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A data‑driven approach to quantify 
disparities in power outages
Arkaprabha Bhattacharyya 1* & Makarand Hastak 2

This research proposes a data‑driven approach to identify possible disparities in a utility’s outage 
management practices. The approach has been illustrated for an Investor‑Owned Utility located in 
the Midwest region in the U.S. Power outage data for approximately 5 years between March 2017 
and January 2022 was collected for 36 ZIP/postal codes located within the utility’s service territory. 
The collected data was used to calculate the total number of outages, customers affected, and the 
duration of outages during those 5 years for each ZIP code. Next, each variable was normalized with 
respect to the population density of the ZIP code. After normalizing, a K‑means clustering algorithm 
was implemented that created five clusters out of those 36 ZIP codes. The difference in the outage 
parameters was found to be statistically significant. This indicated differential experience with power 
outages in different ZIP codes. Next, three Generalized Linear Models were developed to test if 
the presence of critical facilities such as hospitals, 911 centers, and fire stations, as socioeconomic 
and demographic characteristics of the ZIP codes, can explain their differential experience with 
the power outage. It was found that the annual duration of outages is lower in the ZIP codes where 
critical facilities are located. On the other hand, ZIP codes with lower median household income have 
experienced more power outages, i.e., higher outage counts in those 5 years. Lastly, the ZIP codes 
with a higher percentage of the White population have experienced more severe outages that have 
affected more customers.

Power outages happen every year, and millions of people suffer from  them1. Power outage restoration is a very 
complex, multi-objective, multi-stage, multi-variable, and multi-constraint optimization issue and is full of 
non-linearity and  uncertainty2. During any large-scale power outage, utilities prioritize territories based on the 
presence of different critical  facilities3. Critical facilities such as hospitals, 911 centers, fire stations, etc., often 
appear at the top of utilities’ restoration priority list. Once those are restored, they focus on the downed lines. 
After those drowned lines are restored, utilities shift their focus toward the households.

There is a plethora of evidence that points towards disparities in the power outage restoration process after 
major  disasters3–7. These restorations are often biased against minority and low-income communities. Not only 
after major disasters, but utilities should also ensure equitable power outage management practices during normal 
 operations7. While duration has been a preferred choice in analyzing the disparity in post-disaster power outages, 
other outage parameters, such as the number of outages in a year, the number of customers affected, etc., should 
also be considered for analyzing disparities during normal operations. These parameters collectively represent 
the extent of power outages faced by different  communities8,9.

As explained earlier, utilities’ restoration practices often prioritize critical facilities over households, which 
can cause differences in outage duration between areas with and without critical facilities. However, the extent 
of a power outage can be dissimilar in different areas due to reasons other than the presence of critical facilities 
and the above-explained disparities. For instance, factors such as population density, location of power lines 
(e.g., underground vs. overhead), exposure to natural hazards, etc., can influence the extent of power outages in 
an  area8,9. When these factors are controlled, there should not be much difference in the extent of power outage 
between different areas within a utility’s service territory. If that difference is statistically significant, it reflects 
differential experience with a power outage in different areas. It can be further argued that the spatial difference 
in the extent of the power outage is due to the difference in the vulnerability of the grid components in differ-
ent locations. But the spatial difference in the vulnerability of grid components among areas within a utility’s 
service territory with similar population density, exposure to natural hazards, etc., also indicates disparities in 
infrastructure management.

Regardless of people’s background, education, or ethnicity, everyone should have equitable access to infra-
structures and services such as electricity. The absence of this equitable service is defined as disparity in the 
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context of this research. This disparity can be either intentional or unintentional. They might be due to implicit 
 bias10. Whatever the reasons are, utilities should periodically assess the performance of their outage management 
practice to identify any disparity. On the other hand, the regulatory commissions should also oversee that there 
is no bias in a utility’s outage management practice during normal operations. Most of the previous research has 
analyzed the disparities in post-disaster outage management practices. Disparities in the outage management 
practices during normal operations are relatively underexplored, which indicates the need for this research.

