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classification using geometric 
transformation‑invariant 
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Wafer map defect pattern classification is essential in semiconductor manufacturing processes for 
increasing production yield and quality by providing key root-cause information. However, manual 
diagnosis by field experts is difficult in large-scale production situations, and existing deep-learning 
frameworks require a large quantity of data for learning. To address this, we propose a novel rotation- 
and flip-invariant method based on the labeling rule that the wafer map defect pattern has no effect 
on the rotation and flip of labels, achieving class discriminant performance in scarce data situations. 
The method utilizes a convolutional neural network (CNN) backbone with a Radon transformation 
and kernel flip to achieve geometrical invariance. The Radon feature serves as a rotation-equivariant 
bridge for translation-invariant CNNs, while the kernel flip module enables the model to be flip-
invariant. We validated our method through extensive qualitative and quantitative experiments. For 
qualitative analysis, we suggest a multi-branch layer-wise relevance propagation to properly explain 
the model decision. For quantitative analysis, the superiority of the proposed method was validated 
with an ablation study. In addition, we verified the generalization performance of the proposed 
method to rotation and flip invariants for out-of-distribution data using rotation and flip augmented 
test sets.

Classification of wafer bin map patterns is gaining attention as a critical approach for increasing yield and quality 
in semiconductor manufacturing processes by allowing root cause analysis (RCA)1,2. As integrated circuit (IC) 
chips, which are composed of electronic circuits that enable desired functions in various electrical products, 
continuously decrease in size, their manufacturing process becomes more sophisticated, making the cause of 
defects in the process more difficult to analyze3. At a later stage of the semiconductor production process, prior 
to packaging, different electrical and thermal tests are undertaken to evaluate whether each chip is normal at 
the wafer die level in binary. Then, defects are displayed on a chip-by-chip basis on the wafer, and this forms a 
defect pattern. Because this defect pattern is the end outcome of the whole procedure, it is feasible to analyze 
the correlation between the defect pattern and the process history and details, enabling RCA in the process. 
Therefore, wafer map defect pattern classification is particularly important in this field because it is strongly tied 
to improving the quality that the semiconductor industry is aiming for while also raising the production yield.

In addition to the pattern-based defect classification, there has been increasing demand for the automation 
of the classification process. The wafer map pattern labeling process is directly conducted by experts in the field, 
which is labor- and cost-intensive, and diagnosis performance varies depending on engineers. Recent research 
on automated labeling using the wafer map classification model has been conducted due to the data-based clas-
sification model’s superior automation capabilities in a variety of sectors. Existing approaches can be classified 
into two categories depending on the data-driven inference mechanism: (1) machine learning-based and (2) 
deep learning-based.

Machine learning-based approaches for wafer defect pattern classification utilize a variety of prediction 
models to extract class discriminative features based on several hand-crafted features derived from the wafer 
map. Yuan et al.4 proposed the classification of spatial defect patterns using support vector clustering and the 
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Bayesian method. Wu et al.5 proposed a support vector machine (SVM) based method using a set of Radon and 
scale-invariant features. He demonstrated that Radon-based features can be used to acquire rotation-equivariant 
response. Yu and Lu6 proposed the use of joint local and non-local linear discriminant analyses for wafer map 
defect detection and recognition based on multiple features, including geometric and Radon features. Saqlain 
et al.7 proposed a voting ensemble classifier using various features, including Radon features. Various models 
employing useful features have been actively examined for these methods based on domain knowledge; however, 
there exists a limitation in terms of the inference performance due to the shallowness of the machine learning-
based models.

As the depth of the inference model increases due to the development of computational resources, deep 
learning-based methods have been actively studied for wafer defect pattern classification because they can 
automatically learn meaningful features from raw data without expert intervention, enabling improved pat-
tern classification performance. This deep learning-based method follows two steps: First, the deep learning 
framework is simply applied to the wafer map defect pattern problem; second, practical concerns, such as data 
scarcity and memory efficiency, are addressed. Regarding the former, early research adopted convolution neural 
network (CNN) models, which show exceptional performance among deep learning models in image classifi-
cation, for wafer map classification8,9. Kyeong et al.10 proposed mixed-type defect patterns in wafer bin maps 
using multiple CNN models. Yu et al.11 proposed two stages for recognizing and classifying wafer map patterns. 
However, obtaining sufficient clean labeled wafer map data of high quality is often a constraint throughout the 
manufacturing process; therefore, a model including additional approaches to the traditional CNN model is 
required. Regarding the latter, several studies have proposed models based on the fact the label remains unaf-
fected by the rotation and flip, according to the predefined labeling rule of the wafer map. Kang et al.12 proposed 
a data augmentation method to learn rotation- and flip-invariant representation through augmention along a 
discrete angle direction. Kahng et al.13 proposed self-supervised learning for pretext-invariant representation, 
which includes rotation invariance in the data-augmentation context. As a result, it was possible to achieve 
high classification performance in limited data situations. However, these previously proposed methods have 
a limitation because they do not directly incorporate rotation and flip invariance into the model architecture, 
which means that the model ability to recognize these invariances is not specifically built into its design. Instead, 
these methods rely on data augmentation and additional parameters, which can be inefficient and insufficient 
for addressing memory efficiency concerns. This has already been noted for rotational variable CNNs in the field 
of computer vision, as discussed in “Related works”.

