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STAGEs: A web‑based tool 
that integrates data visualization 
and pathway enrichment analysis 
for gene expression studies
Clara W. T. Koh 1, Justin S. G. Ooi 1, Eugenia Ziying Ong 2 & Kuan Rong Chan 1*

Gene expression profiling has helped tremendously in the understanding of biological processes 
and diseases. However, interpreting processed data to gain insights into biological mechanisms 
remain challenging, especially to the non‑bioinformaticians, as many of these data visualization 
and pathway analysis tools require extensive data formatting. To circumvent these challenges, 
we developed STAGEs (Static and Temporal Analysis of Gene Expression studies) that provides an 
interactive visualisation of omics analysis outputs. Users can directly upload data created from Excel 
spreadsheets and use STAGEs to render volcano plots, differentially expressed genes stacked bar 
charts, pathway enrichment analysis by Enrichr and Gene Set Enrichment Analysis (GSEA) against 
established pathway databases or customized gene sets, clustergrams and correlation matrices. 
Moreover, STAGEs takes care of Excel gene to date misconversions, ensuring that every gene is 
considered for pathway analysis. Output data tables and graphs can be exported, and users can easily 
customize individual graphs using widgets such as sliders, drop‑down menus, text boxes and radio 
buttons. Collectively, STAGEs is an integrative platform for data analysis, data visualisation and 
pathway analysis, and is freely available at https:// kuanr ongch an‑ stages‑ stages‑ vpgh46. strea mlita 
pp. com/. In addition, developers can customise or modify the web tool locally based on our existing 
codes, which is publicly available at https:// github. com/ kuanr ongch an/ STAGES.

Gene expression profiling has emerged as a powerful tool for biomedical research. With high-throughput micro-
array and RNA sequencing, it is now possible to measure gene expression rapidly and cost-effectively in cells 
and tissues across multiple time-points, leading to an exponential increase in publicly available transcriptomic 
datasets in the recent years. Compared to a single static snapshot, adding a third dimension of time offers deeper 
insights into the biological mechanisms involved, as tracking temporal changes can evaluate not only when tran-
scriptomic changes matter, but also the duration of transcriptional responses that are influenced by experimental 
conditions. Indeed, we and others have demonstrated that day 1 host transcriptional responses to the YF17D 
vaccine was associated with adverse  events1 but the correlates of vaccine immunogenicity were more apparent 
at days 3–72,3. In another study, by daily tracking of severe and mild COVID-19 patients, we ascertained that 
neutrophil signatures but not interferon signaling are associated with respiratory  nadir4. Overall, these studies 
highlight the importance of time-series gene expression profiles to better understand how trajectory of gene 
expression changes impact biological phenomena.

The current challenge no longer lies in obtaining gene expression profile and data pre-processing, as special-
ised software and tools such as Partek Genomics Suite, Limma package and Transcriptomic Analysis Console 
can handle these processes  efficiently5. However, interpreting the processed results to gain insights into biological 
mechanisms remain challenging, as pathway analysis tools are not centralised and typically require extensive 
data formatting to utilise these tools. The development of pathway analysis tools is an active research field, and 
algorithms implemented in Enrichr and Gene Set Enrichment Analysis (GSEA) are efficient tools for interpret-
ing gene expression  data6–9. However, implementing these tools can be laborious and error-prone when many 
samples and comparisons are involved. Although programming frameworks like Python, R and Bioconductor 
libraries can facilitate omics data analysis, these bioinformatic tools may be challenging for users without coding 
or programming background.
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To overcome these issues, we present STAGEs (Static and Temporal Analysis of Gene Expression Studies), 
which is a web-based and high-throughput analysis pipeline with an intuitive user interface that allows systematic 
characterisation of static and temporal transcriptomic data. Besides comparisons between time-points, differ-
ent treatment conditions can also be compared, allowing for multiple comparison analyses. STAGEs integrate 
the use of various data visualization tools, as well as pathway enrichment analyses to allow users to explore 
transcriptomics data tailored towards their own needs. Output data tables and graphs are interactive and can 
be customized using widgets such as sliders, drop-down menus, text boxes and radio buttons located at the side 
bar. Finally, as our web browser is created by Streamlit, developers can conveniently amend the Python codes to 
include customized gene set files (https:// github. com/ kuanr ongch an/ STAGES) for a deeper characterization of 
the genes and pathways that are differentially modulated.