This research fulfills that gap by proposing a data-driven approach that utilizes a utility’s historical data to 
identify the power outage disparity in its service territory. The proposed approach has been demonstrated for 
an investor-owned utility (IOU) located in the Midwest region of the U.S. Power outage data for 5 years between 
2017 and 2021 was collected, and the data was aggregated at ZIP or postal code level. First, a K-means clustering 
algorithm was utilized. The algorithm created different clusters of ZIP codes with similar outage characteristics. 
Next, the inter-cluster difference of three popular reliability indices: System Average Interruption Duration Index 
(SAIDI), System Average Interruption Frequency Index (SAIFI), and Customer Average Interruption Duration 
Index (CAIDI), were tested using the Kruskal–Wallis test. Lastly, three Generalized Linear Models (GLM) were 
developed for the annual power outage count, total customers affected annually, and the total annual outage 
duration for each ZIP code and normalized with respect to population density to explore the influence of the 
socioeconomic and demographic factors, and presence of critical facilities such as hospitals, 911 centers, and 
fire stations on them.

Research background
Ensuring equal access to clean water and sanitation, affordable clean energy, and reducing inequalities are three of 
the seventeen Sustainable Development Goals (SDGs) set by the United  Nations11. Building on the SDGs, discus-
sions on the inequality in access to urban infrastructures have gained popularity in recent times. The disparity 
in the accessibility to urban infrastructures contributes to growing inequalities among  communities12. Nicoletti 
et al.12 have found that communities that have a larger share of minorities earn less and have a lower number of 
individuals with a university degree have low access to urban infrastructures. Braun et al.13 analyzed access to 
bike lanes in 22 U.S. cities and found that communities with lower socioeconomic status have lesser access to 
bike lanes. Inadequate access to water and sanitation is prevalent among communities  in the U.S. with higher 
American Indian and Alaskan Native  households14. Similar evidence was also presented  in15,16.

Like water and sanitation, energy is one of the most essential infrastructures. The disparity in the energy 
insecurity, i.e., the uncertainty that a household can pay its energy  bills17 is extensively discussed in the existing 
literature. Graff and  Carley17 have found substantial difference in the percentage income that is spent on energy 
bills among different socioeconomic and demographic households in urban and rural U.S. On average, low-
income households living in the rural areas spent 9% of their income on energy  bills17. Memmott et al.18 have 
found that energy insecurity is highly prevalent in the low-income households in the U.S. that are at or below 
200% of the federal poverty line. They also found that Black and Hispanic households are more likely to face 
service disconnection and energy insecurity. Similar evidence was found after hurricane Sandy in  201219. Baker 
et al.20 have claimed that this issue of energy insecurity among low-income households of color has exacerbated 
during the COVID-19 pandemic. Steele and  Bergstrom21 have developed an index that can measure the extent 
of energy insecurity among the U.S. households. Their research showed that in 2015, between 9% and 22% of 
the households they surveyed were energy insecure. Other studies investigating energy insecurity among low-
income households can be found  in22–26.

Frequent and large-scale power outages can have devastating economic and social impacts on a society. Bhat-
tacharyya et al.1 showed that an annual production loss of 1% in the U.S. utility sector due to severe weather 
events can cause the U.S. Gross Domestic Product billions of dollars of loss. On the other hand, power outages can 
have severe impacts on residents’ lives, commercial activities, public services, and many  more27–29. Disparities in 
the power outage restoration has also been discussed in the existing literature. In the aftermath of major disasters, 
it is often reported that existing power restoration processes place larger burden on the marginalized communi-
ties. Tormos-Aponte et al.3 have analyzed power outage data in Puerto Rico after hurricane Maria in 2017. They 
found that the communities with ties to the ruling party in Puerto Rico are more likely to be prioritized during 
disaster relief. Ulak et al.30 have analyzed power outage data in Tallahassee, Florida after hurricane Hermine in 
2016. They have found that the extent of power outage represented as percentage of customers affected in a census 
block was higher in the areas with lower median family income. During the severe winter storm “Uri” in Texas in 
February 2021, similar disparities were reported. Flores et al.31 have analyzed hourly county level power outage 
data and found that counties with more Hispanic residents tended to experience more severe power outage. They 
did not find socioeconomic and medical disparities in the power outage. Another research has found similar 
evidence from that winter storm. Nejat et al.32 have also analyzed county level outage data and found a negative 
correlation between the ratio of outage and counties’ population of non-Hispanic whites and median household 
income. Similar evidence was also presented  in5. They have also found significant disparity in the extent and 
duration of power outage experienced by low-income and minority groups. Although similar disparities were 
reported for other types of natural hazards such as hurricanes, severe storms, etc.,  in3,33,34, the disparity during 
the winter storm “Uri” is particularly insightful and at the same time problematic. This is because those rolling 
outages were planned to prevent the grid from  collapsing29,32,35.

