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Stiffness characteristics analysis 
of a Biglide industrial parallel robot 
considering the gravity of mobile 
platform and links
Jiuliang Guan , Ping Zou *, Jilin Xu  & Wenjie Wang 

For the machining process of industrial parallel robots, the gravity generated by the weight of mobile 
platform and links will lead to the deviation of the expected machining trajectory of the tool head. In 
order to evaluate this deviation and then circumvent it, it is necessary to perform the robotic stiffness 
model. However, the influence of gravity is seldom considered in the previous stiffness analysis. This 
paper presents an effective stiffness modeling method for industrial parallel robots considering the 
link/joint compliance, the mobile platform/link gravity, and the mass center position of each link. 
First, the external gravity corresponding to each component is determined by the static model under 
the influence of gravity and mass center position. Then, the corresponding Jacobian matrix of each 
component is obtained by the kinematic model. Subsequently, the compliance of each component is 
obtained by cantilever beam theory and FEA-based virtual experiments. In turn, the stiffness model 
of the whole parallel robot is determined and the Cartesian stiffness matrix of the parallel robot is 
calculated at several positions. Moreover, the principal stiffness distribution of the tool head in each 
direction over the main workspace is predicted. Finally, the validity of the stiffness model with gravity 
is experimentally proved by the comparison of the calculated stiffness and measured stiffness in 
identical conditions.

In many modern applications, such as manufacturing robots1,2, bionic robots3,4, medical robots5,6 and aeronautical 
robots7,8, the mechanism is subject to external payloads and gravity of its own components which in turn induce 
deformations causing positioning errors. In order to improve motion accuracy and machining accuracy, stiffness 
analysis becomes an important solution. Moreover, stiffness analysis is also very important for the design stage 
of a parallel robot9. This is why stiffness analysis has become a research hotspot in recent years.

In terms of stiffness modeling, stiffness modeling methods can be mainly divided into three categories10: 
the finite element analysis method (FEA), the matrix structural analysis method (MSA) and the virtual joint 
modeling method (VJM). The FEA divides the target model into smaller and simpler connected element mod-
ules according to its real dimension and shape. Therefore, the modeling accuracy of FEA is very high, but its 
calculation cost is also very large. It needs the help of commercial FEA software to complete the modeling of the 
target model, and in order to ensure that the nodes of the module in the division match the nodes on the model, 
it needs to re-mesh the finite element model repeatedly. That’s why it’s expensive to calculate, and the process is 
time-consuming and tedious. Therefore, the FEA is not suitable for parametric stiffness model, which requires 
stiffness evaluation of the entire workspace.

The MSA method takes each component of the robot as a structural unit, which is a large compliant element, 
and combines the main ideas of the FEA to establish stiffness model of the robot. The main idea of this method 
is to obtain the stiffness matrix of the robot by combining the stiffness matrix of standard elements such as links, 
joints and frames with matrix analysis method. However, the distortion of this method is that these substructures 
are regarded as regular shapes, but the stiffness matrix of their standard element cannot accurately describe the 
actual stiffness of these substructures. Although some scholars have made some innovations on this method11–13, 
this method is still not suitable for the stiffness modeling of robot with the substructure of multi-node element.

In these approaches, the VJM is the most attractive and is adopted in this paper. This method obtains the 
stiffness model of the robot by establishing the force and deformation mapping relationship between joint space 
and operation space and applying Jacobian matrix and Hooke’s law. And the overall compliance factor comes 
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only from the joints embedded by the virtual springs. This method was first proposed by Salisbury14, and then 
elaborated by Gosselin15. Pashkevich et al.16,17 considered the compliance of the link on this basis, and described 
the translational/rotational compliance of the link and the joint as well as the coupling between them by using 
a 6-dof virtual spring. The method is not only simple to calculate but also reliable in calculation accuracy, so it 
has been widely popular18–24.