In this paper, we propose a novel method for classifying wafer defect patterns that is invariant to rotation and 
flip. Considering the orientation variations in wafer defect patterns due to manufacturing processes and equip-
ment, achieving rotation and flip invariance becomes crucial for accurate and robust classification. Furthermore, 
by incorporating these invariances into the classification method, our approach can efficiently extract relevant 
features from limited data, helping to mitigate data scarcity issues. To achieve rotation and flip invariance, we 
utilize the equivariant traits of Radon features, a hand-crafted feature previously used in machine learning, within 
the CNN framework. Moreover, we achieve flip invariance by designing kernels within the network, minimizing 
the reliance on data augmentation. To validate our model, we conduct both qualitative and quantitative analyses. 
For qualitative analysis, we introduce the multi-branch layer-wise relevance propagation (multi-branch LRP) 
method to interpret the model decisions, specifically designed for models with multi-branch structures like our 
kernel flip module. We demonstrate the individual impact of Radon transformation and kernel flip through both 
qualitative and quantitative evaluations using an ablation study. We also evaluate our model’s unseen generaliza-
tion performance under rotation and flip augmented dataset.

Background and preliminaries 
Related works.  CNNs inherently possess a strong capability to learn translation-invariant features through 
translational weight sharing and pooling operations. However, achieving other forms of spatial invariance, such 
as rotation and flip, remains a limitation of the CNN framework. Numerous studies have been conducted to 
address these challenges by (1) augmenting features of an input image with several transformed copies, and (2) 
encoding desired transformation invariance for the CNN using specific trainable modules within the network.

The former can be broken down into input data augmentation and feature augmentation by the inner filters 
of the network. In many early studies, the input data were directly augmented for various applications. Laptev 
et al.14 proposed a transformation invariant pooling (TI-pooling) layer taking highly activated transformation-
invariant features by max-pooling to the fully connected layer, extracted over a weight-shared CNN for each 
input based on the rotationally augmented training dataset. Cheng et al.15 proposed a similar method, rotation 
invariant CNN (RICNN), which trains existing CNNs by rotationally augmenting training samples for the object 
detection task. Cheng et al.16 proposed a Rotation-invariant and fisher discriminative CNN (RIFD-CNN), also 
using the data augmentation strategy as RICNNs but adding a Fisher-discriminatory layer. However, directly 
augmenting input data has a critical limitation that fundamentally requires higher memory size and network 
capacity to obtain more generalizable rotation. Because of this, feature augmentation by internal filters of the 
network has lately gained considerable attention in a variety of methods. Dieleman et al.17 proposed the multiple 
branch structure of a CNN for extracting different viewpoints for each augmented image. Then, Dieleman18 
extended this concept by performing various operations on cyclic symmetries. Cohen et al.19 proposed a group-
equivariant CNN based on group theory, utilizing a symmetry group and pooling operation on the group. 
Marcos et al.20 suggested explicitly incorporating the rotation invariance method into the model by associating 
the weights of groups of filters with various rotated copies of the group’s canonical filter. Gao et al.21 proposed 
a set of kernel rotation and flip methods for achieving rotation and flip invariance in a CNN. In summary, the 
feature augmentation method follows the structure of sampling multiple branches for data variation within the 
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network, and the main limitation of this is the trade-off relationship between generalizing the data variation 
and the number of branches.

The second work is the utilization of certain trainable modules inside a CNN to encode required transforma-
tion invariance for the CNN. Worrall et al.22 proposed a harmonic networks that achieves rotation invariance 
by replacing regular CNN filters with circular harmonics, thus returning a maximal response and orientation. 
Jaderberg et al.23 proposed the spatial transformer network (STN), which uses learnable modules, explicitly 
allowing the spatial manipulation of input data to reduce pose variations in subsequent layers within the network. 
Esteves et al.24 suggested a polar transformer network (PTN), which is an extended version of STN combining 
canonical coordinate representations. Dai et al.25 proposed a deformable CNN with deformable convolution and 
RoI pooling based on the idea of augmenting the spatial sampling locations in the modules. These works have 
constraints in that they not only require additional trainable parameters for additional modules but also require 
a complex structure to adapt to a CNN.