Despite their merits, these studies that have found evidence of bias against low-income population of color 
are event  specific31–34. Utilities provide service 24-7. Therefore, the performance of their outage management 
practice should also be judged during normal  operations7. Moreover, all the existing evidence are for the outages 
due to weather related events that normally cause prolonged power  outages1. But there are other types of out-
ages caused by equipment failures, intentional attacks, accidents, etc. Those outages should also be considered 
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in judging the performance of the utility’s outage management practice. Although outage duration is a preferred 
choice for analyzing disparities in power outage, other dimensions such as outage count, the number of custom-
ers affected is relatively underexplored. To the best of the authors’ knowledge, no previous research has analyzed 
the disparity in power outage management practice with these three dimensions, i.e., outage count, number of 
customers affected, and duration of the outage collectively while considering a longer time frame so that outages 
of different types and causes are not excluded. This research is aimed to bridge that gap.

Research data
The power outage data was collected for an Investor-Owned Utility located in the Midwest Region of the U.S. The 
utility serves around 150,000 customers in the region. The power outage data for 36 ZIP codes within its service 
territory was collected for approximately 5 years between March 2017 and January 2022. The data was collected 
from the utility’s Twitter account. The utility tweets about the power outages that occur within its service terri-
tory. The tweets contain multiple information on the outages such as the address, number of customers affected, 
possible causes, etc. It should be noted that the tweets’ structures were not regular and not all tweets contained 
all these information. Additionally, the utility sometimes retweets to inform the progress and/or completion of 
the restoration process. The difference between the original tweet notifying the outage and the retweet notifying 
completion of restoration is used as the outage duration in this research. Again, it does not always retweet when 
the outages are restored.

This research utilized Twitter’s Application Programming Interface (API) to download tweets between March 
2017 and January 2022 from the Utility’s Twitter account. It should be noted that Twitter only allows download-
ing a limited number of tweets from a particular account. The collected tweets were utilized to extract the power 
outage data. Tweets that did not mention the number of customers affected due to the outage were discarded. 
After discarding those, 594 tweets were left. Each of these tweets represented one power outage. The addresses 
mentioned on the tweets were used in Google Maps to find the ZIP codes of the outage locations. There were 
fifty tweets that did not mention the outage location. For those cases, it was assumed that the outage was spread 
across the service territory. So, the number of customers affected was evenly distributed among the 36 ZIP codes 
within the utility’s service territory.

Among the 594 outages, 275 had the duration information, i.e., the utility retweeted about the completion of 
restoration. Among those 275 outages, 40 did not have the affected customer information. For those 40 cases, 
the missing data was replaced by the average customers affected in that ZIP code during that year. Lastly, among 
those 275 outages, 15 did not have the location information. For those, it was assumed that the outage affected 
all the ZIP codes in the utility’s service territory. The causes of power outage were only available for 182 cases. 
The causes included severe weather events, falling trees, wildlife, equipment failures, etc. Majority of the outages 
were associated with equipment failures (30%), which was followed by severe weather events (20%), vegetation 
related events (18%), accident (9%), etc.

Next a panel data, which is also known as longitudinal data or cross-sectional time series data, was created 
by aggregating the three parameters of power outages, i.e., the outage count, the number of customers affected, 
and the outage duration in minutes for each ZIP code for each year between 2017 and 2021. So, the data had the 
three outage parameters for 36 ZIP codes for 5 years, i.e., 180 datapoints. Figure 1 shows the density plots. It can 
be seen that all three variables have long tails, i.e., they are right skewed. The skewness coefficients for outage 
count, customers affected, and the outage duration were 1.26, 1.63, and 1.23, respectively. The median values of 
the outage count, number of customers affected, and the outage duration were 12, 959, and 364 min, respectively.

Research methodology
There are two objectives of this research. (1) to propose a data driven approach that can be used to quantify 
disparities in the power outage management practice of a utility and (2) to investigate if the socioeconomic, 
and demographic characteristics can explain the difference in the extent of power outages between different 
areas within the utility’s service territory. The proposed approach of quantifying disparities in power outage 
and recovery is shown in Fig. 2 and based on the following assumption. If the determinants of the differentials 
of power outage such as population density, location of power lines (underground or overhead), exposure to 
natural hazards, etc., can be controlled, the difference in the outage parameters among different areas within 

Figure 1.  Distributions of the power outage parameters among the 36 ZIP Codes.
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the utility’s service territory should not be statistically significant. If the difference is statistically significant, it 
indicates differential experience with power outages in different areas within the service territory. It should be 
clarified that the proposed approach does not investigate or infer the causes behind such disparities. It rather 
facilitates the process to identify them.