However, with the increasing machining accuracy of current industrial processes, the requirements for stiff-
ness models are also increasing, which requires calculations that are both accurate and efficient. Dong et al.25 
combined FEA and VJM to propose a semi-analytical stiffness modeling method with high computational 
accuracy, which only performs FEA on some non-standard components in order to avoid excessive compu-
tational consumption. However, the method does not consider the influence of the component gravity. Chen 
et al.26 proposed a stiffness model for robots under the action of external gravity. On this basis, Klimchik et al.27 
proposed a stiffness model for parallel robots under internal and external loads. Lian et al.28 proposed a stiffness 
model for a five-degree-of-freedom parallel robot by the links gravity. Wang et al.29 proposed a stiffness model of 
a five-axis parallel robot by considering the links gravity. However, all these stiffness models consider the gravity 
of the link as an external load acting on the end-effector without considering the influence of the end-effector 
gravity and the mass center position of the link. Also, Xu et al.30 proposed a stiffness modeling method consider-
ing the gravity combined with the deflection superposition principle applied to heavy industrial tandem robots. 
But this modeling method is not part of the VJM family of methods and has not been applied to parallel robots.

In response to the limitations of previous studies and combining their advantages, this study proposes an 
effective stiffness modeling method for industrial parallel robots. It allows to evaluate the stiffness distribution 
of an industrial parallel robot in its task workspace considering the influence of the mobile platform/link gravity 
and the mass center position of each link. Firstly, the model takes into account the compliance of the links/joints 
by attaching 6-dof virtual springs. Secondly, the model also takes into account the gravity of the links and the 
mobile platform, as well as the variation of their mass center position in the workspace. Finally, only the compli-
ance matrix of individual irregular components is identified by using the FEA-based virtual experiment to ensure 
the accuracy and efficiency of the model. In this paper, the Biglide industrial parallel robot in Fig. 1 is used as 
an example to develop a stiffness model and predict the principal stiffness distribution in the task workspace. 
The correctness of the model is demonstrated by comparing it with experiments under the same conditions.

Stiffness modeling procedure of the Biglide parallel robot
In this section, the stiffness modeling method for the Biglide parallel robot that considers both the compliance of 
all components and the gravity of moveable components is presented16–19,26,27. Each component is either a link/
slidable platform or a 1-degree-of-freedom (dof) revolute joint/prismatic joint. The moveable components are 
composed of the mobile platform and links. The elastic system of the Biglide parallel robot is shown in Fig. 2.

(1)	 Stiffness model of the parallelogram-link (3-RR mechanism)

The 3-RR parallelogram-link (Pl) structure is composed of three links, which has a revolute joint at each end. 
By considering the effects of the gravity of the mobile platform and the revolute joints on the stiffness of each 
link, the Cartesian stiffness matrix Ki

C,Pl,j of each link can be expressed as

where Ki
θ,Pl,j is the stiffness matrix of the link, Ki

G,Pl,j denotes the stiffness matrix due to the gravity of the mobile 
platform for the link, Ji

θ,Pl,j is the Jacobian matrix of the virtual spring corresponding to the link, Jiq,Pl,j is the 
Jacobian matrix related to the revolute joint, i is the number of limbs (i = 1, 2), j is the number of links in the 
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Figure 1.   Mechanical structure of the Biglide parallel robot.
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3-RR parallelogram-link structure (j = 1, 2, 3). For accuracy of expression, i and j are taken as such throughout 
the whole paper.

The three links in the parallelogram-link structure are connected in parallel, then the Cartesian stiffness 
matrix Ki

C,Pl of the 3-RR parallelogram-link structure can be expressed as

where Ki
θ,Pl is the stiffness matrix of the 3-RR parallelogram-link structure, Ki

G,Pl denotes the stiffness matrix 
due to the gravity of the mobile platform for the 3-RR parallelogram-link structure, Ji

θ,Pl is the Jacobian matrix 
of the virtual spring corresponding to the 3-RR parallelogram-link structure.

(2)	 Stiffness model of the single limb (P(3-RR) mechanism)

In the P(3-RR) mechanism, prismatic joint (actuator), slidable platform (SP) and parallelogram-link structure 
are connected in series, then the Cartesian stiffness matrix Ki

C,limb of the single limb can be expressed as

where Ki
C,Ac is the Cartesian stiffness matrix of the actuator (lead screw driving system), Ki

C,SP is the Cartesian 
stiffness matrix of the slidable platform, Kθ,Ac is the stiffness coefficient of the driving system consisting of the 
motor and the screw, Ki

θ,SP is the stiffness matrix of the slidable platform, Ki
G,SP denotes the stiffness matrix due 

to the gravity of the mobile platform and links for the slidable platform, Ji
θ,Ac is the Jacobian matrix related to the 

actuator (prismatic joint), Ji
θ,SP is the Jacobian matrix of the virtual spring corresponding to the slidable platform.