In this study, we propose a novel rotation and flip invariant CNN approach for classifying wafer map defect 
patterns, taking into consideration the challenge of data scarcity. To achieve this, we suggest incorporating 
handcrafted features into a deep learning framework. Specifically, we utilize the rotation-equivariant property of 
the Radon feature, a commonly used hand-crafted feature in previous machine learning context for wafer clas-
sification task, to obtain rotation invariance in the CNN framework. Furthermore, we achieve flip invariance by 
introducing a kernel flip module with only a two-branched structure, which learns the data variation of flipped 
copies produced by each branch. It is worth noting that our method achieves flip invariance in all directions 
by securing it in combination with rotation invariance, utilizing the rotation-equivariant feature and minimal 
branches of the flipped kernel. This approach allows for more compact and efficient representations, potentially 
leading to better performance and reduced training times compared to data augmentation-based methods.

Equivariance and invariance.  To facilitate understanding of the problem statement, it is essential to first 
comprehend the concepts of equivariance and invariance. Given a mapping function � , an input X from a set of 
inputs { Xi }, and a group G , we call �  equivariant under T1 ∈ G if the transformation of the input is related to a 
transformation T2 ∈ G of the output, as stated in Eq. (1). Conversely, � is invariant under T if it is independent 
of the transformation relationship in the output domain, as expressed in Eq. (2).

Problem formulation.  To clearly explain the proposed mechanism of obtaining rotation and flip invari-
ance, we formulated the principle of the proposed approach including Radon transform, kernel flip, and CNN 
backbone module. The wafer defect pattern image data and its label set exist as 

(

Xi , yi
)

 , geometrical transforma-
tions are denoted as translation: TT rotation: TR , flip: TF , and each group of each transformation is denoted as 
GT ,GR , and GF . The labeling rule function (�label ) is given according to Eq. (3) when T = TR · TF = TF ·TR in 
GR ∪ GF , where TR · TF represents function composition of TR and TF , and our objective is to build a model that 
approximates this function:

The CNN model ( �CNN ) we use for label inference has the inherent ability to learn translation-invariant 
features, exhibiting the following characteristics:

However, the CNN model is not rotation-invariant:

To provide some context for Eq. (5), let TR · Xi represent the application of the rotation transformation TR to 
the input Xi . With this understanding, we can now explain that our model uses the rotation-equivariant map-
ping function Radon transform (�Radon) as an intermediate step to address the lack of rotation invariance in 
the CNN model.

As a result, we have:

For our proposed model, we aim to achieve both rotation and flip invariance. To address the lack of flip-
invariance, we incorporate the kernel flip (KF) module into the CNN architecture:

The flip symmetry of the wafer map is preserved here by changing the flip axis by π /2 to account for the 
Radon feature effect:

(1)�(T1(Xi)) = T2(�(Xi))

(2)�(Xi) = �(T(Xi))

(3)�label(T(Xi)) = �label(Xi) = yi

(4)�CNN (Xi) = �CNN (TT (Xi)) = yi

(5)�CNN (TR · Xi) �= �CNN (Xi)

(6)�Radon(TR · Xi) = TT (�Radon(Xi))

(7)�CNN (�Radon(TR · Xi)) = �CNN (TT (�Radon(Xi)) = �CNN (�Radon(Xi))

(8)�CNN+KF

(

TF(�Radon(Xi))
)

= �CNN+KF(�Radon(Xi))
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By combining the rotation and flip transformations, our model can inherently account for all possible flip 
orientations. According to group theory26, the union of the rotation and flip groups remains the same regardless 
of the orientation of the flip axis:

As a result, our model can effectively extract rotation and flip invariance, accounting for all possible rotation 
and flip transformations, while employing the minimal number of flipped kernel branches. Our proposed method 
is described in detail in the following section.

Methodology
Proposed framework.  The proposed rotation- and flip-invariant representation learning method com-
prises two main modules and a CNN backbone, as illustrated in Fig. 1. Initially, the Radon rotation-invariant 
module transforms wafer maps into tomography images, converting rotation to translation. Subsequently, a 
flipped feature set is obtained through two branches of kernel flip operations. By employing the max-out opera-
tion on the highly-activated features among the pair of flipped feature sets, the backbone CNN, often referred to 
as translation-invariant due to its capability of acquiring translation-invariant features, learns a discriminative 
representation that captures the wafer label characteristics through rotation equivariant and flip equivariant 
features.

Radon transformation.  Our proposed method adopts the Radon feature as input representation due to its 
rotation-equivariant characteristic with respect to the wafer map. Radon transformation is a method to acquire 
sinusoidal tomography Pθ (r) by projection image for rotation θ . The Radon transform is a forward projection to 
obtain tomography Pθ (r) . When f(x,y) is an original image, the Radon transform function is given as,

The above projection converts the original image’s rotation impact to a translation of the Radon feature. By 
comparing the first rows of Fig. 2a, b, we can recognize that the original wafer map’s rotation corresponds to the 
Radon feature’s translation. As a result, the Radon transform functions as a rotation-equivalent bridge, enabling 
the use of a translation-invariant CNN backbone model to obtain rotation-invariant representation. Additionally, 
by comparing the second rows of Fig. 2a, b, we can see that the vertical flip on the wafer map corresponds to a 
horizontal flip on the Radon feature. This implies that the flip equivariance of the Radon feature is inherently 
guaranteed to be flip equivariance for the wafer map, considering the π/2 change in the flip axis.