Overview of STAGEs
STAGEs is an interactive web app built using Streamlit (https:// www. strea mlit. io), and the running instance of the 
online app can be accessed via the website (https:// kuanr ongch an- stages- stages- vpgh46. strea mlita pp. com/). The 
app can also run locally using the instructions detailed in GitHub (https:// github. com/ kuanr ongch an/ STAGES). 
Users can directly upload data from Excel spreadsheets, csv or txt files containing ratio and p-values into STAGEs, 
where STAGEs will first auto-correct for any Excel gene-to-date conversion errors with Gene  Updater10, ensuring 
that every gene will be considered for pathway analysis. Alternatively, raw counts from RNAseq or log2 counts 
from microarray data can be uploaded, and the webtool will then tabulate the fold-change and p-values for 
downstream analysis (Fig. 1). Thereafter, users can select the apps at the side bars to render correlation matrices, 
volcano plots, differentially expressed genes as stacked bar charts, clustergrams, and pathway enrichment analysis 
by Enrichr and Gene Set Enrichment Analysis (GSEA) (Fig. 1). The output is a personalised data report that 
displays the results from data analysis, where users can manipulate parameters using widgets such as sliders, 
drop-down menus, text boxes and radio buttons located at the side-bar. When parameter settings are changed, the 
results are automatically re-calculated and updated in the dashboard real-time. The output graphs are visualised 
with either the Python graphic libraries Matplotlib or Plotly, the latter allows generation of interactive graphs 
that can show data upon mouseover. The uploaded data and output of the analyses are not stored anywhere, 
ensuring the safety and security of the data.

Data input. STAGEs can work on Google Chrome, Firefox and Microsoft Edge, and on MacOS, Windows 
and Linux. The user interface of STAGEs starts with a file uploader that enables users to upload Excel, csv or txt 
comparison file(s). To upload a comparison file, the file should contain annotation labels (e.g. gene names) on 
the first column, ratio values (relative transcript expression comparing control vs baseline) and the correspond-
ing p-values. For the web tool to recognise the ratio and p-value columns, users will need to label as ratio_X_
vs_Y and pval_X_vs_Y respectively, where X and Y are the comparison variables separated by underscore. The 
X and Y variables can be time-point comparisons (e.g. ratio_day1_vs_day0, ratio_hr6_vs_0) or experimental-
control comparisons (e.g. ratio_drugA_vs_placebo, ratio_virus_vs_ctrl). Moreover, multiple pairwise compari-
sons can be performed simultaneously by adding their respective ratio and p-value columns to the dataframe 
(e.g. ratio_A_vs_Y, pval_A_vs_Y, ratio_B_vs_Y, pval_B_vs_Y). Finally, STAGEs can also perform multiple com-
parisons for time-course studies by allowing users to upload multiple files. However, the time-points and label-
ling must be consistent across the different experimental conditions for multiple file comparisons. For users 
interested to explore all features within STAGEs, a demo dataset showing the gene transcript expression levels in 
seronegative subjects after MERCK Ad5/HIV  vaccination11 is pre-loaded.

Alternatively, users can generate the comparison file within STAGES by uploading the gene raw counts from 
RNAseq or log2-normalised counts from microarray datasets into STAGEs for pre-processing. The metadata 
containing the attributes of the samples should also be included so that the comparison file can be generated. 
Users can then select the variables and statistical tests to use for comparisons within STAGEs. Similarly, demo 
datasets are provided for users to explore the web tool and workflows.

After uploading the comparison data file, users can inspect the data by clicking on the checkbox at the side 
bar. By clicking on the header columns, users can sort numeric values either in ascending or descending order 
to ensure that the correct dataset is successfully uploaded into the STAGEs web tool. We have also incorporated 
the Gene Updater into STAGEs at  backend10, so that the old gene names and date terms will be auto-converted 
to the new gene names as recommended by the HUGO Gene Nomenclature Committee (HGNC).

STAGEs output. STAGEs allow users to visualise correlation matrices, volcano plots, DEG stacked bar 
charts, cumulative distribution functions, clustergrams, pathway enrichment analysis from Enrichr and GSEA 
and protein–protein interaction networks. Users will be prompted to perform the data analysis in a sequential 
manner, and users can familiarise themselves with the workflow using the demo dataset that is pre-loaded within 
the web tool. STAGEs documentation is also provided at the front page of the web tool and GitHub (https:// 
github. com/ kuanr ongch an/ STAGES) for users to understand the features and capabilities of the web tool. After 
analysis, users can download the results of the DEG and pathway analyses as Excel files, and the output charts 
collectively as a report format.