(3)	 Stiffness model of the parallel limbs (2-P(3-RR) mechanism)

In the 2-P(3-RR) mechanism, the two limbs are connected in parallel and the size of the mobile platform is 
considered, then the Cartesian stiffness matrix KC,limb of the 2P(3-RR) mechanism can be expressed as

where Jiv defines geometrical mapping between end-points of serial limbs and reference point frame (end-effector).
(4) Stiffness model of the whole Biglide parallel robot (P[2-P(3-RR)] mechanism).
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Figure 2.   The elastic model of the Biglide parallel robot.
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In the P[2-P(3-RR)] mechanism, prismatic joint (actuator) and 2-P(3-RR) mechanism are connected in series 
in the Biglide parallel robot, then the Cartesian stiffness matrix KC of the Biglide parallel robot can be expressed as

where J0
θ,Ac is the Jacobian matrix corresponding to the first prismatic joint.

Moreover, in order to solve the above equations, the static and kinematic analysis of the Biglide parallel robot 
is required.

Static analysis of the Biglide parallel robot
In this section, the respective static models are developed at each component of the Biglide parallel robot, taking 
into account the gravity generated by the weight of the mobile platform and the moveable links26–29. The math-
ematical equation of the static force/torque corresponding to each component is derived, and thus the gravity 
received at the component is obtained.

Coordinate system of the Biglide parallel robot.  The mechanical structure illustration of the Biglide 
parallel robot is offered in Fig. 1. The Biglide parallel robot is a two degree-of-freedom (2-dof) parallel mecha-
nism (PM) and consist of two modular parallelogram-links connected to the mobile platform (MP) and two 
sliding units which are actuated via lead screw system, where the sliding units are installed on the upper fixed 
platform. The Biglide parallel robot can generate two translations in the horizontal/vertical directions within a 
single plane, and the single moving plane can also move along its normal direction.

To convenience the calculation, a sequence of coordinate systems is attached to each substructure of the 
Biglide parallel robot. These coordinate systems are expressed as {O}, {Oi}, {Ai}, {Aij}, {Bij}, {Bi}, {Mi} and {M} 
respectively (i = 1, 2; j = 1, 2, 3), as shown in Fig. 3. The origin and directions are determined by the joint axis 
and the center line of the substructures. It is worth noting that the direction of the coordinate systems {Aij} and 
{Bij} are parallel to the direction of {Ai} and {Bi}, respectively, except that the origin of {Aij} and {Bij} are the 
points Aij and Bij, respectively. Moreover, ai represents the length of OOi (ai ∈ [200, 550] mm); l and L represent 
the length of MMi and the link (Lij), respectively; qi denotes the angle between Ai1Bi1 and O1O2 (q1 = q2 = q), d 
is half the length of Bi2Bi3, OiAi (length l1) and BiMi (length l2) are always parallel to the axis zo, h represents the 
distance from point Bi to Bi2Bi3 or the length of Bi Bi1. The orientation matrices of {O}, {Oi}, {Aij}, {Bij}, {Mi} and 
{M} relative to {O} can be expressed as

where R(.) represents a 3 × 3 rotation matrix that rotates the corresponding angle around the corresponding 
axis, RO is an identity matrix, and Rn is the orientation matrix of the coordinate system {On} with respect to the 
coordinate system {O}.

Static equilibrium equation of points Mi.  In order to evaluate the influence of the mobile platform 
weight at points M1 and M2, it is necessary to analysis the static force/torque balance at points M1 and M2, as 
shown in Fig. 3. The static equilibrium equations at point M can be displayed as
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Figure 3.   Coordinate system: (a) Biglide parallel robot; (b) Left and right limbs.
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where

mMP is the mass of the mobile platform and its fixed motor, GM is the mass center of the mobile platform and 
coincides with the geometric center M of the mobile platform, z denotes the unit vector vertically downward; 
fM1 and τM1 denote the reaction force and torque applied at point B1, fM2 and τM2 denote the reaction force and 
torque applied at point M2; rMGM denotes the position vector from point M to point GM expressed in the coordi-
nate system {M}, rMM1 and rMM2 denote the position vector from point M to point Mi expressed in the coordinate 
system {M}, respectively.

