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Toward explainable heat load 
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Heat networks play a vital role in the energy sector by offering thermal energy to residents in certain 
countries. Effective management and optimization of heat networks require a deep understanding 
of users’ heat usage patterns. Irregular patterns, such as peak usage periods, can exceed the design 
capacities of the system. However, previous work has mostly neglected the analysis of heat usage 
profiles or performed on a small scale. To close the gap, this study proposes a data‑driven approach 
to analyze and predict heat load in a district heating network. The study uses data from over eight 
heating seasons of a cogeneration DH plant in Cheongju, Korea, to build analysis and forecast 
models using supervised machine learning (ML) algorithms, including support vector regression 
(SVR), boosting algorithms, and multilayer perceptron (MLP). The models take weather data, holiday 
information, and historical hourly heat load as input variables. The performance of these algorithms 
is compared using different training sample sizes of the dataset. The results show that boosting 
algorithms, particularly XGBoost, are more suitable ML algorithms with lower prediction errors than 
SVR and MLP. Finally, different explainable artificial intelligence approaches are applied to provide an 
in‑depth interpretation of the trained model and the importance of input variables.

District heating (DH) has risen as a crucial energy supply infrastructure in order to effectively provide heat 
and cooling to consumers over the last few  decades1. DH is superior in many aspects compared to other energy 
supply options, which include having a lower carbon footprint, the integration of multiple heat sources, and 
high energy throughput. The latest fourth and fifth generations of DH can utilize several heat sources, which 
include combined heat and power (CHP), gas boilers, water-source heat pumps (HPs), ground-source HPs, and 
solar energy-based HPs. The recent literature focused more on developing simulation frameworks and effective 
approaches in regards to designing and optimizing DH systems in terms of the economic and energetic factors, 
which is due to the fast development of DH  technologies2,3. Storage technology is also a hot topic, because it helps 
decouple heat production and the demand to increase DH  efficiency4. The following  articles1,5 were reviewed in 
order to obtain the latest information about DH networks.

The heat usage pattern analysis has become increasingly essential as the number of end-users increases, 
because it greatly impacts the entire network’s efficiency. Variations in the heat usage behavior from the consum-
ers’ side lead to variations in the heat usage pattern of a single substation, which is a major matter for accurate 
and efficient DH management and  operation6. For example, the substantial temperature difference between the 
summer and the winter significantly influences the users’ heat demand. In addition, the hourly heat demand also 
varies between households, which causes heat demand variation at the  substation7.

An accurate heat demand prediction framework is imperative in order to effectively manage DH  networks8. 
First, it facilitates the optimization of the overall heat production, minimizes the heat loss, and optimizes the 
operating costs. Second, the distribution temperature is provided at an appropriate range in order to predict 
the real-time heat usage using the heat demand forecast model. As a result, the number of studies proposed in 
regards to predicting the heat demand has been increasing. A heat demand analysis can generally be divided 
into model-based and data correlation  categories9. The data correlation approach mainly depends on building 
functional correlations of the DH parameters in order to develop a heat usage profile for each substation or 
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building. The model-based technique relies on machine learning (ML) algorithms in order to effectively learn 
the representative patterns using the historical heat load  data10. The data correlation approach offers higher 
accuracy than the model-based approach, but it is time-consuming and laborious due to each building/substa-
tion having a unique heat usage profile that needs to be constructed. The performance of the model-based heat 
usage prediction algorithm has become significantly better, which is due to the huge advancements in artificial 
intelligence (AI) and big data over the past few  decades9,10.

