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A novel method for Pu‑erh tea 
face traceability identification 
based on improved MobileNetV3 
and triplet loss
Zhe Zhang 1,2,3, Xinting Yang 1,2,3, Na Luo 1,3, Feng Chen 1,3, Helong Yu 2,4* & 
Chuanheng Sun 1,3,4*

Ensuring the traceability of Pu‑erh tea products is crucial in the production and sale of tea, as it is a 
key means to ensure their quality and safety. The common approach used in traceability systems is 
the utilization of bound Quick Response (QR) codes or Near Field Communication (NFC) chips to track 
every link in the supply chain. However, counterfeiting risks still persist, as QR codes or NFC chips can 
be copied and inexpensive products can be fitted into the original packaging. To address this issue, this 
paper proposes a tea face verification model called TeaFaceNet for traceability verification. The aim 
of this model is to improve the traceability of Pu‑erh tea products by quickly identifying counterfeit 
products and enhancing the credibility of Pu‑erh tea. The proposed method utilizes an improved 
MobileNetV3 combined with Triplet Loss to verify the similarity between two input tea face images 
with different texture features. The recognition accuracy of the raw tea face dataset, ripe tea face 
dataset and mixed tea face dataset of the TeaFaceNet network were 97.58%, 98.08% and 98.20%, 
respectively. Accurate verification of tea face was achieved using the optimal threshold. In conclusion, 
the proposed TeaFaceNet model presents a promising approach to enhance the traceability of Pu‑erh 
tea products and combat counterfeit products. The robustness and generalization ability of the model, 
as evidenced by the experimental results, highlight its potential for improving the accuracy of Pu‑erh 
tea face recognition and enhancing the credibility of Pu‑erh tea in the market. Further research in 
this area is warranted to advance the traceability of Pu‑erh tea products and ensure their quality and 
safety.

Abbreviations
AUC   Area under roc curve
CBAM  Convolutional block attention module
CNNs  Convolutional neural networks
ECA  Efficient channel attention
NFC  Near field communication
QR  Quick response
ROC  Receiver operating characteristic
SAM  Spatial attention module
SE  Squeeze-and-excitation
TF-Bottleneck  TeaFaceNet bottleneck

Pu-erh tea is a highly distinctive tea product in Yunnan Province, China. The quality of Pu-erh tea is affected by 
packaging, production, processing, and storage. Different regions, varieties, and processing techniques result 
in different values for Pu-erh  tea1. Pu-erh tea can be classified into Pu-erh raw tea and Pu-erh ripe tea based on 
processing  technology2. Furthermore, the finished Pu-erh tea can be left as loose leaves or compressed into cakes 
or bricks to facilitate transportation and  storage3. Typically, the longer the Pu-erh tea is stored, the higher the 
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value. Many unscrupulous enterprises and individuals sell seconds at best quality prices, which seriously affects 
the Pu-erh tea sales market, can mislead consumers and negatively affect the economic benefits to  consumers4.

To improve traceability and combat counterfeiting, various technological solutions have been proposed. 
For instance, a traceability system that uses bound Quick Response (QR) codes or Near Field Communication 
(NFC) chips could trace every link of the supply  chain5. But, digital ID-based solutions cannot completely solve 
the problem of counterfeiting, as counterfeiters can still copy QR codes or NFC chips and fit cheaper products 
into the original packaging. One important way to enhance product traceability is to extract and use information 
about the unique and natural characteristics of the  product6. In the case of Pu-erh tea, the different and unique 
natural textures formed when tea is compressed into cakes can be used as the basis for tea face images.

Computer vision technology has made it possible to use deep learning and image processing methods for bio-
metric identification, including face  recognition7,8. Many face recognition models and methods have been devel-
oped, such as  DeepFace9,  SphereFace10, central  loss11, state-of-the-art face recognition  models12, and  LocalFace13. 
Similar methods have also been used in animal feature recognition tasks, such as automatic identification of 
individual  cows14 and  goats15, pig face  recognition16, cow face  recognition17,18, and individual egg  identification19. 
We therefore speculated that biometric approaches could also be applied to the Pu-erh tea face recognition task.