According to the decoupling of Eq. (7), the reaction force acting at points M1 and M2 can be obtained

where

ρM1 and ρM2 denote the reaction wrench applied at points M1 and M2, respectively; ηGM,1 and ηGM,2 denote 
the equivalent split gravitational wrench of the mobile platform for point M1 and M2 applied at point M, respec-
tively; s(rM1)/s(rM2) represents the skew-matrix of the position vector rM1/rM2 , JW,M1/JW,M2 denotes the adjoint 
transformation matrix, which can be obtained by the screw theory31,32.

Static equilibrium equation of joints Bij.  In order to evaluate the influence of the mobile platform 
weight on the joint Bij, it is necessary to analysis the static force/torque balance at point Bij, as shown in Fig. 3b. 
The static equilibrium equations at point Mi can be displayed as

where

fBi1 and τBi1 denote the reaction force and torque applied at point Bi1, fBi2 and τBi2 denote the reaction force 
and torque applied at point Bi2, fBi3 and τBi3 denote the reaction force and torque applied at point Bi3; rMi

Bi1/r
Mi
Bi2

/rMi
Bi3 denotes the position vector from point Mi to point Bi1/ Bi2/ Bi3 expressed in the coordinate system {Mi}.

According to the decoupling of Eq. (9), the reaction force acting on the joints Bi1, Bi2 and Bi3 can be obtained

where
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ρBi1 , ρBi2 and ρBi3 denote the reaction wrench applied at joints Bi1, Bi2 and Bi3, respectively; ηBi1 , ηBi2 and ηBi3 
denote the equivalent external wrench for joints Bi1, Bi2 and Bi3 applied at point M, respectively; s(rBi1)/s(rBi2)
/s(rBi3) represents the skew-matrix of the position vector rBi1/rBi2/rBi3.

Static equilibrium equation of joints A1j.  In order to evaluate the influence of the weight of the mobile 
platform and links on the joint Aij, it is necessary to analysis the static force/torque balance at point Aij, as shown 
in Fig. 3b. The static equilibrium equations at point Bij can be displayed as

where

mi1, mi2 and mi3 are the mass of links Li1, Li2 and Li3, respectively; Gi1, Gi2 and Gi3 are the mass center of links Li1, 
Li2 and Li3, respectively; fAi1 and τAi1 denote the reaction force and torque applied at point Ai1, fAi2 and τAi2 denote 
the reaction force and torque applied at point Ai2, fAi3 and τAi3 denote the reaction force and torque applied at 
point Ai3; rBi1Gi1 denotes the position vector from point Bi1 to point Gi1 expressed in the coordinate system {Bi1}, 
rBi2Gi2 denotes the position vector from point Bi2 to point Gi2 expressed in the coordinate system {Bi2}, rBi3Gi3 denotes 
the position vector from point Bi3 to point Gi3 expressed in the coordinate system {Bi3}; rBi1Ai1 denotes the position 
vector from point Bi1 to point Ai1 expressed in the coordinate system {Bi1}, rBi2Ai2 denotes the position vector from 
point Bi2 to point Ai2 expressed in the coordinate system {Bi2}, rBi3Ai3 denotes the position vector from point Bi3 to 
point Ai3 expressed in the coordinate system {Bi3}.

According to the decoupling of Eq. (11), the reaction force acting on the joints Ai1, Ai2 and Ai3 can be obtained

where

ηAi1 , ηAi2 and ηAi3 denote the resultant external wrench for joint Ai1, Ai2 and Ai3 applied at point M, respec-
tively; ηi1 , ηi2 and ηi3 denote the equivalent gravitational wrench of links Li1, Li2 and Li3 applied at point M, 
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ηAi2 = ηi2 +
1

3
ηGM,i , ηi2 = mi2 · g ·

[

z
(

rBi2 + RBi2 · r
Bi2
Gi2

)

× z

]

, ρAi2 =

[

fAi2
τAi2

]

,

JW,Ai2 =

[

RAi2 s(rAi2) · RAi2

0 RAi2

]

, rAi2 = rBi2 + RBi2 · r
Bi2
Ai2;

ηAi3 = ηi3 +
1

3
ηGM,i , ηi3 = mi3 · g ·

[

z
(

rBi3 + RBi3 · r
Bi3
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)

× z

]

, ρAi3 =

[

fAi3
τAi3

]

,
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[
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respectively; ρAi1 , ρAi2 and ρAi3 denote the reaction wrench applied at joints Ai1, Ai2 and Ai3, respectively; s(rAi1)
/s(rAi2)/s(rAi3) represents the skew-matrix of the position vector rAi1/rAi2/rAi3.