(9)�Radon(TF(Xi)) = TF ′(�Radon(Xi))

(10)GR(X) ∪ GF(X) = GR(X) ∪ GF
′ (X) = GF ′′(X)

(11)r = xcosθ + ysinθ

(12)Pθ (r) =

m
∑

x=1

n
∑

y=1

f (x, y)δ(xcosθ + ysinθ − r)

Figure 1.   Overview of our method. Upper: the proposed model architecture comprises a Radon transformation 
and kernel flipping module for acquiring rotation and flip equivariant features, followed by a translation 
invariant back-bone CNN-based classifier. Lower: the multi-branch LRP method for multi-branch structure 
induced by kernel flipping, which is used for interpreting model predictions. Wafer map and heatmap images 
were visualized using Python 3.8.4 and the released WM-811K wafer dataset, available at http://​mirlab.​org/​dataS​
et/​public/. Radon and inverse Radon transforms were performed with the scikit-image library version 0.20.0, 
while the LRP heatmap was obtained using our proposed multi-branch LRP method.

http://mirlab.org/dataSet/public/
http://mirlab.org/dataSet/public/
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Kernel flip.  Kernel flip modules aim to learn the flip equivariance through generated flipped copies of 
input features with multiple flip versions of kernels. For our proposed method, we use only two branches of 
flipped kernels: the original one and the single-axis flipped one. When the processed Radon feature, after pass-
ing through several layers, is input into this module, weight-sharing flipped kernels output a flipped feature set 
without increasing the number of trainable parameters, ensuring model efficiency. By learning this flip varia-
tion on Radon-based features, our model is capable of acquiring flip equivariant properties in addition to rota-
tion equivariance. As the main consideration for our narrow branch structure, as described in “Related works”, 
there exists a trade-off between generalization performance and the number of branches; therefore, the only 
additional single branch may lead to a weak flip-equivariant performance. However, as described in “Problem 
formulation”, obtaining flip equivariance on a rotation-equivariant representation corresponds to all directions 
of flip equivariance. After generating a flipped feature set, the max-out module then takes the most active fea-
tures element-by-element to pass to the CNN classifier module while aiming at efficient memory flow inside the 
network and the drop-out effect. Finally, the obtained rotation and flip equivariant features from the Radon and 
kernel flip modules make it possible to learn the rotation and flip invariance with the CNN classifier.

Multi‑branch LRP.  In this study, we adopted the LRP to evaluate our method in a qualitative manner not 
only to recognize the effect on inference based on the Radon feature in accordance with the original wafer 
map-based prediction but also to verify that our proposed model works as intended. The LRP is primarily used 
to comprehend the model inference using an interpretability-based approach to deep learning-based models. 
Based on the deep Taylor decomposition method described by Eq. (13), the relevance score can be obtained by 
output prediction, where a is a root point of the Taylor series and ǫ is a substituted term for the Taylor series’ 
higher-order polynomial terms. By sequentially repeating the relevance propagation to previous layers, the input 
layer’s relevance scores can finally be obtained.

To apply this technique to our model, there is a structural consideration that it is difficult to propagate the 
relevance score as-is because our model is a multi-branch model. To the best of our knowledge, the LRP method 
has not been used in a complicated structure such as a multi-branch CNN before. Herein, we propose a novel 
LRP method for the multi-branch structure, as depicted in Fig. 1. When the relevance score has arrived at the 
kernel flipping modules, two relevance scores are generated after passing each kernel. The propagation of the 
separated relevance score provides multiple relevance scores that are unrelated to the model judgment grounds 
at the input layer. To solve this structural problem, we concatenate both relevance scores and both kernels by 
channel axis. Then, we propagate the relevance through the concatenated relevance feature and kernel to gener-
ate a combined relevance score.

Results and discussion
Experiment.  Data description.  In general, wafer map patterns are categorized into seven classes based 
on their cluster position and shape, which has specific process conditions and effects27: center, donut, edge-loc, 
ring, loc, scratch, and random. For example, the center type has the effect of problems in the plasma area28 or 
thin-film deposition, and the edge-loc type has the same effect as uneven heating during the diffusion process. 
Therefore, it has been considered an important task to classify them and determine the state of the process so 
that the cause of process deterioration can be estimated. Existing machine learning-based wafer sorting tasks 
have mainly been researched under two scenarios: individual fab data and open data27, each with pros and cons. 
Using private data is advantageous for optimizing the problem at hand, but methodological generalizations are 
difficult. However, publicly available data are easier to compare with other methods, implying that the method’s 
generalization could be claimed; hence, it is preferable to utilize it for verification.