The tea face recognition task can be divided into two types: tea face verification and tea face recognition. To 
improve the traceability of Pu-erh tea products, we proposed a Pu-erh tea face verification model, TeaFaceNet, 
based on an improved MobileNetV3. The model uses an attention mechanism module ECA block in the light-
weight network MobileNetV3 for feature extraction to express texture features while reducing the number of 
parameters. Triplet Loss and Softmax are used as the loss function. Our experimental results showed that the 
validation accuracy of the model was higher than that of some classical convolutional neural networks (CNNs) 
models. Constructing a verification model can improve the traceability of Pu-erh tea and help avoid adulteration.

Materials and methods
Data acquisition. The image data for this study were collected from a Pu-erh tea cake production plant 
in Puer city, Yunnan Province, China (22.78°N, 100.91°E). Two types of equipment were used to photograph 
each tea cake: a mobile phone (HONOR 50) and a High-Speed photographic apparatus (Eloam High-Speed 
Portable HD DocScanner S820A3AF). The purpose was to simulate real-world scenarios, and a schematic dia-
gram of the image acquisition process is shown in Fig.  1. The Eloam High-Speed Portable HD DocScanner 
S820A3AF has CMOS Autofocusing technology with a 10 million pixel main camera that captures images at a 
resolution of 3264 × 2448. The HONOR 50 is a mobile phone released by HONOR on June 16, 2021, equipped 
with 108 + 8 + 2 + 2 million pixels quad cameras. The resolution of the images acquired by the mobile phone is 
3904 × 2928. A total of 200 pieces of Pu-erh raw tea and 200 pieces of Pu-erh ripe tea were collected, with 100 
pieces used for the training dataset and the other 100 pieces for the test dataset. Each tea cake was photographed 
from the front and back. The image shooting standards are as follows: (1) set off with a white background, keep 
the background clean and tidy without debris; (2) shoot at a distance of 20 cm directly above the tea cake; (3) 
ensure that the tea cake is in the center of the image; (4) make the tea cake maximally filled with pictures to 
ensure a clear texture.

Figure 1.  A schematic diagram of image acquisition.
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Preprocessing. After the data acquisition was completed, the tea cake image was processed uniformly and 
the resolution of the tea cake map was adjusted to 320 × 320 × 3. The images were then expanded using data 
enhancement techniques. After the above operations, the following three training datasets were established: 
Pu-erh raw tea face dataset; Pu-erh ripe tea face dataset; and mixed tea face dataset. All three datasets include 
the front and back images of Pu-erh raw tea and Pu-erh ripe tea. Some of the Pu-erh tea face datasets are shown 
in Fig. 2.

The amount of data for each training data set is shown in Table 1. The training dataset of Pu-erh raw tea faces 
contains 100 front and back images of Pu-erh raw tea cakes captured using two types of equipment, resulting 
in a total of 400 images. After applying data augmentation techniques, the total number of images increased 
to 8000. Similarly, the training dataset of Pu-erh ripe tea faces contains 100 front and back images of Pu-erh 
ripe tea cakes taken using two different devices, resulting in a total of 400 images. After data augmentation, the 
total number of images increased to 8000. The mixed tea face dataset contains all the raw and ripe Pu-erh tea 
faces from the previous datasets, resulting in a total of 800 images. After data augmentation, the total number of 
images increased to 16,000. During the training process, the dataset was split into training set and validation set 
in a 9:1 ratio. The training set and validation set for Pu-erh raw tea face dataset and Pu-erh ripe tea face dataset 
contained 7200 and 800 images respectively, while for Mixed tea face dataset, they contained 14,400 and 1600 
images respectively.

Figure 2.  (a)–(d) are examples of Pu-erh tea face datasets. (a) Pu-erh raw tea face image (front), (b) Pu-erh raw 
tea face image (back), (c) Pu-erh ripe tea face image (front), (d) Pu-erh ripe tea face image (back). (e), (f) are 
examples of data acquired by different recording devices. (e) High-Speed sortable scanner, (f) Mobile phone.
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The test dataset was shot with the same shooting method of 100 pieces each of Pu-erh raw tea and Pu-erh 
ripe tea, containing both front and back images, as shown in Table 2. Among them, 1200 test pairs (600 pairs of 
the same tea face and 600 pairs of different tea face) were selected for each of the Pu-erh raw tea face test dataset 
and the Pu-erh ripe tea face test dataset, and 2400 test pairs (1200 pairs of the same tea face and 1200 pairs of 
different tea face) were selected for the mixed tea face dataset.