Static equilibrium equation of joint Ai.  In order to evaluate the influence of the weight of the mobile 
platform and links on the joint Ai, it is necessary to analysis the static force/torque balance at point Ai, as shown 
in Fig. 3b. The resultant static equilibrium equations at point Aij can be displayed as

where

fAi and τAi denote the reaction force and torque applied at point Ai, rMi
Ai  denotes the position vector from point 

Mi to point Ai expressed in the coordinate system {Mi}.
According to the decoupling of Eq. (13), the reaction force acting on the joint Ai can be obtained

where

ηAi denotes the resultant external wrench for joint Ai applied at point M, ρAi denotes the reaction wrench 
applied at joint Ai, s(rAi) represents the skew-matrix of the position vector rAi.

Kinematic analysis of the Biglide parallel robot
In this section, the kinematic analysis of the Biglide parallel robot is carried out so that the Jacobian matrix of 
each substructure is derived27–33. Due to the position relationship and series/parallel relationship of each sub-
structure, the kinematic equilibrium equation is established for each substructure of the Biglide parallel robot.

Kinematic modeling for 3‑RR parallelogram‑link structure.  In order to obtain the Jacobian matri-
ces of each kinematic chain in the 3-RR, it is necessary to analyze the kinematic transitions from point Ai to Bi 
through each chain, as shown in Fig. 3b. The kinematic homogenous matrix of the first chain in the left 3-RR Pl 
can be expressed as

where

P(.) represents a 3 × 1 displacement vector that translates the corresponding distance along the corresponding 
axis, I3 is a 3 × 3 identity matrix.

The position and direction of the end point B1 can be extracted from the matrix T1
Pl,1 in a standard way27,33,34, 

whereby the kinematic model can be rewritten in the form of a vector function as follows

(13)
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where t1Pl,1 is a vector that describes the position and direction of the end point B1, θ1Pl,1 is a vector collecting all 
virtual spring coordinates, q1Pl,1 is a vector containing all passive joint coordinates.

According to the principle of virtual work, the virtual displacement δt1Pl,1 can be computed from the linearized 
geometrical model:

which includes the Jacobian matrices:

where

p1
θ,Pl,1n and p1q,Pl,1k denote the position vector associated with θ1Pl,1n

′ and q1Pl,1k
′ respectively, s

(

ω1
θ,Pl,1n

)

/s
(

ω1
q,Pl,1k

)

 is represents the skew-matrix of the orientation vector ω1
θ,Pl,1n/ω1

q,Pl,1k.
According to the above theory, the Jacobian matrices of the first chain in the left 3-RR Pl can be obtained by 

deriving Eq. (15) as follows:

where Sq and Cq represent sine and cosine of the angle q1, respectively.
Similarly, the Jacobian matrices for the second and third chains in the left 3-RR Pl, respectively, can be 

expressed as

For the right 3-RR Pl, the Jacobian matrices of its three chains can also be obtained in the same way.

Kinematic modeling for the single limb (P(3‑RR) mechanism).  In order to obtain the Jacobian 
matrices of each kinematic limb, it is necessary to analyze the kinematic transitions from point Oi to Mi through 
each limb, as shown in Fig. 3a. The kinematic homogenous matrix of limb 1 can be expressed as

where
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The position and direction of the end point M1 can be extracted from the matrix T1
limb in a standard way, 

whereby the kinematic model can be rewritten in the form of a vector function as follows

where t1limb is a vector that describes the position and direction of the end point M1, θ1limb is a vector collecting 
all virtual spring coordinates ( θ10 , θ

1
1 , ..., θ

1
12).

According to the principle of virtual work, the virtual displacement δt1limb can be computed from the linearized 
geometrical model:

which includes the Jacobian matrix:

where

p1
θ,limb,n denote the position vector associated with θ1n ′ , s

(

ω1
θ,limb,n

)

 is represents the skew-matrix of the ori-
entation vector ω1

θ,limb,n.
According to the above theory, the Jacobian matrices of limb 1 can be obtained by deriving Eq. (21) as follows:

For limb 2, the Jacobian matrices of its three components can also be obtained in the same way.