The heat usage prediction, heat loss estimation, and abnormality analysis based on the energy signature (ES) 
have been increasingly investigated in recent years, which have shown promising  results11,12. However, these 
studies mainly used outdoor temperature as the main feature in order to discover the heat demand pattern. 
Other studies focused on peak usage forecasting with the ultimate objective of optimizing the energy usage and 
DH  management13. These studies, which are similar to the ES, failed to consider the meteorological data or the 
end-user behaviors. Potential influencers of the heat demand patterns can be divided into three main factors, 
which include meteorology, behaviors, and  time14. Some common meteorological data that potentially affects heat 
demand are humidity, solar irradiation, outdoor temperatures, and the wind flow  speed15. Time factor involves 
all time-related parameters, which include hours, days, months, and years. The social behaviors of the end-users 
are also a crucial influencer of the heat load variation, which can be affected by both meteorological and time 
 factors16. These three main factors significantly influence the heat demand patterns.

There has been considerable interest in the research area of heat load forecasting for DH, as indicated by 
numerous recent studies. Idowu et al.17 examined a range of supervised ML algorithms in order to perform 
heat load prediction up to 48 h in advance. The experimental results revealed that conventional ML algorithms, 
such as SVM and linear regression, achieved the lowest normalized root mean square error when compared to 
other algorithms. In another study, Boudreau et al. found that ensemble models provided significantly better 
prediction accuracy than base ML models when it came to predicting peak power demand and next-day build-
ing energy  usage18.

Several studies have delved into specific aspects of DH systems. For example, Saloux et al. explored the 
application of ML algorithms for predicting the aggregated heating usage of a community. They concluded that 
the models’ performance could be significantly enhanced by considering other crucial factors, such as time of 
day, systematic variables, and  temperature19. López et al. focused on the impact of specific days, such as holidays 
or festive periods, on the load curve, and determined that such events could considerably affect the heat usage 
 pattern20. Moreover, a case study of a large DH network over several heating seasons revealed that the primary 
force of heat demand were the various operation settings during daytime (night shutdown and night temperature 
setback) and the outdoor  temperature21.

Despite the numerous issues addressed and methods discussed in existing literature on heat load prediction 
in DH networks, further research is needed to explore important external factors such as holiday and weather 
conditions, which could be utilized as input to improve the models’  accuracy6. Additionally, while previous 
work has showed the high predictive performance of ML algorithms for heat demand, they have not provided 
a clear explanation of why the model achieved good performance, as well as which features are important and 
their correlation with the  models10.

This research is proposed in order to improve the heat usage prediction via an in-depth analysis of the dataset 
to figure out the potential factors that impact the heat demand. The main contributions include (a) perform-
ing a data analysis prior to the training process to help thoroughly understand the dataset, (b) training and 
comparing different ML models in order to obtain the best hourly heat load prediction model, and (c) offering 
detailed explanations about what features were imperative to the model prediction, which were overlooked in 
the previous studies.

The remainder of the manuscript is outlined as follows. Section “Dataset description” gives a detailed descrip-
tion of the proposed heat demand dataset. After that, the Section “Methodology” outlines all processes involved 
in heat demand prediction. Several experiments are performed in Section “Experimental results” to compre-
hensively assess the proposed framework. Next, the Section “Discussion” discusses the findings and provides a 
detailed analysis of the study. Finally, we conclude the study and offer future work in the Section “Conclusion”.

Dataset description. The dataset that is described in this research was the hourly heat demand from an 
eco-friendly liquefied natural gas (LNG)-based cogeneration plant in the Cheongju region, Korea. The plant 
produces around 76.5 Gigacalories (Gcal) of local heating to the distribution grid. Gcal is a common heat load 
unit, which measures the heat energy in the heating plants. The LNG-powered plant is more efficient and envi-
ronmentally friendly for the generation of thermal energy, which has been reported to produce over 70% less 
emission than coal or oil sources.