Correlation matrix. The first graph rendered is the correlation matrix, to compare relatedness in host tran-
scriptomics responses between the different experimental conditions. STAGEs converts the ratio values to log2-
transformed fold change values at backend, and the correlation matrix is generated by performing pairwise 
correlations of the log2-transformed fold changes between the different experimental conditions. Depending on 
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the user’s preference, users can perform either the Pearson, Spearman, Kendall or Phik correlation for the pair-
wise comparisons. The output is a correlation matrix showing the pairwise correlation coefficient values (Fig. 2).

Differential expression analysis. Next, users will be able to display the charts related to differential 
expression analysis. First, to render the DEGs stacked bar chart, users can define the fold-change and p-value 
cutoffs at the side-bar, and the corresponding stacked bar chart showing the number of upregulated and down-
regulated DEGs will then be updated in real-time on the STAGEs dashboard (Fig. 3A). This interactive feature 
allows users to optimise the fold-change and p-value cutoffs, to increase the likelihood of yielding meaningful 
biological insights from downstream pathway enrichment  analyses13. In addition, users can visualise the num-
ber of DEGs based on the different cutoffs by rendering the cumulative distribution function app (Fig. 3B). The 
mouse-over feature within the app allows users to quickly identify the number of DEGs based on a specified 
cut-off.

Figure 1.  Schematic view of STAGEs platform. Raw counts or comparison data files (in csv, txt or xls formats) 
can be uploaded to STAGEs for omics data analysis. The data will then be analysed sequentially, to generate 
correlation matrices, volcano plots, differential analysis plots, clustergrams, pathway enrichment charts, and 
protein–protein interaction networks. Results are then saved in the final report, which can be downloaded.
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To visualise the distribution of fold change and p-values of all data points, users can render the volcano plot. 
Python commands are executed at backend, where the ratios and p-values are converted to log2-transformed 
fold-change values and negative log10-transformed p-values respectively. These values are then displayed as a 
scatterplot using the Matplotlib and Plotly visualisation library. As the top differentially expressed genes are also 
ideal targets for validation and demonstrated to be most reproducible across multiple  platforms12, the top 10 
most upregulated and downregulated are annotated in the volcano plots (Fig. 3C). Users can use the sliders at 
the side bar to customize the range of log2-fold change and p-values to plot, as well as configure the range of x 
and y-axis values. Users can also select the option to plot an interactive volcano plot using the Plotly library. This 
option allows users to display the gene and data point attributes when the mouse cursor is hovered over each of 
the individual data points. If multiple comparisons are indicated in the uploaded dataset, the volcano plots of 
each comparison will be overlaid, allowing users to directly compare distribution of volcano plots between the 
different experimental conditions or timepoints (Fig. 3C). After setting the appropriate fold-change and p-value 
cutoffs, the identity of the DEGs, together with the respective log2 fold-change and p-values will also be extracted 
into tables, which can be downloaded and exported as an Excel spreadsheet (Fig. 3D).

Clustergram. After DEG analysis, users can input the upregulated or downregulated DEGs into the clus-
tergram app to visualize the changes in gene expression profile between the different experimental conditions. 
Alternatively, users can directly copy-and-paste the genes from DEG or pathway analyses to plot clustergrams 
based on the user-defined gene list. Within the app, users can then customize the range of log2-transformed 
fold-changes to be plotted, click the option to cluster or not cluster columns, and adjust the height and width 
settings of the clustergram located at the sidebar (Fig. 4).

Pathway analysis output with Enrichr analysis. The DEGs determined from the DEG analysis can be 
subsequently queried against curated pathway databases such as Gene Ontology (GO)14,  Reactome15,  KEGG16 
and  HumanCyc17 to understand the role of DEGs in biological processes, functions, metabolism and their cell 
localisation. Users can select the upregulated or downregulated DEGs as their gene input list to query against GO 
Biological Processes, GO Molecular Function, GO Cellular Component, Reactome, KEGG and HumanCyc data-
bases. In addition, we have added the blood transcription modules (BTMs) curated by Li et al., which is a curated 
database comprising of an integrated large-scale network of publicly available human blood  transcriptomes18. 
Querying against the BTM database allows users to evaluate if their DEGs are related to immune cell subset 
changes and functions. To demonstrate that the app can also be customised by bioinformaticians to work on 
in-house gene sets, we curated peak vaccine transcriptomics responses from different vaccines (Supplementary 
Table 1) and termed this database as Vaccinomics database, for users to ascertain if their DEGs are similar to host 