The 36 ZIP codes within the utility’s service territory covers approximately 1912 square miles of area, which 
is only 5.3% of the state’s area where it is located. Therefore, it is safe to assume that there is not much difference 
in the exposure to natural hazards. Moreover, it has been explained before that severe weather events contributed 
20% of the power outages. Again, population density is another important factor that influences the extent of 
power outage experienced by different  locations8. Population density also influences the location of distribution 
lines. Densely packed urban areas tend to have more underground electric  lines8,29. Mukherjee et al.8 stated that 
cities located in the Midwest region in the U.S. such as Indianapolis, Evansville, etc., have underground power 
lines in the downtown areas where the population density is normally higher. Thus, population density also 
serves as a proxy variable for the location of the power lines. To control the effects of population density and 
location of distribution lines, the outage parameters, i.e., outage count, number of customers affected, and the 
outage duration were normalized with respect to the population density of the ZIP code. Next, the normalized 
outage parameters were aggregated for 5 years, i.e., for each ZIP code the sum of values of the normalized out-
age parameters for 5 years was calculated from the panel data. It was used to conduct the clustering analysis. 
Spatial analysis at the ZIP code level is common in the literature and can be found  in36–41. Table 1 summarizes 
the descriptive statistics of the normalized outage parameters.

It can be noticed that all three variables are right skewed with the skewness coefficient above 2. The number of 
outliers can also be noticed. For identifying the outliers, the interquartile range (IQR), i.e., the difference of 75th 
percentile  (Q3) and 25th percentile  (Q1), was first calculated. The values that were higher than Q3 + 1.5× IQR 
or lower than Q1 − 1.5× IQR were considered as the outliers.

Figure 2.  Power outage disparity quantifying framework.

Table 1.  Descriptive statistics of the normalized outage parameters.

No. of outages No. of customers affected Duration in minutes

No. of datapoints 36 36 36

Mean 1.03 93.56 63.07

Standard Deviation 1.14 95.01 66.46

Minimum 0.03 6.32 1.60

Maximum 5.93 441.75 322.49

25th percentile  (Q1) 0.24 32.90 16.56

50th percentile  (Q2) 0.86 61.99 54.23

75th percentile  (Q3) 1.26 126.53 77.46

No. of outliers 3 2 3

Skewness 2.51 2.00 2.11
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K‑means clustering. Once the normalized outage parameters were aggregated at the ZIP code level, they 
were used in a K-means clustering algorithm. K-means is one of the popular clustering techniques that has been 
widely used for clustering  purposes42–44. K-means clustering is relatively simple compared to other clustering 
algorithms. Also, its computing efficiency is high. However, there are certain disadvantages associated with the 
K-means clustering approach. It is very sensitive to the presence of outliers in the dataset. Additionally, the user 
needs to specify the number of clusters for this algorithm. The 3 outage parameters are the 3 variables in the 
clustering analysis. As shown in Table 1, for both the count and the duration of outages, the aggregated data had 
3 outliers. For the number of customers affected, there were 2 outliers present. Due to such low number of outli-
ers, K-means clustering algorithm has been utilized in this research.

Next, the correlations between the variables were checked. The correlation coefficients between normal-
ized outage count and normalized customers affected was 0.68. The correlation coefficient between normalized 
customers affected and normalized outage duration was 0.66 and it was 0.99 between normalized count and 
normalized outage duration. Due to extremely high correlations between normalized count and normalized 
outage duration, one of them was removed from the clustering analysis. Since the correlation coefficient between 
normalized customers affected and normalized outage duration (0.66) was lower than that of normalized count 
and normalized customers affected (0.68), the normalized outage count was removed from the analysis. The 
other two variables, i.e., normalized customers affected, and normalized outage duration were used in clustering.

Before the implementation of the clustering algorithm, the data was preprocessed. First, the variables were 
converted to their natural logarithm so that the skewness coefficients are between − 1 and 1. After this transfor-
mation, the skewness coefficients of normalized customers affected and normalized outage duration were − 0.30 
and − 0.67, respectively. Next, the transformed variables were standardized. This step was necessary to ensure 
that no variable is given higher or lesser importance due to the difference in their ranges. Standardization follows 
Eq. (1) where x = variables used in the clustering analysis, µ = mean of the variable, σ = standard deviation of the 
variable, and z = is the variable after standardization. It should be noted that z has a mean of 0 and a standard 
deviation of 1. All values of z range between [− 1, 1].

