr1663 which 
is considered a focus point of the thioesterase domain. The virtual screening process was achieved using PyRx 
0.8 by employing AutoDock Vina 4.035,39. The grid box was centered covering coordinates of 4.32 Å (x-axis), 
35.85 Å (y-axis) and 6.77 Å (z-axis) with dimensions of 25 Å on XYZ planes. Each molecule in the library was 
docked with the enzyme 100 times and the best posed molecules were ranked based on binding energy score 
which was measured in kcal/mol. Molecules with lowest binding energy score in reference to the control mol-
ecule, Benzofuran  137, were reported. The control molecules extracted from the crystal structure and redocked to 
the enzyme to validate the docking procedure. Another round of docking procedure revalidation was achieved 
by using GOLD docking software considering the same set of parameters described above. The best docked 
complexes were used in Discovery Studio Visualizer 2021 to examine the docked intermolecular conformation 
and observed chemical interactions  network40.

Molecular dynamic simulation (MDS). MDS was done to get information about physical movements 
of docked complexes. The MDS was performed using AMBER20  package41. The complexes were processed 
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through Antechamber  program42. For compounds, Amber general force field (GAFF) was employed to generate 
parameter files while for Pks13-TE, FF14SB was  considered43,44. The systems were solvated into TIP3P water 
model and then counter ions were added to neutralize the net charge. The padding distance set between the com-
plex and water box edge was 12 Å45–47. Energy minimization was then carried out for complexes using steepest 
descent and conjugate gradient algorithms for total of 3000 steps. After that, the complexes were heated to 310 K 
for 500 ps. The systems were then equilibrated and subjected to production run of 300 ns. This time scale was 
found sufficient to get well converged systems. The long term interactions were treated via particle mesh Ewald 
 method48. The hydrogen bonds were constrained via SHAKE algorithm while for temperature control, Langevin 
algorithm was  used49,50. The simulation trajectories processed through CPPTRAJ module to investigate struc-
ture stability of the  systems51. Plots were made using  XMGRACE52. Further, MM-GB\PSA binding free energy 
was employed to get confidence on the intermolecular binding  affinity53,54. For this purpose, 1500 frames were 
opted from the entire simulation trajectories at equal time interval to investigate intermolecular binding energies 
of complexes along the simulation time length. The extracted frames were subjected to MMPBSA.py script to 
estimate net binding free  energy55. The net binding free energy was estimated through the following equation;

Validation on the MM-GB\PSA was done through more sophisticated WaterSwap method that uses reac-
tion coordinates to swap water cluster equal to size of the ligand molecule and swap it with the  ligand56. The 
WaterSwap was defaulted for 1000 iterations. Three algorithms were used in WaterSwap: thermodynamic inte-
gration, Bennett’s, and free energy perturbation.

Entropy energy analysis. The binding entropy energy of docked compound was also estimated to get 
real binding affinity score of complexes. For this, AMBER normal mode analysis was  employed54. The method 
is computationally expensive; therefore, only several snapshots (10 frames) from the entire simulation trajec-
tories were selected. In this method, several energies were determined such as translational, vibrational and 
 rotational57,58.

SwissADME and pkCSM analysis. The computational druglikeness and pharmacokinetics were pre-
dicted to ensure selection of only promising  molecules59,60. The absorption, distribution, metabolism, and excre-
tion (ADME) and toxicity of compounds were estimated using SwissADME and  pkCSM28,61.

Results and discussion
Docking studies. Structure based virtual screening was conducted to prioritized chemical compound that 
bind best to the Pks13-TE. The combined approach of virtual screening and MDS have been used in the past to 
successfully screen inhibitor molecules against biological  targets45,62–64. The Lipinski rule of five revealed total 
of 26,024 molecules as druglike compounds. These molecules were used in virtual screening process against 
Pks13-TE. Three compounds have stable binding affinity and identified as promising leads. These compounds 
are BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of − 11.25  kcal/mol, − 
9.87 kcal/mol and − 9.33 kcal/mol, respectively. The control molecule binding energy score was − 9.25 kcal/mol. 
The binding affinity of the compounds/control at the active pocket of polyketide synthase Pks13 was revisited by 
GOLD docking software. The GOLD fitness score of BBB_26582140 was 78.62, BBD_30878599 has GOLD score 
of 75.83 while the GOLD docked affinity of BBC_29956160 was 72.55. The control molecule secures a GOLD 
fitness score of 73.00. The BBB_26582140 is 2-((1-acetylpiperidin-3-yl)methyl)-5-carboxypyrazine-1,4-diium. 
The compounds achieved deep floor binding at Pks13 functional domain and accomplished rich interacting 
network. The oxygen atom of 1-(piperidin-1-yl)ethanone formed closed distance hydrogen bond of 2.01 Å with 
His1699. Another hydrogen bond was revealed with Asp1644 at distance of 1.88 Å via 2-carboxypyrazine-1,4-di-
ium ring. The binding mode and interactions of compound BBB_26582140 is given in Fig. 1.