Kinematic modeling for the whole robot (P[2‑P(3‑RR)] mechanism).  The Biglide parallel robot is 
composed of a lead screw system (prismatic joint) capable of producing translation along the yO-axis in series 
with a 2-P(3-RR) parallel structure, where the 2-P(3-RR) parallel structure includes two limbs, a screw system 
capable of producing translation along the xO-axis, and a mobile platform, as shown in Fig. 2. In order to calcu-
late the stiffness of the whole robot, the kinematic Jacobian matrices of the mobile platform and the prismatic 
joint need to be evaluated. These Jacobian matrices can be expressed as
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where riv is the position vector from point Mi to point M expressed in the coordinate system {M}, s
(

riv
)

 represents 
the skew-symmetric matrix corresponding to the vector riv35,36.

Numerical analysis
In this section, the principal stiffness of the Biglide parallel robot considering the gravity of the mobile platform 
and the links is investigated numerically using the developed stiffness model. The dimensional and mass param-
eters of the robot are shown in Table 1. The position parameters of each limb are shown in Tables 2 and 3. The 
dimensional parameters of the link are shown in Table 4. The reachable workspace of Biglide parallel robot in 
the x–z plane is the yellow area in Fig. 4, and the blue area enclosed by W1-W4 is its main workspace, where Q1 
and Q2 are the midpoints of W1W2 and W3W4, respectively.

Compliance matrices.  The 3-RR Pl contains three identical cylindrical links, as shown in Fig. 3. In order 
to calculate the Cartesian stiffness matrix of the 3-RR Pl, it is necessary to obtain the compliance matrix of each 
link by means of the cantilever beam principle16,19. Its compliance matrix Ki−1

θ,Pl,j can be expressed as

where Iy, Iz and Ip are the quadratic and polar moments of inertia of the cross-section, and E and G are the Young’s 
and shear modules, respectively.

Moreover, the slidable platform stiffness can be identified on the basis of CAD models and FEA methods10,25,37. 
Its compliance matrix Ki−1

θ,SP can be expressed as (unit: N, m, rad)
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Table 1.   Parameters of the Biglide parallel mechanism.

L (mm) l (mm) l1 (mm) l2 (mm) h (mm) d (mm) mlink (kg) mMP (kg) Kθ,Ac (N/m)

500 75 40 15 17.5 70 1.95 7.93 1.27·107

Table 2.   Location vector of the left limb (mm).
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0

0

] [

−L · Cq

0
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Table 3.   Location vector of the right limb (mm).
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]

Table 4.   Parameters of the cylindrical link.

L (mm) r (mm) E (GPa) G (GPa)

500 12.5 211 81
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Finally, the Cartesian stiffness matrix KO
C of the whole robot in the coordinate system {O} can be obtained 

by a stiffness matrix transformation9,33. The Cartesian stiffness matrices KO
C,P1 and KO

C,P2 at the points P1 and P2 
can respectively be expressed as (unit: N, m, rad)

Distribution of the principal stiffness.  In order to better evaluate the Cartesian stiffness of the Biglide 
parallel robot, we visualize the distribution of its principal stiffness in six directions in its workspace, as shown 
in Figs. 5 and 6. Ktx, Kty, Ktz and Krx, Kry, Krz are the diagonal elements of the Cartesian stiffness matrix KO

C , which 
represent the principal translational stiffness along the x, y, z axes and the principal rotational stiffness around 
the x, y, z axes, respectively.

Figure 5a shows the principal translational stiffness Ktx along the x-axis with and without gravity, it can be 
seen that the stiffness with gravity improves compared to the stiffness without gravity, and they both decrease as 
the z-axis value increases; Fig. 5b shows the principal translational stiffness Kty along the y-axis with and without 
gravity, it is obvious that the stiffness with gravity is the same as the stiffness without gravity, and this stiffness is 
a constant; Fig. 5c shows the principal translational stiffness Ktz along the z-axis with and without gravity, it has 
similar stiffness characteristics to Ktx; and Fig. 5d shows the mean difference between the principal translational 
stiffness with and without gravity. Moreover, among the principal translational stiffness Ktz is the highest order 
of magnitude translational stiffness, Ktx is the second and Kty is the smallest.