In the K-means approach, each cluster is associated with a center point or centroid. Each point is assigned to 
the cluster with the closest centroid. The basic algorithm is simple and as follows.

Algorithm 1: K-means Clustering 

1: select k initial points as initial centroids 

2: repeat

3: form k clusters by assigning all points to the closest centroid 

4: recompute the centroid of each cluster 

5: until the centroids do not change further 

The closeness is measured in terms of Euclidean distance, cosine similarity, correlation, etc. In this paper, 
Euclidean distance has been used as the measure of closeness between points. The clustering model was devel-
oped in Python programming language using the “scikit-learn” library. To determine the number of clusters, 
Elbow Method is widely  used44–47. In this method, the number of clusters (k) is varied in a given range. For each 
value of k, the sum of squared distance (SSD) between the points in a cluster and the centroid of that cluster is 
measured. Then, the sum of the squared distance is plotted against k. The plot looks like an elbow. The point of 
inflection of the curve is selected as the optimal k. In addition to SSD, the paper has also used Silhouette Coef-
ficient (SC) for determining the optimal k. The coefficient measures the goodness of the clustering technique. 
It is computed as Eq. (2).

where a = the average intra-cluster distance and b = the minimum of average inter-cluster distance. A Silhouette 
Coefficient value close to one indicates well separated clusters whereas a value close to zero indicates poor cluster-
ing performance. This paper has varied the k value between 1 and 15. Figure 3 shows the variation of SSD and SC 
for different k. It can be noticed that the SSD line is almost flat since k = 5. On the other hand, the performance of 
clustering algorithm measured in terms of SC is the second highest for k = 5 only behind k = 2. However, the SSD 
for k = 2 is much higher than that of k = 5. Considering these two factors, the number of clusters was finalized at 5.

Figure 4 shows the scatter plot of normalized customers affected and normalized outage duration. In the scat-
ter plot, the five clusters of ZIP codes are shown in green, yellow, purple, blue, and red colors. It can be noticed 

(1)z =
x − µ

σ

(2)Silhouette Coefficient =
(b− a)

max(a, b)
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that the values of the outage parameters have gradually increased from green cluster to red cluster. The number 
of ZIP codes in green, yellow, purple, blue, and red colors were 4, 5, 5, 14, and 8, respectively.

Generalized linear models. Since the clustering algorithm created 5 clusters of ZIP codes, the power out-
age data was further analyzed to see if the critical facilities, socioeconomic, and demographic characteristics of 
the ZIP codes can explain the outage count, number of customers affected, and duration of outages. As explained 
before, to control the effects of population density and location of distribution lines, the outage parameters 
were normalized with respect to the population density of the ZIP code. Figure 5 shows the distribution of the 
normalized annual outage parameters for the 36 ZIP codes for 5 years. It can be noticed that all three variables 
are right skewed and follows an exponential pattern. Due to this exponential nature of the normalized outage 
parameters, Generalized Linear Models (GLM) have been adopted to analyze the impact of the presence of 
critical facilities, socioeconomic, and demographic characteristics on the normalized annual outage parameters.

GLMs were popularized by McCullagh and  Nelder48. In these models, the response variable is assumed to 
follow an exponential family distribution. The models were developed in Python programming language using 
the “statsmodel” library. There are three components of the GLM.

1. Random component It specifies the probability distribution of the response variable. Among the three vari-
ables, normalized count was assumed to follow a Poisson distribution. The other two variables were assumed 
to follow Gamma distribution.

2. Systematic component It specifies the linear combination of the explanatory variables.

Figure 3.  Outcomes of Elbow method.

Figure 4.  Scatter plot of the outage parameters after clustering.
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3. Link function It specifies the link between the Random component and the Systematic component. For all 
three variables logarithmic link function has been used as it is the most used link function for both Poisson 
and Gamma  GLMs49.

The mean regression structure of the Poisson and Gamma regression are shown in Eq. (3)

where normalized count ~ Poisson(µ) , and normalized customers affected and normalized outage dura-
tion ~ Gamma(µ, 1) , µ is the mean for Poisson distribution and scale parameter for Gamma distribution, 1 is 
the shape parameter for the Gamma distribution, α and β are the regression coefficients, and x is vector of the 
explanatory variables, i.e., critical facilities, socioeconomic, and demographic characteristics. Three types of 
critical facilities were considered in this analysis. They are hospitals, 911 centers, and fire stations. The data on 
the number of those critical facilities located at each ZIP code was collected from Department of Homeland 
Security’s (DHS) website. The data on the socioeconomic and demographic characteristics of the ZIP codes was 
collected from the U.S. Census Bureau. Two socioeconomic and two demographic variables were considered.