The BBD_30878599 is N-(2-hydroxyethyl)-5-(piperidin-2-yl)-2,5-dihydro-1H-pyrazole-3-carboxamide. The 
compound interactions are balanced by both van der Waals and hydrogen bonds. The N-(2-hydroxyethyl)forma-
mide is mainly engaged in hydrogen bonds with Asp1644 and Ala1667. The compounds like the first compound 
docked deep inside the pocket and gained access to the pocket bottom (Fig. 2).

The BBC_29956160 is 3-(aminomethyl)-N-methyl-2,5-dihydro-1,2,4-oxadiazole-5-carboxamide. This com-
pound accommodates across the pocket length and forms hydrogen bond with Asp1644 at distance of 1.87 Å. 
Also, the compound produces His1699 and Asn1640 at bond distance of 2.63 Å and 1.91 Å, respectively (Fig. 3).

The control compound interactions with the enzyme is mainly dominated by hydrophobic contact and only 
one hydrogen bond was witnessed with Asp1644 (Fig. 4).

Dynamic studies of docked complexes. Insights about physical movements of docked compound with 
receptor were accomplished using molecular dynamic simulation assay. This was essential as docking studies 
only provide one snapshot view while biomolecules behave in time dependent dynamics milieu. The first analy-
sis performed in this regard was root mean square deviation (RMSD), followed by root mean square fluctuation 
(RMSF). Both these analyses were conducted considering carbon alpha atoms of the complexes. Compared to 
control, all the complexes disclosed stable dynamic conformation of polyketide synthase Pks13. The RMSD 
of all complexes reported stable behavior in the presence of docked compounds. The most stable system is of 
BBD_30878599 with mean RMSD of 1.07 Å. The control system shown higher RMSD with regular variations 
throughout the simulation length. The mean RMSD noted for control complex was greater than 3 Å. Similarly, 
the RMSF complements the RMSD analysis. The N-terminal of the receptor bimolecular showed higher RMSF 
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Figure 1.  Binding mode of compound BBB_26582140 at the active pocket of polyketide synthase Pks13. 
The receptor enzyme is given in gray cartoon while the compound is presented in green stick. The binding 
interactions network is also provided.

Figure 2.  Binding mode of compound BBD_30878599 at the active pocket of polyketide synthase Pks13. 
The receptor enzyme is given in gray cartoon while the compound is presented in green stick. The binding 
interactions network is also provided.
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Figure 3.  Binding mode of compound BBC_29956160 at the active pocket of polyketide synthase Pks13. 
The receptor enzyme is given in gray cartoon while the compound is presented in green stick. The binding 
interactions network is also provided.

Figure 4.  Binding mode of control compound at the active pocket of polyketide synthase Pks13. The receptor 
enzyme is given in gray cartoon while the compound is presented in green stick. The binding interactions 
network is also provided.
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than the C-terminal. The RMSD and RMSF plots are given in Fig. 5. Previously, it was reported that Coumestan 
derivatives were able to bind well with Pks13 and induce colony-forming unit (CFU) reduction of 1.0/ml of the 
bacterial  culture65. Further, it was demonstrated that Benzofuran derivatives inhibit the Pks13  enzyme both 
in vitro and in vivo37. The radius of gyration (RoG) analysis was further performed to examine the compact 
behavior of docked  complexes66,67. The receptors compact behavior is important to maintain strong intermolec-
ular docked conformation and interactions. The RoG of studied systems is given in Fig. 6. All the three systems 
revealed RoG value ~ 37–38 Å, revealing highly stable RoG. Similarly, solvent accessible surface area (SASA) 

Figure 5.  Dynamic investigation of docked complexes. (A) structure stability RMSD and (B) residue flexibility 
RMSF.