The dataset introduced in this study includes the hourly heat usage from January 2012 to December 2020 of 
the residents from a region, which spans eight heating seasons from November to April. The heat usage profile 
suggests the amount of heat that is transmitted from the plant to the consumers at a specific duration, which 
mainly involves space heating (SH) and domestic hot water (DHW). The corresponding hourly historical weather 
data was also collected as an additional feature in order to discover the potential connections with the heat load 
patterns in addition to the heat load data. A holiday feature that indicates whether the day under consideration 
is a holiday is also added in order to investigate the end-user behaviors. The three main features that belong to 
the weather data include wind flow speed, humidity, and outdoor temperature. The collected heat usage dataset 
is used to study the hourly heat load patterns and provides some explanations for the model’s predictions. The 
minimum, maximum, mean and standard deviation for each variable are described in Table 1.

In summary, 8760 hourly heat load profiles and their corresponding historical temperature data are obtained 
yearly. Therefore, a total of 87,672 entries, which include date and time, holiday, wind flow speed, humidity, and 
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temperature, are used as the input variables, and the heat load profiles are used as the target variables. The data 
entries from 2012 to 2020 were used as the training set, whereas the hourly heat usage of 2021 was applied in 
order to test the model’s performance.

Methodology
Figure 1 depicts the three components of the hourly heat usage prediction system, which are (a) data preprocess-
ing, (b) pattern analysis and data partitioning, and (c) explainable heat load forecasting.

– Data preprocessing: There is a high possibility that the structured data may contain some common issues with 
data preprocessing, such as duplicate data, missing data, and negative data due to human errors, which can 
affect the system’s performance. As a result, it is a prerequisite before the data analysis and training processes 
to fix all errors and standardize the data.

– Pattern analysis and data partitioning: Heat usage patterns play an important role in regards to enabling 
specialists to study consumer behavior. The distinctive patterns of the dataset are discovered in this section 
by using various data analysis approaches in order to thoroughly analyze the dataset before the training phase. 
The dataset is then divided into training and testing sets.

– Explainable heat load prediction: Different ML algorithms were trained in order to forecast the hourly heat 
usage. Some explainable artificial intelligence (XAI) approaches are finally implemented in order to interpret 
the model’s predictions.

Data preprocessing. Data cleaning. The structured data-related issues, such as missing and duplicated 
data are unavoidable during the data collection, and they can negatively affect the model’s performance if not 
appropriately corrected. Data cleansing is therefore conducted in order to detect and fix error records in regards 
to the humidity, wind speed, outdoor temperature, and hourly heat usage data. There are various data cleaning 
processes, and the two main processes that were performed in this study include removing duplications and 
fixing the missing values. The dataset is loaded as a data frame using pandas, a famous data manipulation and 
analysis library. After that, data inconsistencies can be automatically detected using pandas-supported functions.

Standard techniques, such as moving average (MA) and imputation, are usually employed in order to correct 
the missing data. This study applied the exponential weighted moving average (EWMA)  technique22, which is 
an extension of the MA algorithm. EWMA considers the recent data points to be significantly important with a 
higher weight, whereas the data points in the further past receive an exponentially lower weight. Moreover, the 
EWMA method can be effectively applied due to the nature of the dataset, and the differences between the two 
consecutive data points are considered minor. The EWMA can be described as follows.

Table 1.  Description of important observations with possible values for the variables in the proposed dataset.

Name Minimum|maximum Mean|standard deviation Unit

Date 01/01/2012|01/01/2022 – –

Wind speed 0|8.7 1.47|0.93 m/s

Humidity 7|100 61.32|20.02 %

Outdoor temperature − 16.5|38.1 13.75|10.83 °C

Holiday 0 (normal day)|1 (holiday) 0.32|0.46 –

Heat load 0|317 65.89|52.92 Gcal

Figure 1.  Description of the primary components of the heat usage patterns analysis framework.
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where Et indicate the computed value at time t based on the EWMA technique. xt is the value of the series in the 
current period. Et−1 is the EWMA at the previous time period. Finally, α is the smoothing factor, which ranges 
between 0 and 1 and controls the influence of the current value xt on the Et . A larger α places more weight on 
recent observations and results in a more reactive EWMA, while a smaller α results in a smoother EWMA.