Data enhancement. When photographing the tea cake, it is difficult to determine a fixed direction due to 
its round shape. To improve the robustness of the deep neural network for tea face recognition in various scenes, 
we used rotation, flipping, random contrast and brightness adjustments, image noise, and random erasing to 
enhance the data. This data augmentation technique enriches the dataset and improves the generalization of the 
model, allowing it to learn enough features to enhance its performance. The data enhancement techniques are 
illustrated in Fig. 3.

Image rotation. Firstly, image enhancement was performed using rotation. Rotate the original image by 
45°, 90°,135°, 180°, 225°, 270°, and 315° while performing one mirror flip. This was done so that the model could 
learn the features of each angle and improve the rotation invariance of the model.

Image noise. In terms of image noise, Salt-and-pepper noise and Gaussian noise were used to enhance the 
image data. Salt-and-pepper noise is a very important noise, which mainly changes pixels to black and white 
 randomly20. Compared with other noises, images are more sensitive to salt-and-pepper noise. Gaussian noise, 
which is a noise whose distribution obeys a normal distribution, is superimposed on every point of the image. 
Using these two methods to enhance the image could improve the ability of the model to mine the deep features 
of the image and enhance the recognition performance of the model in complex scenes.

Image brightness, chroma, contrast, sharpness. In terms of image brightness adjustment, the follow-
ing measures were used to enhance the data. Adjusts the brightness of the original image by selecting three ran-
dom values, and these three random values were constrained to a range, namely Valuemin = 0.5 Valuemin = 0.5 
and Valuemax = 2.0 Valuemax = 2.0 Valuemax = 2.0 Valuemax = 2.0 . In the image chromaticity, contrast, and 
sharpness adjustment, the same measures were taken to enhance the data. After the enhancement adding the 
images to the training set, the main purpose of this enhancement method is that it can simulate the situation 
under different light intensities when the tea face was taken. Also, the data processed by this method could make 
up for the shortcomings of the neural network and make it more robust when testing the data under different 
light intensities.

Image random erasing. Zhun Zhong et al.21 proposed a random erasure method for training CNNs that 
randomly selects rectangular regions in an image while modifying their pixels using random values. By using 
this method, images with different occlusion levels could be generated, which could reduce the risk of overfitting 
and make the model robust to occlusion.

Lightweight network MobileNetV3. MobileNet22 was a lightweight network designed for mobile 
devices and embedded devices. Nowadays, the available versions include MobileNet,  MobileNetV223, and 
 MobileNetV324. MobileNetV3 combines the structures in MobileNet and MobileNetV2, while it introduces the 
Squeeze-and-Excitation (SE)  block25.

Firstly, MobileNetV3 used depthwise separable convolution, which was designed to reduce the amount of 
computation and improve the computational speed of the network. Depthwise separable convolution mainly 
includes depthwise convolution and pointwise convolution. The depthwise convolution was to change the con-
volution kernel in the standard convolution into a single-channel convolution kernel. When the input had N 

Table 1.  Training dataset data.

Dataset Number of tea face Number of tea face images Number of images after enhancement

Pu-erh raw tea face dataset 100 400 8000

Pu-erh ripe tea face dataset 100 400 8000

Mixed tea face dataset 200 800 16,000

Table 2.  Test dataset data.

Dataset Number of tea face Number of tea face images Number of test pairs

Pu-erh raw tea face dataset 100 400 1200

Pu-erh ripe tea face dataset 100 400 1200

Mixed tea face dataset 200 800 2400
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number of channels, there will be N single-layer convolution kernels, and each channel was convolved separately 
and finally superimposed. Pointwise convolution was used to expand the channels by using 1 × 1 convolution. 
A comparison with standard convolution is shown in Fig. 4a and b.