Figure 6.  RoG analysis of docked complexes. The analysis is done considering carbon alpha atoms.
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analysis was conducted for the  systems68,69. The SASA for BBB_26582140, BBD_30878599, BBC_29956160 and 
control is given S-Fig. 1, S-Fig. 2, S-Fig. 3 and S-Fig. 4, respectively. The analysis demonstrated that the intermo-
lecular interactions is highly intact and the water molecules accessibility is low.

MDS free energy analysis. The MM-GBSA and MM-PBSA binding free energy are undoubtedly prom-
ising methods in predicting binding affinity of compounds docked to a particular biomolecule. These meth-
ods are appreciated in term of computational speed demands and reliability in predicting compounds inter-
action strength compared to experimental data. In comparison to control, it has been revealed that molecule 
BBD_30878599 is the most promising binder to Pks13-TE with net energy value of − 79.75 kcal/mol in MM-
GBSA and − 79.31 kcal/mol in MM-PBSA. Similarly, the BBB_26582140 and BBC_29956160 have also dem-
onstrated better binding to Pks13-TE in reference to the control. The gas phase energy was found dominating, 
whereas van der Waals played a major role in compounds binding with Pks13-TE. This was followed by electro-
static energy. The negative contribution was seen polar solvation energy. The data reported by both MM-GBSA 
and MM-PBSA techniques noticed the compounds showed considerable compounds binding to the receptor 
biological molecule. Details about each parameter energy contribution to the net MM-GBSA and MM-PBSA 
are presented in Table 1. Furthermore, the binding energy score of hotspot residues involved in binding with the 
compounds is given in Table 2. These hotspot residues have vital contribution in overall intermolecular confor-
mational and interaction  stability66,70.

WaterSwap binding energy. Additional confidence was accomplished on the MM-GBSA and MM-PBSA 
results using WaterSwap method. This method is regarded more accurate due to its ability to consider the role of 
water molecules particularly those that bridge the ligand with the protein residues. The WaterSwap based energy 
calculation was done using three algorithms; TI, FEP and Bennett’s. The difference of value 1 kcal/mol among 
the algorithms demonstrated the systems well converged. As can be noticed, the systems are significantly stable 

Table 1.  MDS free energies analysis (kcal/mol).

Energy parameter BBB_26582140 BBD_30878599 BBC_29956160 Control

MM-GBSA

 Van der Waals − 66.68 − -62.08 − 61.87 − 55.68

 Electrostatic − 20.23 − 18.33 − 15.46 − 12.06

 Polar 19.10 16.66 12.85 11.30

 Non-polar − 10.69 − 16.00 − 11.22 − 9.14

 Gas phase − 86.91 − 80.41 − 77.33 − 67.74

 Solvation 8.41 0.66 1.63 2.16

 Delta − 78.5 − 79.75 − 75.7 -65.58

MM-PBSA

 Van der Waals − 66.68 − 62.08 − 61.87 − 55.68

 Electrostatic − 20.23 − 18.33 − 15.46 − 12.06

 Polar 20.10 15.08 13.93 12.90

 Non-polar − 10.56 − 13.98 − 10.55 − 11.77

 Gas phase − 86.91 − 80.41 − 77.33 − 67.74

 Solvation 9.54 1.1 3.38 1.13

 Delta − 77.37 − 79.31 − 73.95 − 66.61

Table 2.  Binding energy score of hotspot residues involved in compounds binding.

Residue BBB_26582140 BBD_30878599 BBC_29956160

Ala1477 − 1.52 − 1.08 − 0.51

Arg1578 − 1.05 − 0.68 − 1.32

Tyr1582 − 8.64 − 1.34 − 0.96

Tyr1637 − 0.53 − 0.86 − 1.24

Asn1640 − 1.86 − 4.50 − 4.25

Arg1641 0.20 − 0.36 − 1.07

Asp1644 − 4.36 − 3.85 − 3.88

Ala1667 − 2.87 − 3.99 − 1.30

His1699 − 3.59 − 1.55 − 1.11

Phe1670 − 1.67 − 1.29 − 1.01
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in term of intermolecular binding interactions and binding conformations. The WaterSwap based binding free 
energies are given in Fig. 7.

Entropy energy calculation. Binding entropy estimation was performed to determine freedom energy of 
docked molecules with Pks13-TE. It was demonstrated that net entropy energy is negative in all systems, indicat-
ing that the systems significantly hold non-favorable energy that contribution to the instability of the systems. 
However, this energy is much less than the net total of MM-GBSA and MM-PBSA which indicates that systems 
are stable enough to ensure intermolecular docked conformation. The systems entropy energy is provided in 
Fig. 8.