Figure 2.  Correlation matrix rendered by STAGEs. Correlation matrix between different pairwise comparisons 
can be rendered by STAGEs to ascertain if the expression changes are correlated between different experimental 
conditions. Users can select to perform Pearson, Spearman, Kendall and Phik correlation for their analysis.
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response changes elicited by various vaccine types. The gene set information on Vaccinomics database and the 
.gmt file is available in the GitHub repository (https:// github. com/ kuanr ongch an/ STAGES). Lastly, in addition 
to the pathway databases provided by STAGEs, users can also upload their preferred gene set file within STAGEs 
for pathway enrichment analysis to query against any other databases.

After selecting the pathway database to query against, the raw gene set analysis files showing the extent of 
overlap between DEGs and pathway database, p-values, adjusted p-values and the identity of DEGs involved 
in the respective pathways are displayed, and can be downloaded by users for further downstream analysis. By 
default, the top 10 enriched pathways with adjusted p-values < 0.05 are presented as horizontal bar graphs, in 
descending order of significance (Fig. 5). Users can also change the settings to display all pathways with adjusted 
p-values < 0.05, or select the number of top pathways to be presented. Finally, the results for the Enrichr analysis 
can be downloaded in an Excel format for further downstream analysis.

Figure 3.  Differential expression analysis charts rendered by STAGEs. (A) Stack bar charts rendered by 
STAGEs, which displays the number of upregulated and downregulated differentially expressed genes. The 
threshold parameters such as p-value and fold-change values can be adjusted using the sliders located at the 
left of the side bars. In this case, we used the default threshold, which is fold-change > 1.30 and p-value < 0.05. 
Results based on demo dataset within STAGEs. (B) Cumulative distribution function graph displaying 
the number of DEGs based on user assigned p-value cutoff. Attributes of the data points can be rendered 
upon mouse-over. (C) Volcano plot based on demo dataset within STAGEs, where ratios and p-values are 
automatically converted to log2(fold change) values and -log10(p-values) respectively. Settings can be adjusted 
using sliders located at the side bar of the app. Interactive volcano plots can be rendered by clicking on the 
checkbox located at the side bar. (D) Identity of DEGs after setting the fold-change and p-value cutoffs in A. 
Data can be downloaded as an xlsx file for further analysis.

https://github.com/kuanrongchan/STAGES
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Figure 4.  Clustergram rendered by STAGEs. DEGs can be used as input to visualize the magnitude changes 
and identify unique clusters by unsupervised clustering. Settings for log2(fold-change) magnitude and 
clustergram dimensions can be tailored at the side bars. Besides DEGs, users can also input a gene list to be used 
for clustergram analysis. Data based on demo dataset.
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GSEA preranked output. Biological data may be noisy and heterogeneous. Thus, modest transcriptom-
ics differences may not be effectively captured with Enrichr as no genes may meet the threshold for statistical 
significance. Moreover, transcriptomics responses measured by microarray or RNAseq with poor read depth 
may add to the data noise, causing only few DEGs detected. An alternative is to use the Gene set enrichment 
analysis (GSEA), which relies on ranking of ratio values to determine leading edge genes responsible for pathway 
 enrichment8. However, to implement GSEA, users will typically have to reformat their dataset and download the 
appropriate database files, which can be tedious and time consuming. With STAGEs, users can perform GSEA 
prerank analysis without reformatting. The Python codes at backend sorts and ranks the ratio values to identify 
the pathways which are most significantly enriched. The Reactome, BTM and vaccinomics databases are made 
available for GSEA prerank analysis in STAGEs. Users may also or upload their gene sets of interest or modify 
the codes to include other pathway databases if required.

After selecting the database to query against, the top 10 positively and negatively enriched pathways are 
plotted on horizontal bar graphs, in descending order of significance. Users may select to display the pathways 
with adjusted p-values < 0.05. The raw table file showing the leading-edge genes, normalized enrichment scores 
(NES) and false-discovery rate (FDR) for the respective pathways can also be downloaded (Fig. 6).