Secondly, MobileNetV3 used linear bottleneck, Expansion layer and Inverted residuals. The linear bottleneck 
was used to reduce the loss of feature information, and the inverted residuals were used to learn more features by 
expanding the channels. The residual block was by descending and then ascending, while the inverted residual 
block was by ascending and then descending. Figure 4c shows the residual blocks, and Fig. 4d shows the inverted 
residuals and linear bottlenecks.

Finally, MobileNetV3 placed the lightweight attention model of the squeeze and excitation structure after 
the depth filter in the extension in order to facilitate the application of attention to the largest representation. 
Figure 5 shows the structure of the MobileNetV3 block and a new activation function h−swish[x] is used. The 
h−swish[x] is shown in Eq. (1).

Attention mechanism module. Attention mechanisms were essentially a set of weighting coefficients 
learned autonomously by the network and "dynamically weighted" to emphasize regions of interest while sup-

(1)h−swish[x]=x
ReLU6(x+3)

6

Figure 3.  Data enhancement methods, (a) original image, (b) 45° clockwise rotation, (c) 90° clockwise rotation, 
(d) 135° clockwise rotation, (e) 180° clockwise rotation, (f) 225° clockwise rotation, (g) 270° clockwise rotation, 
(h) 315° clockwise rotation, (i) mirror flip, (j) salt-and-pepper noise, (k) Gaussian noise, (l), (m), (n) random 
brightness adjustment, (o), (p), (q) random adjustment of chroma, contrast and sharpness, (r), (s), (t) random 
erasing.
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Figure 4.  (a) Traditional convolution; (b) Depthwise separable convolution; (c) Residual block; (d) Inverted 
residuals and linear bottlenecks.
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Figure 5.  MobileNetV3 block, the symbols  and ⊕ indicate the connection operation and the sum of elements.

Figure 6.  (a) SE block, (b) CBAM block, (c) ECA block. W , H , and C are width, height, and channel dimension 
(i.e., number of filters).
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pressing irrelevant background regions. The mainstream attention mechanisms include channel attention and 
spatial attention.

Firstly, the squeeze and excitation(SE) block, which was the main representative of channel attention. This 
attention mechanism module was used in MobileNetV3. The SE block is shown in Fig. 6a. It is mainly composed 
of two parts: squeeze and excitation. Secondly, the convolutional block attention module (CBAM)26 was used in 
this experiment, which was based on the original channel attention and bridged with a spatial attention module 
(SAM). Figure 6b shows the structure of the CBAM module.

The structure of the Efficient Channel Attention (ECA)  block27 is shown in Fig. 6c. It used a 1-dimensional 
sparse convolution operation to optimize the fully connected layer operations involved in the SE block to sig-
nificantly reduce the number of parameters and maintain a comparable performance. In order to compress 
the number of parameters and improve the computational efficiency, the SE block adopts a "dimensionality 
reduction-then dimensionality increase" strategy, using two multilayer perceptrons to learn the correlation 
between different channels, i.e., each current feature map interacts with other feature maps, which is an intensive 
connection. ECA module simplifies this connection by making the current channel interact with its k domain 
channels only, aggregated features are obtained by global average pooling (GAP), and ECA generates channel 
weights by performing a fast 1D convolution of size k , where k is determined adaptively by mapping the channel 
dimension C . The k is shown in Eq. (2).

where |t|odd represents the odd number nearest to t  . γ and b are set to 2 and 1.

Proposed model architecture. TF‑Bottleneck block. In this paper, a TeaFaceNet bottleneck (TF-Bottle-
neck) block was proposed. This module improved the MobileNetV3 block. Figure 7a shows the inverted residu-
als block. This block mainly uses ReLU as the activation function. Figure 7b shows the TF-Bottleneck block. The 
attention block of the ECA module is placed after the depth filter in the extension to facilitate the application of 
attention to the maximum representation.

Backbone feature extraction network. TeaFaceNet feeds each batch of data into a redesigned deep convolutional 
neural network and then performs L2 normalization to produce embeddings of tea faces. Both triplet loss and 
softmax loss are used in training the data, which is eventually used for the tea face verification task. The training 
structure of the TeaFaceNet model is shown in Fig. 8.