The real-world fab data WM-811K has frequently been used in wafer classification tasks via machine and 
deep learning29. For data representation, each wafer map is formed as a 2D image of varying sizes. As shown 

(13)f (x) = f (a)+

d
∑

i=1

∂f /∂xi|x=a(x − a)+ ǫ =
∑

i
Ri

Figure 2.   (a) Illustration of rotation and flip examples for the Edge-loc class wafer maps from WM-811k and 
(b) the corresponding Radon transforms for each wafer map. All images in this figure were visualized using 
Python 3.8.4. The Radon transformations were performed using the scikit-image library version 0.20.0.
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in Fig. 3, WM-811K contains a total of nine classes, including the seven aforementioned classes and additional 
near-full and none classes, with a total amount of 172,950. Among them, there are 25,519 labeled data, which is 
only approximately 14.8% of the data. Additionally, as shown in Table 1, it has a highly imbalanced data distribu-
tion, i.e., near-full class accounts for only 0.1%. The appropriate data processing for the evaluation is addressed 
in “Experimental setup”.

Experimental setup.  To assess our proposed method effectiveness, we utilized the seven typical classes from 
WM-811K as indicated in Fig. 3, with setting balanced data distributions for each class. Previous researches 
on wafer map pattern classification using WM-811K can be classified into two categories. The first case uses 
nine classes, while the second only takes seven or eight classes, depending on whether it contains the none or 
near-full classes. Mohamed et al.30 highlighted the negative effects of using the none class, as it can impact both 
model training and performance analysis for several reasons. Thus, we followed the latter approach by taking 
seven classes excluding ‘Near-full’ and ‘None’ classes to focus on addressing data scarcity, aside from the data 
imbalance problem. Then, we sub-sampled train and test datasets for the seven classes with a small dataset rang-
ing from 100 to 6,400 with a balanced data size for each class. To preprocess the data, we first resized the wafer 
map to (64, 64), and removed the wafer map background, retaining only the defect points due to varying wafer 
map sizes, which can lead to slightly different shapes on the sides after resizing, thus affecting model training 
negatively.

To comparatively evaluate the proposed model via an ablation study, we established four comparative models. 
The first, a baseline model, utilized the wafer map as input to the baseline network, as detailed in Table 2. The 
second model, the Radon model, took the Radon transformation before inputting the wafer map into the same 
baseline network. The third model, the kernel flip model, had a two-branched kernel flip module within the 
baseline network and used the wafer map as input. Lastly, the proposed model incorporated both the Radon 
transformation and the kernel flip module onto the baseline model which is also detailed in Table 2.

In the experiments, the initial learning rate was set to 0.0003, and the Adam optimizer was used for updating 
the model weights. The learning rate decay was used for every epoch with a decay rate of 0.99. The training steps 
were stopped early when the validation loss did not decrease for 30 epochs to prevent overfitting. The loss func-
tion used was the Cross Entropy Loss, which is suitable for classification tasks. Each experiment was repeated 
20 times using different random seeds. The results are reported as the average and standard deviation of all the 
repeated measurements.

Figure 3.   Used wafer patterns of WM-811K for this study. Near-full and none patterns are excluded, as 
described in “Experimental setup”.

Table 1.   Data distribution of WM-811K.

Class Quantity Fraction (%)

Center (C1) 4294 2.5

Donut (C2) 555 0.3

Edge-loc (C3) 5189 3.0

Edge-ring (C4) 9680 5.6

Loc (C5) 3593 2.1

Random (C6) 886 0.5

Scratch (C7) 1193 0.7

Near-full 149 0.1

None 147,431 85.2
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Evaluation strategy.  To evaluate the performance of our proposed method, we conducted both quantitative and 
qualitative analyses. Firstly, we performed a qualitative analysis using the LRP method to verify the adequacy of 
our proposed method. Specifically, we visually examined the LRP heat maps to analyze how the model focuses 
on different parts of the wafer map to make decisions. Additionally, we verified the effect of rotating and flip-
ping the original wafer map on the proposed model inference by assessing how these transformations affect the 
model attention to the wafer map. Throughout these experiments, we compared the qualitative performance of 
the baseline and proposed methods. As the LRP heatmap for the proposed method is based on Radon features, 
direct comparison with the baseline was difficult. Thus, we applied an inverse Radon transform to the relevance 
scores obtained from Radon feature-based inference, using the projection-slice theorem to verify the consist-
ency between the original wafer map and Radon feature-based inference. This allowed us to compare the pro-
posed method with the baseline.