Feature engineering. Feature engineering is the process of selecting, extracting, and transforming relevant fea-
tures or variables from raw data to enhance the performance of ML algorithms. The goal of feature engineering 
is to provide ML algorithms with informative and discriminative features that can help them better understand 
the underlying patterns and relationships in the data. Two main processes in the feature engineering process are 
standardization and feature transformation.

The regression model fitting and learned function can be negatively affected by structured data, and it even-
tually creates a bias when numerical features with different scales are fed into the  model23. The normalization/
standardization techniques therefore need to be implemented in order to normalize the input features. Min–max 
normalization and standardization are two common feature scaling  approaches24. The heat usage dataset that 
is applied to fit the model contains peak heat load on some specific periods, which are outliers, and it has an 
essential role during the training process. The min–max normalization likely lowers the impact of those outlin-
ers by transforming all features into a range between 0 and 1. The standardization therefore scales the features 
in order to have a zero mean, and a standard deviation of 1 is implemented in this study.

Feature transformation is necessary for structured data in order to convert categorical inputs into numerical 
inputs, because most ML models work with numerical data. The holiday variable is categorical, because it has 
two distinctive values, which represent whether a particular day is a regular day or a holiday. As a result, one-hot 
encoding, which creates a binary representation of the categorical feature, is applied in order to transform the 
holiday  feature25. For instance, when a specific day is a holiday, the value for the holiday binary variable is set to 
1, and the regular binary variable is 0.

Pattern analysis and data partitioning. Pattern analysis. Heat network during the summer sea-
son. The investigation of the heat network in the summer season, which spans from June to August, gives 
some exciting insights into the town’s heat usage. Figure 2 illustrates the hourly heat demand distribution density 
for the summer months from 2012 to 2021. The average heat demand in the summer mainly involves the DHW 
consumption and the network heat losses. It can generally be seen that there was less heat demand in the distant 
past compared to the recent years. For instance, a roughly similar distribution can be observed for the following 
years, which include from 2012 to 2016, with the average heat demand being around 20 Gcal. However, the aver-
age heat demand increased to around 30 Gcal, which included the more recent years from 2019 to 2021, with 
some higher heat demands being related to particular heat usage patterns. Moreover, there has been a gradually 
increasing trend in the average heat usage of over 40 Gcal in recent years, and the year 2021 shows the highest 
density.

Heat network during the winter season. The chart in Fig. 3 illustrates the network’s energy consumption on an 
hourly basis during the winter season spanning from November to March. The chart depicts three distinct pat-
terns for three different time periods: daytime (06:00–18:00), nighttime (22:00–05:00), and peak hours (19:00–
21:00). The scatter plot reveals that the consumers tend to use more heat during the peak time at the same tem-

(1)Et = α × xt + (1− α)× Et−1

Figure 2.  Distribution density plot of hourly heat demand during the summer season (Jun.–Aug.).
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perature level compared to the nighttime and daytime. Moreover, the lower the outside temperature, the higher 
the heat load that is required.

Some heat load patterns for each season of the year. A typical hourly heat load pattern for each season can be 
observed in Fig. 4. The spring, fall, and winter seasons have similar variations in the hourly time scale, which is 
caused by the social behavior of the end-users. Reduced heat loads can be observed in the daytime, which is due 
to solar radiation that leads to higher daytime temperatures. The highest heat load during the daytime occurs 
around 8 am in order to prepare the space heating in offices and commercial buildings. The heat demand usually 

Figure 3.  Scatter plot of the outdoor temperature and the heat usage during the winter season (Nov.–Mar.).

Figure 4.  Average weekly heat load patterns during the four season periods.
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peaks between 19:00 and 21:00 because of the low temperature at night, which requires more heat for SH and 
DHW. DHW is a major part of the heat demand in the summer, when a tiny difference in the heat variation can 
be observed.