The specifications of the backbone feature extraction network in this paper are shown in Table 3. The initial 
input size is adjusted to 320 × 320 × 3, and the final output is a 1 × 1 × 128 feature vector. The entire backbone 

(2)k = ψ(C) =

∣

∣

∣

∣

log2(C)

γ
+

b

γ

∣
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∣

∣

Figure 7.  (a) Inverted residuals block; (b) TF-Bottleneck Block.
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network consists of 18 modules {Layer1, Layer2, Layer3, Layer4, Layer5, …, Layer18}. The {Layer1} includes 
convolutional, regularization and activation layers, with the activation function using h-swish. {Layer2, Layer3, 
Layer4} are linear Bottleneck layers, in which no ECA module is added and ReLU is used as the activation 
function. {Layer5, Layer6, Layer7} are linear TF-Bottleneck layers, and the ECA module is added to these three 
layers, also using ReLU as the activation function. {Layer8, Layer9, Layer10, Layer11} are linear Bottleneck 
layers. No ECA module is added to these four layers, and h-swish is used as the activation function. {Layer12, 

Figure 8.  The training structure of the TeaFaceNet model.

Table 3.  Structure of the backbone feature extraction network.

Input Layer Filter Size exp size out ECA NL stride

3202 × 3 Convolution 3 × 3 – 16 False h-swish 1

3202 × 16 Bottleneck1 3 × 3 16 16 False ReLU 1

3202 × 16 Bottleneck2 3 × 3 64 24 False ReLU 2

1602 × 24 Bottleneck3 3 × 3 72 24 False ReLU 1

1602 × 24 TF-Bottleneck1 5 × 5 72 40 True ReLU 2

802 × 40 TF-Bottleneck2 5 × 5 120 40 True ReLU 1

802 × 40 TF-Bottleneck3 5 × 5 120 40 True ReLU 1

802 × 40 Bottleneck4 3 × 3 240 80 False h-swish 2

402 × 80 Bottleneck5 3 × 3 200 80 False h-swish 1

402 × 80 Bottleneck6 3 × 3 184 80 False h-swish 1

402 × 80 Bottleneck7 3 × 3 184 80 False h-swish 1

402 × 80 TF-Bottleneck4 3 × 3 480 112 True h-swish 1

402 × 112 TF-Bottleneck5 3 × 3 672 112 True h-swish 1

402 × 112 TF-Bottleneck6 5 × 5 672 160 True h-swish 2

202 × 160 TF-Bottleneck7 5 × 5 960 160 True h-swish 1

202 × 160 TF-Bottleneck8 5 × 5 960 160 True h-swish 1

202 × 160 Flatten – – – False – –

12 × 64,000 Dense – – 128 False – –
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Layer13, Layer14, Layer15, Layer16} are linear TF-Bottleneck layers, in which the ECA module is added and 
h-swish is used as the activation function. {Layer17} is the Flatten layer, the main purpose of this layer is to flat-
ten the features, which is the transition from the convolutional layer to the fully-connected layer. {Layer18} is a 
fully-connected neural network layer, whose main purpose is to fully connect the input into a 128-dimensional 
feature vector.

Loss function. Triplet  Loss28 is chosen as the main loss function. The main objective is to minimize the Euclid-
ean distance between an anchor and a positive image and maximize the Euclidean distance from a negative 
image, as shown in Fig. 9. The minimized triplet loss function is shown in Eq. (4),

where a increases the distance gap between positive and negative pairs. T is the set of all possible triples in the 
training set with base N.

Meanwhile, softmax  loss11 is added to the training. Because using only Triplet Loss, the convergence of the 
model is too slow, which is due to the fact that using triples to select data generates a large number of data sets 
and the random sampling method is used for selection, which leads to a reduced model training speed. The 
softmax loss function is shown in Eq. (5),

Among them, xi ∈ Rd denotes the i th deep feature, belonging to the yi th class. d is the feature dimension. 
Wj ∈ Rd denotes the j th column of the weights Wj ∈ Rd×n in the last fully connected layer and b ∈ Rn is the bias 
term. The size of the mini-batch and the number of class is m and n.