Pharmacokinetic analysis. In silico pharmacokinetic analysis is vital to shed light on what the body will 
do with the selected drugs. The study can guide how the drugs will be subjected to absorption, bioavailability, 
distribution, metabolism, and excretion once administered into the host body. In pharmacokinetic, the most sig-
nificant factor to evaluate is the oral bioavailability and adsorption of the drugs in gastrointestinal tract. Except 
BBD_30878599, the selected compounds were predicted to show high gastrointestinal absorption including the 
control molecule. This indicates that high proportions of drugs can be available for therapeutic affect at the target 
sites. Determination of compounds permeability to the central nervous system (CNS) is prerequisite in drug 
discovery. All the compounds as well as the control were found non-permeable to the CNS. The P-glycoprotein 1 
(Pgp-1) is a multi-drug resistance protein that pumps out foreign substances from the cells. It was found that the 
BBD_30878599 and control are non-substrate to Pgp-1 and thus they are unlikely to be excluded from the cells. 
Similarly, all the compounds are non-inhibitors of CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4. These 
cytochrome proteins are involved in metabolism of drugs and xenobiotic. The control is inhibitor for majority 
of these cytochromes. The compounds skin permeation value ranges from − 7.61 to − 8.17 cm/s compared to 
control (− 7.19 cm/s). The pharmacokinetic analysis of compounds is presented in Table 3. From water solubil-
ity perspective, the compounds were classified as good water soluble. The control molecule was predicted as 
moderate water soluble.

Druglikeness/medicinal chemistry analysis. Druglike compounds have higher chances of reaching 
market and can be branded into a successful drug. There are certain rules that are available to check whether 
a compound is drug like or not. The most important is Lipinski rule of five. According to this rule, all the 
compound fulfills Lipinski rule of five and are classified as drug like. This rule defines a drug molecule to have 
molecular weight < 500 Dalton, hydrogen bond donors < 5, hydrogen bond acceptors < 10, and topological polar 
surface area < 140 Å2 and LogP value < 5. Likewise, except control molecule, Ghose predicted all the screened 
molecules to be non-drug as they have disagreed on the LogP and molecular weight. Similarly, the compounds 
agree on Veber, Egan and Muegge rules. Also, the compounds have good bioavailability score. The compounds 

Figure 7.  WaterSwap binding free energy in kcal/mol. The energy values are the outcome of three algorithms.
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except control was found to have zero alert for pan-assay interference (PAINS) compounds and likely to interact 
with one specific biomolecule. The BBB_26582140 was the only compound that has lead-like structure and thus 
can be structurally optimized to enhance the biological potency. The synthetic accessibility predicted the com-
pounds can be easily synthesized for experimental analysis. All the druglikeness/medicinal chemistry analysis 
are presented in Table 4. The compounds are also classified as non-mutagenic, non-carcinogenic and non-AMES 
toxic. Further, the compounds showed less hepatotoxicity.

Conclusions
In this study, three compounds; BBB_26582140, BBD_30878599 and BBC_29956160 were identified as best 
binders of Pks13-TE. The compounds were noticed to docked deep inside the binding pocket of the enzyme 
and formed rich pattern of both hydrophobic and hydrophilic contacts. The compounds binding conformations 
with the enzyme were found highly stable. This was validated by the different binding free energy methods used 
in the study. Also, the compounds were found to have promising druglike and pharmacokinetic properties. In a 
nutshell, the compounds identified herein were promising in term of affinity for the Pks13-TE and thus can be 
subjected to experimental evaluations. Further, the compounds might provide starting leads to speed up drug 
discovery and development against thioesterase domain of Polyketide synthase 13 of M. tuberculosis.

Figure 8.  Entropy energy analysis of docked systems. All values are in kcal/mol.

Table 3.  Pharmacokinetics analysis of compounds and control.

Pharmacokinetics BBB_26582140 BBD_30878599 BBC_29956160 Control

GI absorption High Low High High

BBB permeant No No No No

P-gp substrate No Yes No Yes

CYP1A2 inhibitor No No No Yes

CYP2C19 inhibitor No No No No

CYP2C9 inhibitor No No No Yes

CYP2D6 inhibitor No No No Yes

CYP3A4 inhibitor No No No No

Log Kp (skin permeation) − 7.79 cm/s − 8.17 cm/s − 7.61 cm/s − 7.19 cm/s
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