Data partitioning. Data partitioning is a fundamental step required before training and evaluating the model. 
After preprocessing, the data is split into two sets: the training set and the testing set. The training set is utilized 
to train and optimize the model, while the testing set is typically employed to assess the algorithms’ performance 
across various scenarios. This study used the heat usage profiles between 2012 and 2020 as the training set, 
whereas the heat load profiles from 2021 were used for the testing. Each training or testing sample consists of 
day, hour, outdoor temperature, humidity, windspeed, and holiday as the input variables, while the output is the 
hourly heat usage corresponding to that particular input.

Explainable heat load prediction. This section presents the main concepts behind boosting, support 
vector regression (SVR)26, and multilayer perceptron (MLP)  algorithms27 that were implemented for the heat 
demand forecasting.

Boosting algorithms. Boosting algorithm belongs to the ensemble approach, which sequentially adds multiple 
weak learners. Each weak learner is added by using the learned information from its predecessor, and it tries to 
correct the errors that are predicted by them. A weak learner can be any learning algorithm that offers a slightly 
better performance than random guessing. Two standard boosting approaches are gradient boosting and adap-
tive  boosting28.

– Adaptive boosting: The adaptive boosting (AdaBoost) algorithm was proposed by sequentially adding weak 
learners, which involved using decision trees, and attempting in order to correct the wrongly predicted sam-
ples by applying a bigger weight to them during the training process of the latter weak learners. The AdaBoost 
model’s final output is the weighted median.

– Gradient boosting: AdaBoost assigns new instance weights whenever a new weak learner is added, but gradi-
ent boosting aims to fit the new predictor to the residual errors that are caused by the prior predictor with 
the primary objective of minimizing a loss  function29. Some popular gradient boosting algorithms include 
LightGBM and XGBoost.

XGBoost leverages the feature distribution across all data points to narrow down the search space of potential 
feature splits. The objective of the XGBoost algorithm can be expressed as:

where the predictive ability of XGBoost is determined by the loss function L , while the regularization term µ 
is used to manage overfitting. µ is determined by the number of observers and their prediction threshold in 
the ensemble model. Since the problem in question belongs to regression analysis, the root mean squared error 
(RMSE) is used as the loss function L.

Support vector regression (SVR). Unlike typical regression algorithms that seek to minimize the sum of squared 
errors between actual and predicted values, SVR attempts to identify the optimal hyperplane within a user-
defined threshold value. The threshold value is the distance between the boundary line and the hyperplane. 
Heat demand prediction is a complex non-linear topic, because it has multiple input variables. To address non-
linearity in the initial feature space and treat it as a linear problem in the high-dimensional feature space, SVR 
requires the use of a non-linear kernel. The Gaussian Radial Basis kernel (RBF) was used in this study as the 
default kernel for SVR.

Multilayer perceptron (MLP). Multilayer perceptron (MLP) belongs to the feedforward artificial neural net-
works (ANN) category. MLP’s fundamental structure consists of an input layer, one or more hidden layers with 
neurons, and an output layer that are stacked in sequence. The neuron is the primary computing component of 
MLP, and neurons from the current layers fully connect to neurons from the next layer. The inputs are added to 
the initial weights, fed into an activation function, and propagated to the next layer.

Experimental results
This section shows all experiments that were conducted to determine the most suitable algorithm for predicting 
heat usage. In addition, various XAI techniques were also conducted in order to provide an in-depth analysis 
of the trained models.

The heat load prediction models were constructed and trained on scikit-learn30, a Python-based open-source 
ML library. Three main explainable AI libraries for analyzing the data include partial dependence  plot31 (PDP), 
which is a global and model-agnostic XAI algorithm, local interpretable model-agnostic  explanations32 (LIME), 
which create a local model approximation of the model around the prediction of interest, and shapley additive 
 explanations33 (SHAP), which employ a game-theoretic approach.