Tea face verification process. Tea face verification mainly involves inputting two images to be recognized into 
the trained TeaFaceNet network to extract the depth features of the images and finally form two feature vectors, 
which are then mapped to a compact Euclidean space. The L2 distance between them directly represents the 
similarity gap between the two tea faces, and the verification result is derived based on the similarity gap thresh-
old, i.e. whether it is the same tea face or not. The specific process of tea face verification is described below, the 
process is shown in Fig. 10.

(1) Crop the dataset image while resizing the image to 320 × 320 × 3.
(2) Expand the dataset using image enhancement techniques, including rotation, noise, brightness, chroma, 

contrast, sharpness adjustment, and random erasing.
(3) Divide all the training data into training and validation sets in the ratio of 9:1. Make a test pair of tea face 

data using the new tea face data.
(4) Train the TeaFaceNet model using the training dataset, record the validation set Loss values, and save the 

model after 100 epochs of training.
(5) The images of the test pair are tested by the trained TeaFaceNet model to calculate the L2 distance and get 

the best threshold.
(6) The verification results of the test pair are obtained to achieve tea face verification.
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Figure 9.  Triplet Loss.
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Evaluation metrics. To evaluate the performance of the network in the tea face verification datasets, Precision, 
Recall, F1-Score, and Accuracy are used for performance evaluation. Where TP represents the same data pairs 
correctly recognized; TN represents different data pairs correctly recognized; FN represents different data pairs 
incorrectly recognized; FP represents the same data pairs incorrectly recognized. The calculation methods are 
given in Eq. (6) to Eq. (9),

Results and discussion
Experimental environment and parameter settings. The experiments were conducted in Python. 
The code was mainly based on the Keras deep learning framework. TensorFlow was used as the backend. The 
hardware and software configuration pieces of information are shown in Table 4. The hyperparameters for model 
training are shown in Table 5.

(6)Precision =
TP

TP + FP
× 100%

(7)Recall =
TP

TP + FN
× 100%

(8)F1−Score = 2×
Precision× Recall

Precision+ Recall
× 100%

(9)Accuracy =
TP + TN

TP + FP + TN + FN
× 100%

Figure 10.  Tea Face Verification Process.
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Tea face recognition results. A test dataset was used to evaluate the TeaFaceNet model. Table 6 shows 
tea face verification results. The TeaFaceNet was compared with several other mainstream network models, 
including  ResNet5029,  VGG1630, Inception-ResNet-v131, MobileNet and MobileNetV3. Among them, Mobile-
NetV3 had the best recognition effect among the mainstream network models. The recognition accuracy of the 
raw tea face dataset, ripe tea face dataset and mixed tea face dataset of the TeaFaceNet network were 97.58%, 
98.08% and 98.20%, respectively. TeaFaceNet network adds the ECA attention mechanism module to the use 
of depthwise separable convolution and linear bottlenecks, and the accuracy achieves better results in all three 
datasets, improving by 1.92%, 2.42% and 0.54% in the three datasets, respectively. The recognition accuracy was 
improved by replacing the attention mechanism module and redesigning the network structure. In terms of size 
in the model, TeaFaceNet was only second to MobileNet. The recognition accuracy was improved by 4%, 3% and 
1% in the three datasets.

TeaFaceNet not only had the best accuracy in the raw tea dataset, mature tea dataset and mixed dataset but 
also converged first during the model training. A better results could be achieved when the model is trained to 
100 epochs. The variation of loss values and validation set accuracy of different network models on the raw tea 
dataset, ripe tea dataset and mixed dataset are shown in Fig. 11, Fig. 12 and Fig. 13, respectively.

All tests deal with two main types of problems, i.e., distinguishing between similar tea faces and dissimilar tea 
faces. Therefore, each model needs to be tested with an optimal threshold. The experiments focus on determining 
the optimal threshold for each model used ten-fold cross-validation. Table 7 shows the optimal thresholds for 
all models. The role of the threshold was to determine whether the two tea faces are the similarity. When greater 
than the optimal threshold, it means that the two tea faces are dissimilar, when less than the optimal threshold, 
it means that the two tea faces are similar. Figure 14 shows the validation case of the TeaFaceNet model. Where 
(a) and (b) are the validation results obtained for the model trained using only the raw tea face dataset. (c) and 
(d) are the validation results obtained for the model trained using only the ripe tea face dataset. (e), (f), (g) and 
(h) are the validation results obtained for the model trained using the mixed dataset.