Secondly, we conducted a quantitative analysis to evaluate the performance of the proposed model. Initially, 
we performed an ablation study to verify the validity of the proposed method by analyzing the effect of each mod-
ule on the overall performance of both the entire and sub-classes. In addition, we assessed the impact of rotation 
and flip on the proposed model performance for each class using the confusion matrix. The degree of variation 
for rotation and flip differs depending on the wafer map pattern, with some classes exhibiting insignificant vari-
ation while others display wide variation. For instance, the center and donut classes contain uniformly defective 
points in all directions, resulting in insignificant variation for rotation and flip, while the scratch class has a wide 
variation for flip and rotation since it exists in curved or straight line forms independent of direction and location.

Lastly, to validate the generalization performance of our model, we conducted a thorough comparison of 
the performance of the proposed model and comparative models on the original test set and an unseen (out-
of-distribution) augmented test set. Specifically, we evaluated the ability of the models to generalize to unseen 
distributions for rotation and flip transformations. While the original test set can be considered unseen as it was 
not used in training, it was still limited to the distribution within the original dataset. To assess the proposed 
model robustness to generalization, we generated a dataset by directly rotating and flipping the test set to extend 
beyond the distribution of the original dataset. The rotation augmented test set included 90°, 180°, and 270° 
rotationally augmented test sets, while the flip augmented test set included horizontally and vertically flipped 
test sets. We then integrated the two augmentation methods for rotation and flip. It is important to note that the 
augmented test set did not include the original test set. This comparison allowed us to confirm the validity of 
the proposed model architecture and verify its robustness to unseen situations.

Qualitative analysis.  Radon transform‑based classification.  To begin, we confirm how the model deci-
sion is made for label classification with the obtained LRP heatmaps. Figure 4 compares the baseline model for 
each class to the proposed model’s relevance score. By examining the second column, it is clear that the baseline 
model is primarily concerned with the visual pattern represented on  the wafer map. Meanwhile, due to the 
difficulty of directly interpreting the Radon model decision, it was compared using the transformed relevance 
by inverse Radon transform, as depicted in the fifth column. As a result, it was determined that the proposed 

Table 2.   Baseline and proposed models for comparative analysis.

Layer

Baseline Proposed

Activation Output shape Activation Output shape

Input 64 × 64 × 1 64 × 64 × 1 

Radon transform 64 × 64 × 1 

 Convolution ReLU 32 × 32 × 16 ReLU 32 × 32 × 16

  Batch norm

  Max pool

 Convolution ReLU 16 × 16 × 64 ReLU 16 × 16 × 64 × 2 (weight-shared kernel flip)

  Batch norm

  Max pool

  Max out 16 × 16 × 64

 Convolution ReLU 8 × 8 × 128 ReLU 8 × 8 × 128

  Batch norm

  Max pool

 Convolution ReLU 4 × 4 × 256 ReLU 4 × 4 × 256

  Batch norm

  Max pool

 Fully-connected ReLU 256 ReLU 256

  Batch norm

 Fully-connected ReLU 128 ReLU 128

  Batch norm

 Fully-connected 7 7
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model also corresponds to the defect pattern on the wafer map. This is a significant finding because it demon-
strates that the shape information contained in the wafer map is retained even when the model is evaluated solely 
based on the Radon feature. Moreover, by comparing the prediction outcomes, it is evident that the proposed 
model focuses exclusively on the primary defect location, which explains the higher classification performance. 
In particular, The results show that for classes such as C3 and C7, the proposed model pays more attention to 
the location of clear patterns compared to the baseline. This observation is consistent with the fact that C3, C5, 
and C7 have a wide range of variations in rotation and flip transformations, making it difficult for the baseline 
model to learn class-discriminative features. In contrast, the proposed model shows robust learning with regards 
to rotation and flip transformations, which could be the reason behind the observed performance improvement. 
This finding provides evidence that the proposed method is effective in learning more robust and discriminative 
features in the presence of diverse image transformations, which can be especially useful for challenging real-
world scenarios.

Rotation and flip invariant classification.  Figure 5 compares the relevance scores of the baseline and proposed 
models while rotating and flipping the test set by the multi-branch LRP method. The wafer map and Radon 
feature rows 1–4 exhibit that rotation of the wafer map acts as a translation of the Radon feature, and rows 5–8 
demonstrate that vertical flipping of the wafer map acts as horizontal flipping of the Radon feature. Based on 
the LRP heatmap obtained by the proposed model, the activated region is translated horizontally for the rotated 

Figure 4.   Layer-wise relevance heatmap analysis of the baseline and proposed methods for all classes, with 
models trained on a train set of size 6400 samples. The first and third columns correspond to the input for the 
Baseline and Proposed models, respectively. The second and fourth columns depict the LRP interpretation 
results for the model decisions. The fifth column displays the inverse Radon transform results of the proposed 
method’s LRP outcomes, which are represented to match the original wafer map’s shape. All images in this figure 
were visualized using Python 3.8.4. Radon and inverse Radon transforms were performed with the scikit-image 
library version 0.20.0, while the LRP heatmap was obtained using our proposed multi-branch LRP method.
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wafer map and similarly for the vertically flipped wafer map. Additionally, by performing an inverse Radon 
transformation on the proposed model’s heat map, it was confirmed that the relevance score indicates the defect 
pattern of the original wafer map. As a result, the proposed model’s Radon transform-based kernel flipping 
method significantly contributes to obtaining rotation and flip invariance for wafer pattern classification.