• Socioeconomic Median household income and percentage of families with income below 100% poverty level
• Demographic Percentage of White population and percentage of African American population

The state where the utility serves has approximately 84.2% White population, 10.2% Black or African Ameri-
can population, 2.7% Asian population. These three races are predominant in the 36 ZIP codes within the util-
ity’s service territory. In 2020, the ZIP codes had an average 93.5% of White population and 3.2% of Black or 
African American population. In 2020, the ZIP codes had a median household income of $53,036 (lower than 
the national average) and an average 12.4% of the population lived in poverty (higher than the national average).

Before developing the GLMs, the correlations between the predictors were tested. Figure 6 shows the cor-
relation matrix for the predictors. The correlation matrix shows high correlations between (1) percentage of 
White population and percentage of Black population, (2) percentage of White population and percentage of 
population living below poverty level (BPL), (3) percentage of Black population and percentage of population 
living below poverty level, and (4) percentage of population living below poverty level and median household 
income. To avoid the multicollinearity issue among the predictors, percentage of Black population and percent-
age of population living below poverty level were removed from the list of predictors. So, the final predictors 
are percentage of White population, median household income, number of hospitals, number of 911 centers, 
and the number of fire stations in the ZIP codes. These five predictors were used in the GLMs to test if they can 
explain the normalized annual outage parameters.

Results and discussion
The clustering algorithm created 5 clusters out of the 36 ZIP codes in the utility’s service territory. The number 
of ZIP codes in green, yellow, purple, blue, and red clusters were 4, 5, 5, 14, and 8, respectively. Next, the statis-
tical significance of the inter-cluster differences was tested. To do that, this research has used Kruskal–Wallis 
 test50. It is a nonparametric statistical test that is used to assess the statistical significance of the difference of a 
single, non-normally distributed continuous variable among three or more independently sampled  groups51. In 
a Kruskal–Wallis test, the null hypothesis claims that the samples are drawn from the same population, whereas 
the alternate hypothesis rejects that claim. The test results are shown in terms of p-value. If the p-value is less 
than 0.05, the test rejects the null hypothesis. For this paper, the Kruskal–Wallis test was conducted to the test the 
statistical significance of the difference of the 3 outage parameters among the 5 clusters. For all three parameters, 
the p-values were found in the order of  10−6, which is lesser than 0.05. This indicates the statistical significance 
of the difference. Figure 7 shows the boxplots for the 3 outage parameters for the 3 clusters.

The boxplot follows the same color convention as in Fig. 4. It can be seen that cluster shown in red color 
that appears on the top right corner on Fig. 4 has the highest values for all 3 outage parameters. The cluster that 
is shown in green and also appearing on the bottom left corner of Fig. 3 has the lowest values for all 3 outage 

(3)log (µ) = α + βx

Figure 5.  Distribution of normalized annual power outage parameters.
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parameters. Evidently, the 8 ZIP codes that are in the red cluster have experienced the highest extent of power 
outage compared to the other ZIP codes. The medians of the normalized outage parameters are shown in Table 2. 
It can be noticed that the medians of all 3 outage parameters have gradually decreased from clusters in red color 
to clusters in green color. It should be noted that the median values of the outage parameters shown in Table 2 are 
aggregated over five year. For instance, the 8 ZIP codes that belonged to the red cluster had a median normalized 
outage count, i.e., the median of the total outage count among those 8 ZIP codes over 5 years and normalized 
with respect to population density, of 2.18.

Next, the inter-cluster difference of three popular reliability indices were compared. They are System Average 
Interruption Duration Index (SAIDI), System Average Interruption Frequency Index (SAIFI), and Customer 
Average Interruption Duration Index (CAIDI). These indices were calculated for each ZIP code on annual basis 
for each year between 2017 and 2021. SAIDI represents the average annual outage duration for each customers 
served by the utility. SAIFI is the annual number of outages per customer. CAIDI represents the average time 
required to restore service after an outage. Unlike SAIDI and SAIFI, CAIDI only considers the customers affected 
by the outage. Kruskal–Wallis test was used again to test the statistical significance of the inter-cluster difference 

Figure 6.  Correlation matrix for the predictors of the GLMs.