Figure 5.  Over-representation analysis output by STAGEs. Horizontal bar charts rendered by STAGEs, which 
displays the top 10 significant pathways based on the cutoff determined in the DEG analysis in Fig. 3A. In this 
case study, the upregulated DEGs at day 1 of the demo dataset were queried against the Blood Transcriptomic 
Modules. Users can query against other databases such as Reactome, Gene Ontology, KEGG, HumanCyc and 
Vaccinomics within STAGEs. Alternatively, users can also upload their gene sets to query against the other 
databases that are not provided within STAGEs.
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STRING network analysis. To visualise the protein–protein interaction networks in DEGs, users can ren-
der the  STRING19 query app and select the upregulated or downregulated DEGs as input. Alternatively, users 
can directly copy-and-paste the genes from pathway analyses as input to understand the protein–protein interac-
tion network in the enriched pathways (Fig. 7). The interaction network serves as an exploratory feature to deter-
mine if the gene expression changes are changed individually or as a protein complex. To make finer adjustments 
to the interaction networks, users can also visit the STRING-DB (https:// string- db. org/) for further analysis.

Comparison with other omics web‑tools. Next, we compared STAGEs with other existing web-
tools20–22. As detailed in Table 1, STAGEs provide more analysis options for correlation and clustering analysis. 
In addition, multiple pair-wise comparisons can be easily performed with STAGEs, which can be useful for 
time-point analysis. Finally, STAGEs allow users to upload their own gene sets for pathway enrichment analysis, 
so users do not have to be restricted to only the databases provided in the webtool (Table 1). However, we do 
acknowledge that our webtool does not perform batch correction, dimension reduction analysis and machine 
learning, and some of these features are available in the other existing web-tools.

Figure 6.  Gene set enrichment analysis output by STAGEs. Horizontal bar charts rendered by STAGEs 
displaying the top 10 positively enriched (red) and negatively enriched pathways (FDR < 0.05) (blue) based on 
ratios at day 1 of the demo dataset. In this case study, the ratio values were ranked and GSEA was performed 
against the Blood Transcriptomic Modules (BTM) database. Users can also upload their gene sets to query 
against the other databases that are not provided within STAGEs.

https://string-db.org/
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Discussion
Presently, plotting volcano plots, DEG analysis, pathway enrichment analysis, protein–protein interaction net-
works, hierarchical clustering and correlation matrices require copying and formatting of data from one applica-
tion to another, which can be cumbersome, error-prone and laborious. Indeed, web-based applications and tools 
such as  Appyters23 have been designed to allow experimental biologists without coding background to execute 
bioinformatics workflows for data analysis. However, the main advantage that STAGEs provide is that all of 
omics workflows, from volcano plots to pathway enrichment analysis to protein–protein interaction networks 
can be performed within one single app, allowing users to systematically analyse transcriptomic profiles across 
multiple time-points and experimental conditions. Moreover, by incorporating the Gene Updater framework 
within STAGEs, users need not worry about missing any genes due to Excel’s gene to date auto-conversion10. After 
familiarization with the web tool, most users can complete their gene expression data analysis within ~ 30 min, 
highlighting its accessibility and ease-of-use. As the app is designed to analyse the data in a step-wise manner, 
users can systematically analyse transcriptomics data starting from a broad perspective to the specific biological 
pathways and networks.

From a developer’s viewpoint, the advantage of using Streamlit is it is easy to use, customize, manage and 
deploy. Web developers can easily edit the codes to add or remove web tool functionalities. They can also select 
their preferred database of interest or create their own customized gene sets for pathway analysis. Hence, we 

Figure 7.  Pathway clustergram and protein–protein interaction network rendered by STAGEs. DEGs can be 
used as input to perform STRING analysis, to ascertain if the genes act individually, or interact with each other 
to function a protein complex.

Table 1.  Comparison of STAGEs with the other existing webtools.

GeneCloudOmics GENAVi iDEP STAGEs

Correlation analysis Pearson, Spearman No No Pearson, Spearman, Kendall, Phik

Volcano plot Yes Yes Yes Yes, allows multiple pairwise 
comparisons

DE analysis Yes Yes Yes Yes

Pathway analysis methods ORA, GSEA ORA, GSEA GAGE, GSEA, PGSEA, Reac-
tomePA ORA, GSEA

Pathway analysis gene sets GO, KEGG, MSigDB, WikiPath-
ways

GO, KEGG, MSigDB, WikiPath-
ways, Disease Ontology

GO, KEGG, TF:Target, miRNA.Tar-
gets, MSigDB, PPI, Drug, Cancer 
pathways

GO, KEGG, HumanCyc, Reactome, 
Blood Transcriptomic Modules
Users can upload their own gene 
sets for pathway analysis

Gene/Sample clustering Yes Yes Yes
Yes. Users can also plot customised 
heatmaps using enriched genes or 
leading-edge genes

Protein–protein interaction Yes No Yes Yes
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envisage that the utility of STAGEs is not only confined to analyzing gene expression data but can be applied 
more broadly into proteomics and metabolomics, provided that the appropriate database files are available for 
evaluating pathway enrichment analysis. Finally, since Streamlit is based on a cloud platform, STAGEs can 
potentially work on both computer and mobile devices, providing users the option to share and analyze their 
gene expression data on different computing platforms.