Table 4.  Hardware and software configuration information.

Name Parameter

System Win10

CPU Intel(R) Xeon(R) Gold 6130 CPU @ 2.20 GHz

GPU NVIDIA Quadro P6000

RAM 96 GB

CUDA 10.0.130

TensorFlow 1.13.2

Keras 2.1.5

Table 5.  Hyperparameters for model training.

Hyperparameters Value

Epoch 100

Batch Size 30

Optimizer Adam

Learning Rate 0.001

Decay Rate 0.94

Input Size 320 × 320 × 3

Table 6.  Tea face verification results. Significant are in value [bold].

Model

Accuracy/% Model Size
/MBPu-erh raw tea face Pu-erh ripe tea face Mixed tea face

ResNet50 95.33 93.41 95.91 91.4

VGG16 83.25 92.91 92.50 922

Inception-ResNet-v1 95.58 91.00 94.45 88

MobileNet 93.58 95.08 97.20 13.1

MobileNetV3 95.66 95.66 97.66 111

TeaFaceNet 97.58 98.08 98.20 36.9
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Model performance analysis. TeaFaceNet improved feature extraction performance and reduced com-
putational effort by introducing the ECA module and using depthwise separable convolution and linear bottle-
necks. Compared with the traditional CNNs network, the network achieved a better results in all performances. 
The Precision, Recall and F1-Score in the raw tea dataset were 97.34%, 97.83% and 97.58%. Compared with 
MobileNetV3, which increased by 3.29%, 0.33% and 1.84%, respectively. The Precision, Recall and F1-Score in 
the ripe tea dataset were 98.98%, 97.16% and 98.06%. Compared with MobileNetV3, which increased by 1.91%, 
3.00% and 2.47%, respectively. The Precision, Recall and F1-Score in the mixed dataset were 98.82%, 97.58% and 
98.20%. Compared to MobileNetV3, which increased by 1.00%, 0.08% and 0.54%, respectively. Table 8 shows the 
Precision, Recall and F1-Score of the model on the test sets of the raw tea face dataset, ripe tea face dataset and 
mixed dataset. The experiments showed that TeaFaceNet could be implemented and achieved excellent results 
on the Pu-erh tea face verification task.

Through the analysis of the receiver operating characteristic (ROC) curve, the quality of the network model 
could be better determined. The Area Under roc Curve (AUC) value is the size of the part of the area under the 
ROC curve. The AUC value is between 0.5 and 1.0, with a larger AUC representing better performance. The 
higher the upper left corner, the better the performance. Figure 15 shows the ROC curves of the model for each 

Figure 11.  Loss and accuracy of raw tea dataset.

Figure 12.  Loss and accuracy of ripe tea dataset.
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of the three datasets. The ROC curves of TeaFaceNet model are in the upper left corner, with AUC values of 
0.996377 for raw tea face dataset, 0.996377 for ripe tea face dataset, and 0.997269 for the mixed tea face dataset.

Effect of attentional mechanism module on the model. To investigate the effect of the attention 
mechanism module on the model, experiments were conducted by replacing the ECA module in the model 
with the SE module and the CBAM module. Table 9 shows the results of tea face recognition under different 
attention mechanism modules. It was shown experimentally that a better results were achieved using the ECA 
module with the least number of model size. The accuracy increased over the model using the SE module was 
0.83%, 0.33%, and 0.25% for the three data sets, and the model size volume was reduced by 5.8 M. The accuracy 
improvement over the model using the CBAM module was 1.25%, 4.92%, and 2% for the three data sets, and 
the model size volume was reduced by 72.1 MB. The features between channels in the tea face recognition task 
had a large impact on the results. It was proven that the ECA module could effectively improve the accuracy of 
network verification.