Figure 7.  Boxplots of the normalized outage parameters aggregated over 5 years.
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of the reliability indices. The p-values for SAIDI, SAIFI, and CAIDI were 0.046, 0.000002, and 0.23, respectively. 
Clearly the difference in SAIDI and SAIFI were significant as the p-values were less than 0.05. The statistical 
significance of the inter-cluster difference in reliability index and the outage parameters implied differential 
experience with power outage in different location within the utility’s service territory.

Table 3 displays the median of reliability indices for different clusters. It can be noticed that SAIDI, SAIFI, 
and CAIDI are the worst, i.e., the highest in the red cluster. This means that these ZIP codes had the worst outage 
experiences between 2017 and 2021. The reliability indices are the best, i.e., the lowest in the five ZIP codes that 
belonged to yellow cluster. It can be noticed that the order of SAIDI, SAIFI, and CAIDI is different in Table 3 
from that of Table 2. This is due to the difference in the area of the ZIP codes. The values in Table 2 are normalized 
with respect to population density, which incorporates the area of the ZIP codes. On the other hand, the values 
in Table 3 are normalized with respect to population only. Therefore, the difference in the area of different ZIP 
codes created the difference in the order in Tables 2 and 3.

In the next step, the influence of the critical facilities, socioeconomic, and demographic characteristics of 
the ZIP codes on the outage parameters was tested using the GLMs. Five predictors were used for developing 
the GLMs. They are the number of hospitals, 911 centers, and fire stations in the ZIP codes, percentage of the 
White population, and median household income. The GLMs were developed using the panel data. The panel 
data captured the annual values of the normalized outage parameters and the predictors for the 36 ZIP codes 
between 2017 and 2021. So, there were 36 datapoints for each year, i.e., 180 datapoints in total. As explained 
earlier, the normalized annual outage counts were fitted to a Poisson Regression with logarithmic link function. 
The other two variables, i.e., normalized annual customers affected and normalized annual outage durations 
in minutes were fitted to the Gamma Regression with logarithmic link function. Table 4 shows the regression 
coefficients of the predictors along with the p-values.

Table 4 shows the regression coefficients and the corresponding p-values. A regression coefficient has been 
considered significant, if the p-value is less than or equal to 0.10, i.e., significance level of 10%. For the normalized 
outage count, it can be noticed that the coefficient for median income is negative and significant. This means 
that the normalized annual outage count is higher in the ZIP codes with lower median household income. For 
the number of customers affected, the only significant predictor is the percentage of White population, and the 
coefficient is positive. This implies that the normalized annual customers affected is higher in the ZIP codes 
where the percentage of White population is higher. For the outage duration, percentage of White population, 
number of hospitals, and the number of fire stations are three significant explanatory variables. Out of these three, 

Table 2.  Median of normalized outage parameters in different clusters.

Cluster color No. of ZIP codes Outage count Customers affected Outage duration in minutes

Red 8 2.18 198.58 134.28

Blue 14 0.95 64.56 57.86

Purple 5 0.24 56.28 17.06

Yellow 5 0.21 17.34 12.28

Green 4 0.04 8.50 2.71

Table 3.  Median of the annual reliability indices in different clusters.

Cluster color SAIDI SAIFI CAIDI

Red 28.79 0.55 70.83

Blue 8.46 0.23 41.18

Purple 6.49 0.22 30.45

Yellow 2.75 0.12 33.29

Green 8.97 0.19 64.97

Table 4.  Regression coefficients and p-values of GLMs. * Indicates significance at 10% level. ** Indicates 
significance at 5% level.

Predictors

Normalized annual 
outage count

Normalized annual 
customers affected

Normalized outage 
duration in minutes

Coefficients p-values Coefficients p-values Coefficients p-values

Intercept − 4.33 0.15 − 0.99 0.32 − 1.29 0.32

% White population 4.58 0.15 4.44 0.00** 5.32 0.00**

Median income − 2.18 ×  10−5 0.08* − 7.63 ×  10−6 0.27 − 1.04 ×  10−5 0.29

No. of hospitals − 0.61 0.37 − 0.21 0.13 − 0.52 0.00**

No. of fire stations − 0.17 0.29 0.08 0.32 − 0.18 0.08*

No. of   911 centers 0.02 0.98 0.32 0.27 0.06 0.88



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7247  | https://doi.org/10.1038/s41598-023-34186-9

www.nature.com/scientificreports/

percentage of White population had positive regression coefficient, which indicates that the normalized annual 
outage duration is higher in the ZIP codes with higher percentage of White population. On the other hand, the 
coefficients of the number of hospitals and the number of fire stations are both negative. This is means that the 
normalized annual outage duration is higher in the ZIP codes with lower number of critical facilities. This is 
because restoration of critical facilities is often prioritized over the households. Figure 8 shows the variation of 
the percentage of White population in the ZIP codes with and without hospitals and fire stations.