The webtool is easy to maintain, and we intend to keep the gene lists from 2021 even if the gene sets continue 
to be updated over time. The benefit for using Streamlit for webtool development is that bioinformaticians can 
copy and manipulate the codes and run STAGEs locally to either add-on or exclude databases. The instructions 
for running STAGEs locally are detailed in GitHub (https:// github. com/ kuanr ongch an/ STAGES). Alternatively, 
users can directly upload their own gene sets onto the app for Enrichr or GSEA analysis. However, in the event 
where there are too many gene sets that significantly slow down the web-tool, we will send notifications within 
the app and GitHub, and ensure that the webtool is updated to the most current databases.

Currently, GSEA pre-rank analysis may take a long time to execute if large gene sets such as GOBP or Reac-
tome datasets are used for pathway enrichment analysis. This is because the pathway analysis utilizes the full 
list of genes within the dataset, and multiple iterations are performed to improve consistency and reliability of 
the analysis. In addition, huge heatmaps and STRING queries with a large number of gene terms are usually not 
so easily readable. Presently, the webtool cannot perform batch correction, dimension reduction analysis and 
machine learning, and we have not evaluated the speed of data analysis if a big number of users are utilising the 
webtool. These limitations may be reconsidered in the next versions of STAGEs.

Conclusion
In summary, we developed a publicly available, user-friendly and customisable web tool that allows transcrip-
tomic data analysis. We believe this tool can assist non-coding users with their gene expression studies.

Methods
Creating vaccinomics database file. Peak vaccine responses against  YF17D2,24,  LAIV25, DVC-LVS26, 
MRKAd5/HIV11, rVSV-ZEBOV27,28, H5N1 +  AS0329,  MPSV418,  MCV418, Hepatitis B adjuvanted with AS01B, 
AS01E, AS03, AS04 or  Alum30, RTS,S/AS01/AS0231,  Pneumovax2332 and influenza inactivated  vaccines33 were 
used for making the .gmt Vaccinomics file (See Supplementary Table 1 for full details). At peak vaccine responses, 
fold-change of 1.3 and adjusted p-value (Benjamini–Hochberg Step-Up FDR-controlling procedure) < 0.05 was 
applied to filter for differentially expressed genes, which were subsequently used to annotate the vaccine gene 
sets in the database.

Running STAGEs in web browser. STAGEs is available to everyone and the running instance of the 
app can be located at https:// kuanr ongch an- stages- stages- vpgh46. strea mlita pp. com/. The documentation and 
instructions for use are available within the STAGEs app, and in this scientific publication.

Running STAGEs locally. All codes, files, detailed instructions and the technical requirements are avail-
able at the GitHub repository (https:// github. com/ kuanr ongch an/ STAGES). Briefly, Streamlit and Python 3.7 (or 
later), together with several python packages (pandas >  = 1.3.4, numpy >  = 1.20.3) should be installed locally. A 
number of other requirements will have to be installed as well, where the requirements.txt file can be found in 
the GitHub repository. To install all requirements, users can type: pip install -r requirements.txt. Other files that 
should also be copied from our STAGEs repository include hgnc-symbol-check2.csv for the Gene Updater and 
demo_dataframe_corrected.csv for the demo dataset. For simplicity, users can also opt to download all required 
files as a ZIP file within the GitHub repository.

After specifying the directory and folder with the downloaded files in terminal using the change directory 
(cd) command, users can then simply type: streamlit run stages.py. This will generate a new tab with the STAGEs 
web tool appearing in the default browser. A docker image may also be built and run in a container with the 
Dockerfile within the repository with the instructions in the README file to facilitate reproducibility and 
convenience for users.

Statement. All experiments and methods were performed in accordance with relevant guidelines and regu-
lations.

Data availability
Codes that are used to generate STAGEs are hosted at https:// github. com/ kuanr ongch an/ STAGES. The Vacci-
nomics database file and demo dataset files are also located within the GitHub repository. This page can also be 
used to communicate any issues, queries or request features.

Received: 31 October 2022; Accepted: 25 April 2023
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