Discussion
In this work, We propose a Pu-erh tea face verification approach called TeaFaceNet based on an improved 
MobileNetV3 to enhance Pu-erh tea traceability identification. We construct three types of Pu-erh tea face 
datasets and establish a Pu-erh tea face verification network to achieve comprehensive verification of Pu-erh 
raw tea and Pu-erh ripe tea. The TeaFaceNet network achieved recognition accuracies of 97.58%, 98.08%, and 
98.20% for the raw tea face dataset, ripe tea face dataset, and mixed tea face dataset, respectively. However, several 
issues remain in the area of tea face recognition. There is currently no publicly available dataset for Pu-erh tea 
faces, and the dataset used in this experiment needs further expansion. Our work solely addresses the Pu-erh 
tea face verification problem, and further exploration is required for the Pu-erh tea face recognition problem. 

Figure 13.  Loss and accuracy of mixed dataset.

Table 7.  Model optimal thresholds. Significant are in value [bold].

Model

Best threshold

Pu-erh raw tea face Pu-erh ripe tea face Mixed tea face

ResNet50 0.9100 0.7600 0.7000

VGG16 0.9200 0.9700 0.8900

Inception-ResNet-v1 0.8100 0.7000 0.7000

MobileNet 1.0900 0.9400 0.7600

MobileNetV3 1.0400 0.9100 0.9100

TeaFaceNet 1.0600 0.9100 0.9000
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Figure 14.  Validation case of TeaFaceNet model.
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In practical applications, transportation breakage can also pose a challenge, and more discussion is needed for 
the verification and identification of Pu-erh tea faces after breakage.

Conclusion
The primary objective of this study was to address the challenge of tracing Pu-erh tea cakes and to facilitate 
the detection of counterfeit and substandard tea products. In this paper, we proposed a Pu-erh tea face verifi-
cation model, TeaFaceNet, based on an improved MobileNetV3 architecture. The TeaFaceNet model extracts 
128-dimensional features from each pair of Pu-erh tea face images and calculates the L2 distance between them 
to determine whether they are the same tea face, based on the similarity between images determined by the best 
threshold. The experimental results demonstrated that the TeaFaceNet model outperformed other models on the 
Pu-erh tea face dataset. The ECA block reduced the model size while extracting features, thereby improving the 
recognition rate of the network. The proposed model exhibited better robustness and generalization ability and 
achieved excellent results not only on individual class tea face verification tasks but also on mixed datasets. Our 
approach could serve as an empirical basis for subsequent Pu-erh tea face recognition tasks and aid in enhancing 
the traceability of Pu-erh tea products.

Table 8.  Model performance analysis. Significant are in value [bold].

Model Datasets Precision/% Recall/% F1-Sorce/%

ResNet50

Pu-erh raw tea face 94.59 96.16 95.37

Pu-erh ripe tea face 91.54 95.66 93.55

Mixed tea face 95.46 96.41 95.93

VGG16

Pu-erh raw tea face 78.37 91.83 84.57

Pu-erh ripe tea face 92.84 93.00 92.92

Mixed tea face 92.57 92.49 92.49

Inception-Resnet-v1

Pu-erh raw tea face 95.65 95.50 95.57

Pu-erh ripe tea face 93.92 87.66 90.68

Mixed tea face 92.64 96.58 94.57

MobileNet

Pu-erh raw tea face 94.39 92.66 93.52

Pu-erh ripe tea face 96.39 93.66 95.01

Mixed tea face 96.16 98.33 97.23

MobileNetV3

Pu-erh raw tea face 94.05 97.50 95.74

Pu-erh ripe tea face 97.07 94.16 95.59

Mixed tea fac 97.82 97.50 97.66

TeaFaceNet

Pu-erh raw tea face 97.34 97.83 97.58

Pu-erh ripe tea face 98.98 97.16 98.06

Mixed tea face 98.82 97.58 98.20
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Figure 15.  (a) ROC curve for raw tea face dataset; (b) ROC curve for ripe tea face dataset; (c) ROC curve for 
mixed tea face dataset.

Table 9.  Comparison of tea face recognition results under different attention mechanism modules. Significant 
are in value [bold].

Model Attention block

Accuracy/%

Model Size/MBPu-erh raw tea face Pu-erh ripe tea face Mixed tea face

0 SE 96.75 97.75 97.95 42.7

1 CBAM 96.33 93.16 96.20 109

2(ours) ECA 97.58 98.08 98.20 36.9
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