It can be noticed that ZIP codes where hospitals are present have lower percentage of White population 
compared to the ZIP codes without any hospitals. This difference is statistically significant with p-value of 
1.26 ×  10−11. This result is insightful as it implies that if the utility prioritizes the ZIP codes where hospitals are 
present in its power outage restoration effort, it will automatically prioritize the ZIP codes with lower percentage 
of White population. As a result, the outage duration will be higher in the ZIP codes with higher percentage of 
White population. On the other hand, the variation is percentage of White population based on the presence 
of fire stations is statistically insignificant as the p-value is 0.27. Based on the results, it can be concluded that 
utility’s power outage restoration is unbiased. However, ZIP codes with lower median household income have 
experienced more power outages. Additionally, the ZIP codes with higher percentage of White population have 
had power outages of larger scale that have affected more customers. This can be due to spatial difference in 
vulnerability of grid components, which is something the utility must investigate further.

Based on the findings, this research suggests that utilities should periodically assess the performance of 
their outage management practice so that they can identify any bias in it. The regulatory commission should 
also oversee this periodic assessment neutrally. If disparities are identified, the regulatory commission should 
intervene immediately. These steps are necessary to ensure no community is discriminated against in the power 
outage management practice.

Conclusion
This research has proposed a data driven approach to quantify the disparity in the power outage management 
practice of a utility. The proposed approach uses an unsupervised machine learning technique to create clusters 
of ZIP codes where the extent of power outage is different. The proposed approach has been illustrated for an 
investor-owned utility located in the Midwest region in the U.S. The power outage data was collected for 5 years 
between March 2017 and January 2022 for 36 ZIP codes within its service territory. The K-means clustering 
algorithm was adopted to create clusters of ZIP codes with similar outage parameters. Five clusters of ZIP codes 
were found from the clustering analysis. It was found that the difference in the extent of power outages experi-
enced by different clusters is statistically significant. Next, three GLMs were developed to test if the differential 
extent of power outages can be explained by the presence of critical facilities such as hospitals, 911 centers, and 
fire stations, socioeconomic, and demographic characteristics of the ZIP codes. It was found that the durations 
of power outages are lower in the ZIP codes where hospitals and fire stations are located. However, it was found 
that the ZIP codes that have lower median household income have experienced more frequent power outages. 
Additionally, ZIP code that have higher White population have experienced more severe power outages that have 
affected more people. This is possibly due to difference in the vulnerability of grid components in different loca-
tions, which is something the utility must investigate to ensure equitable access of electricity to all communities. 
It should be noted that this research did not investigate the causes behind these disparities. It is beyond the scope 
of this research to judge whether the disparities are caused by intentional or unintentional biases. The proposed 
approach is expected to help the utilities and the regulatory commissions in identifying disparities in the existing 
power outage management practice so that corrective actions can be taken to ensure equitable electricity supply.

There are some limitations of the data used in this research. As explained, the durations were not available 
for several outages, which might have influenced the outcomes of the analysis. On the other hand, during the 
data cleaning, some assumptions were made. For instance, the outages that did not have location information 
were assumed to have happened across the utility’s service territory thus affecting all the ZIP codes. This could 
have influenced the research outcomes. There is one major limitation of the proposed approach. If the service 
territory of the utility is very large, there is a possibility that the frequency and exposure to natural hazards will be 
different within the service territory. In that case, it will be difficult to judge the causes of any identified disparity. 
They might be simply due to the difference in the frequency and exposure of the natural hazards. In such cases, 

Figure 8.  Presence of critical facilities and percentage of white population.
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county wise comparison might be more insightful. Utilities can also create groups based on similar frequency 
and exposure to natural hazards to neutralize their effects and then conduct clustering analysis for each group 
separately. This will be explored in further detail in future research.

Data availability
Some or all data, models, or code that support the findings of this study are available from the corresponding 
author upon reasonable request.
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