Figure 6 is similar to Fig. 5, but the difference is that Fig. 6 shows the principal rotational stiffness with and 
without gravity and their mean difference. It is worth noting that the stiffness Krx in Fig. 6a becomes smaller 
due to the gravitational influence and it is the only principal stiffness where gravity has a negative effect. Krx 
increases with increasing z-axis values, while Kry and Krz decrease with increasing z-axis values. Furthermore, 
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Figure 4.   The reachable and regular workspace of the Biglide parallel robot.
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Kry is the highest order of magnitude rotational stiffness in the principal rotational stiffness, and Krx and Krz have 
the same order of magnitude.

Experimental analysis
To validate the correctness of the stiffness model with gravity, the knocking experiments were employed on the 
Biglide industrial parallel robot. Using a laser Doppler vibrometer as the main experimental equipment, the 
principal stiffness of the mobile platform center of the Biglide parallel robot was measured in all directions, as 
shown in Fig. 7.

Table 5 lists the principal stiffness in each direction at point Q1. The values at point Q2 are listed in Table 6. 
These values are presented in a more intuitive form in Fig. 8. It can be found that the principal stiffness of the 
stiffness model with gravity is very close to the experimental results. The root mean square (RMS) values between 
the developed model and the experimental results at points Q1 and Q2 are 2.67 and 2.77%, respectively38,39. And 
the RMS values between the stiffness model without gravity and the experimental results at Q1 and Q2 are 9.043 
and 9.353%, respectively. The experimental results show a good agreement with the theoretical values of the 
‘with gravity’ model. Therefore, it can be concluded that the stiffness model with gravity is effective, which lays 
a solid foundation for the real applications.

Conclusions
This paper proposes a novel stiffness modeling method for an industrial parallel robot, which is important for 
the machining of parallel robots. The main research results are summarized as follows:

(1)	 The influences of the gravity of the movable links, the gravity of the mobile platform and their correspond-
ing mass centers are considered simultaneously. In order to obtain the values of gravity, the mathematical 
equations of the static model were established for each joint.

(2)	 The stiffness model of each component is established by considering its compliance matrix, the compli-
ance of the corresponding joint, its Jacobian matrix from the corresponding mathematical equations of 
the kinematic model, and the corresponding stiffness matrix due to external gravity. For the accuracy of 
the calculation, the compliance matrix of the irregular component is identified by using the FEA-based 
virtual experiment.

Figure 5.   Principal translational stiffness distributions.
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Figure 6.   Principal rotational stiffness distributions.

Figure 7.   The knocking experimental device.
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Table 5.   Principal stiffness at Q1.

Model
Ktx (× 106)
(N/m)

Kty (× 106)
(N/m)

Ktz (× 109)
(N/m)

Krx (× 106)
(Nm/rad)

Kry (× 106)
(Nm/rad)

Krz (× 106)
(Nm/rad)

Without gravity 20.664 1.969 3.684 1.538 16.279 2.883

With gravity 21.862 1.969 4.016 1.500 17.337 3.079

Experiment 22.568 2.198 4.039 1.687 17.888 3.155

Table 6.   Principal stiffness at Q2.

Model
Ktx (× 106)
(N/m)

Kty (× 106)
(N/m)

Ktz (× 109)
(N/m)

Krx (× 106)
(Nm/rad)

Kry (× 106)
(Nm/rad)

Krz (× 106)
(Nm/rad)

Without gravity 11.096 1.969 1.537 3.493 6.987 0.881

With gravity 11.788 1.969 1.660 3.402 7.406 0.936

Experiment 12.018 2.194 1.682 3.807 7.640 1.001

Figure 8.   Principal stiffness: (a) at P1 point; (b) at P2 point.



15

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7333  | https://doi.org/10.1038/s41598-023-34214-8

www.nature.com/scientificreports/

(3)	 The validity of the stiffness model with gravity was verified by comparing the calculated stiffness of the 
Biglide industrial parallel robot with the knockout experiment. The results show that the method is able 
to obtain sufficient computational accuracy to predict the stiffness distribution in the task workspace. 
This enables the robot to obtain more accurate tool head trajectory before machining, thus improving its 
machining accuracy.

(4)	 The stiffness modeling method is also applicable to the stiffness estimation of the robot structure design 
stage, which provides effective help for the improvement and verification of the structure.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due the data also forms 
part of an ongoing study but are available from the corresponding author on reasonable request.
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