Another notable point is that whenever the original wafer map is rotated and flipped, the relevance score of 
the baseline model pays attention to various different positions, but the proposed model focuses more on the 
defect points of the original wafer map. This indicates that the proposed model has high robustness classification 
performance for the input wafer rotation and flip variations, which is also the reason why it shows improved 
classification performance for the original and augmented test sets, as discussed later in “Quantitative analysis”.

Quantitative analysis.  Classification performance comparison.  Figure 6a and Table 3 present a compari-
son of the classification accuracy of the comparative models for various train set settings. The Radon and ker-
nel flip models, as well as the proposed model, exhibit higher classification accuracy than the baseline model. 

Figure 5.   Layer-wise relevance heatmap analysis of the baseline and proposed methods for rotated or flipped 
test wafer maps, with models trained on a train set of size 6400 samples. The first and third columns correspond 
to the input for the Baseline and Proposed models, respectively. The second and fourth columns depict the LRP 
interpretation results for the model decisions. The fifth column displays the inverse Radon transform results 
of the proposed method’s LRP outcomes, which are represented to match the original wafer map’s shape. All 
images in this figure were visualized using Python 3.8.4. Radon and inverse Radon transforms were performed 
with the scikit-image library version 0.20.0, while the LRP heatmap was obtained using our proposed multi-
branch LRP method.
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Notably, the Radon model performs better than the kernel flip model, indicating that the wafer map patterns 
exhibit more variation for rotation than for flip. Of all the methods, the proposed model achieves the highest 
performance, indicating that invariance is ensured for both rotation and flip.

Figure 6b–d presents a comparison of the baseline and proposed models in terms of class accuracy. Figure 6b 
shows the difference between class accuracy, which is a diagonal element of the confusion matrix (Fig. 6c, d). 
Figure 6b indicates that the proposed model has a higher accuracy for all classes than the baseline model. In 
particular, C3 (edge-loc), C5 (loc), C6 (random), and C7 (scratch) are significantly increased among all classes. 

Figure 6.   (a) Comparison of classification accuracy between comparative models for various train set sizes, (b) 
accuracy gap for each class between the baseline and proposed methods, (c) confusion matrix of the baseline 
model, and (d) confusion matrix of the proposed model for a train set of size 6400.

Table 3.    Comparison of classification accuracy (%) between comparative models for various train set sizes.

Model

Train set size

100 200 400 800 1600 3200 6400

Baseline 63.00 ± 1.93 65.41 ± 3.75 69.19 ± 1.93 72.19 ± 3.28 75.80 ± 1.31 78.87 ± 1.42 82.51 ± 3.29

Kernel flip 63.33 ± 2.27 67.16 ± 1.72 70.66 ± 1.91 75.07 ± 1.29 79.77 ± 1.81 83.54 ± 0.99 86.48 ± 0.99

Radon 72.92 ± 2.96 77.33 ± 1.95 80.93 ± 1.64 84.41 ± 1.56 87.01 ± 1.10 88.84 ± 1.15 90.20 ± 0.83

Proposed 74.81 ± 2.37 79.19 ± 1.73 82.71 ± 1.04 85.83 ± 0.82 87.97 ± 1.01 89.71 ± 0.98 90.84 ± 0.81
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This trend is matched with the fact that this class has considerably more rotation and flip variance than the 
other classes. Therefore, it can be confirmed that the high accuracy of the proposed model is derived from the 
rotation and flip invariance.

Generalized classification performance for unseen rotated and flipped test set.  Table 4 compares the classification 
accuracy of comparative models for augmented test sets. In rows 1–2, the baseline and kernel flip models are 
evaluated under the flip augmented test set. In rows 3–4, the baseline and Radon models are evaluated under 
the rotation augmented test set. In rows 5–6, the baseline and proposed models are evaluated under the rotation 
and flip augmented test set. For all cases, comparative models score higher accuracy than the baseline model. 
This means that the proposed model and its ablation models work as rotation- or flip-invariantly to the unseen 
augmented situation for rotation or flip.

Figure 7 shows the classification accuracy of comparative models for the original and unseen augmented situ-
ations at a train set of size 6400. Figure 7a depicts the evaluation result for the original test set and flip augmented 
test set of both baseline and kernel flip models, Fig. 7b depicts the evaluation result for the rotation augmented 
test set of both baseline and Radon models, and Fig. 7c depicts the evaluation result for the rotation and flip 
augmented test set of both baseline and proposed models. As illustrated in Fig. 7, the Radon, kernel flip, and 
proposed models all achieve increased accuracy over the baseline model in each augmented test set. However, in 
all three cases, the accuracies are slightly decreased between two situations. It is noteworthy that the reduction 
gap between the baseline models is larger than that of other comparative models. This can be interpreted as the 
proposed model having a higher resistance to performance degradation in the generalization performance at 
an unseen augmented situations.

Figure 8 compares the generalization performances for each class between the proposed and baseline models 
on a train set of size 6400. Figure 8a shows the difference in the class accuracy of the baseline models presented 
in Fig. 8b (the original test set) and Fig. 8c (the rotated and flipped augmented test set). Figure 8d shows the 
difference in the class accuracy difference between Fig. 8e (the original test set) and Fig. 8f (the rotated and 
flipped augmented test set) for the proposed model. Figure 8g shows the difference between Fig. 8d and Fig. 8a, 
which demonstrates that the proposed model has better generalization than the baseline model for each class. 
From Fig. 8d, we can see that the proposed model has a higher resistance to performance degradation in terms 
of generalization for an unseen augmented dataset for all the classes, while the classes C3 (edge-loc), C5 (loc), 
and C7 (scratch) show a significant increase. This extraordinary generalization performance for rotation and 
flip sensitive classes demonstrates that the proposed model effectively preserves the rotation and flip invariance. 
Additionally, this trend is in accordance with the findings of the original test set discussed in "Classification 
performance comparison”.

Conclusion
In this paper, we introduce a novel method for achieving rotation and flip invariance in wafer map defect pattern 
classification, utilizing a combination of Radon transform and kernel flip techniques. The Radon feature ensures 
rotation invariance by transforming the original wafer map rotation into translation, while the kernel flipping 
approach provides flip invariance. Our proposed method employs an efficient network structure with a mini-
mal number of flipped kernel branches by appropriately combining these two modules. We validate our model 
extensively using the WM-811K dataset with both qualitative and quantitative evaluations. Our proposed model’s 
interpretability is demonstrated by verifying its decisions using the newly suggested multi-branch LRP method. 
The proposed model achieves high detection performance, even in limited data situations, by successfully ensur-
ing rotation and flip invariance. Additionally, we assessed the proposed method’s generalization performance 
regarding rotation and flip invariants on out-of-distribution data by using rotation and flip augmented test sets. 
Our study provides an efficient end-to-end deep learning model that appropriately reflects the characteristics of 
wafer labeling and can serve as a suitable baseline for wafer diagnosis in the future.

Table 4.    Comparison of classification accuracy (%) between comparative models for unseen augmented test 
sets.

Model Augmented

Train set size

100 200 400 800 1,600 3,200 6,400

Baseline Flipped 62.51 ± 2.10 64.11 ± 3.73 68.20 ± 1.79 70.46 ± 2.94 73.49 ± 1.17 77.02 ± 1.13 79.90 ± 2.93

Kernel flip Flipped 62.13 ± 2.26 65.28 ± 1.36 69.17 ± 1.32 73.36 ± 0.91 77.65 ± 1.36 82.03 ± 1.08 84.93 ± 1.05

Baseline Rotated 61.78 ± 1.93 62.75 ± 4.09 67.51 ± 2.08 69.14 ± 2.64 71.85 ± 1.39 75.40 ± 1.49 77.79 ± 3.11

Radon Rotated 71.73 ± 2.73 75.63 ± 1.85 79.68 ± 1.54 82.76 ± 1.14 84.94 ± 0.82 87.01 ± 0.81 87.80 ± 1.03

Baseline Rotated + flipped 62.01 ± 2.08 63.20 ± 3.93 67.60 ± 1.90 69.49 ± 2.61 72.24 ± 1.16 75.92 ± 1.27 78.25 ± 2.95

Proposed Rotated + flipped 73.83 ± 1.98 77.32 ± 1.55 81.28 ± 1.14 84.35 ± 0.92 85.92 ± 0.76 87.89 ± 0.64 88.75 ± 0.59
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Figure 7.   Accuracies of the comparative models for original and augmented test sets at a train set of size 6400. 
(a) Baseline and kernel flip models compared in the flipped augmented test set, (b) baseline and Radon models 
compared in the rotated augmented test set, and (c) baseline and proposed models compared in rotated and 
flipped augmented test set.

Figure 8.   (a) Class accuracy gap between the (b) original test set and (c) rotated and flipped augmented test set 
for the baseline model at a train set of size 6400. (d) Class accuracy gap between the (e) original test set and (f) 
rotated and flipped augmented test set for the proposed model at a train set of size 6400. (g) Difference between 
(d) and (a), indicating increased generalization performance by the proposed model compared to the baseline 
model for each class.
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Data availability
The datasets generated during and/or analysed during the current study are available in the MIR Corpora reposi-
tory (online: http://​mirlab.​org/​dataS​et/​public/).
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