Evaluation metrics. Three standard evaluation metrics were computed, which included the coefficient 
of determination ( R2 ), mean squared error (MSE), and mean absolute error (MAE) in order to evaluate the 

(2)objective = L+ µ
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heat demand forecasting. MSE is computed by averaging the squared difference between the predicted values 
and actual values for all the training  samples34. On the other hand, MAE is the average of the absolute differ-
ences between the predicted values and true values. While MSE measures the standard deviation of residuals, 
MAE calculates the average of the residuals in the dataset. R2 is computed by determining the proportion of the 
dependent variable’s variance predicted by the algorithm. The lower the MSE and MAE scores, the better the 
model’s performance. However, a higher value of R2 is considered better. The three metrics can be formulated 
as follows.

where N is the total number of training samples. yi indicates the actual value, ŷi means the predicted value of 
the i th profile, and y is the mean value of y.

Hyperparameter fine‑tuning. Five regression models were implemented in this study in order to per-
form the heat demand forecasting, which included SVR, AdaBoost, XGBoost, LightGBM, and MLP. Each model 
has its crucial hyperparameters that must be determined before the training. The hyperparameters control the 
training behavior of the learning algorithms, and they considerably influence the model’s performance.

Table 2 shows the hyperparameters and the value range for each hyperparameter that is required by the five 
models. A grid search method was conducted next on the different combinations of the hyperparameters of each 
algorithm in order to explore the most suitable hyperparameter combination that helps the algorithm obtain 
the best performance.

Heat usage prediction analysis. Figure  5 depicts the performance and scalability comparison of five 
different learning algorithms using the learning curves in order to show the effect of adding more samples 
during the training process. The experiment involved randomly selecting samples from the training dataset. A 
training sample include date, outdoor temperature, windspeed, humidity, holiday, and hourly heat demand as 
the features.

It can generally be concluded that SVR and MLP were highly sensitive to the dataset size, because they widely 
fluctuated as more training samples were added. On the other hand, the boosting algorithms, which included 
AdaBoost, LightGBM, and XGBoost, showed their advantages and effectiveness with a bigger dataset. The three 
ensemble algorithms exhibited similar trends in variation; the error gradually decreased and eventually stabilized. 
Low MSE scores of less than 0.02 were obtained for the three boosting algorithms when the training dataset 
size was over 2000 samples. XGBoost achieved the lowest mean squared error of less than 0.01 among the three 

(3)MSE =
1

N

∑N

i=1

(
yi − ŷi

)2

(4)R2
= 1−

∑(
yi − ŷi

)2
∑(

yi − y
)2

(5)MAE =
1

N

∑N

i=1

∣∣yi − ŷi
∣∣

Table 2.  Initial hyperparameter value ranges and the optimal hyperparameter value for each algorithm.

Model Hyper parameter Definition Value ranges Optimal value

AdaBoost
n Number of estimators 50, 100, 150, 200 50

σ Learning rate 10
−3 , 10−2

, 10
−1

10
−1

XGBoost

n Number of estimators 50, 100, 150, 200 50

dtree Max depth of a tree 3, 6, 9, 12, 15 9

γ Min loss reduction 0, 0.1, 0.2, 0.3 0

subsample Subsample ratio of the training instances 0.5, 1, 2 1

LightGBM

num_leaves Max number of nodes per tree 21, 31, 41, 51 31

σ Learning rate 10
−3 , 10−2

, 10
−1

10
−1

n Number of estimators 50, 100, 150, 200 100

dtree Max depth of a tree 2, 3, 4, 5, 6 4

SVR
C Regularization parameter 10

0
, 10

1
, 10

2
, 10

3
10

0

γ Kernel coefficient 10
−6

, 10
−3,10−1

10
−3

MLP

σ Learning rate 10
−3 , 10−2

, 10
−1

10
−2

nhi Number of neurons in hidden layer ith 50, 100, 150, 200 150

ϕ Activation function ReLU, tanh ReLU

B Batch size 8, 16, 32, 64 32
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algorithms, and it showed its robustness when the number of training samples reached 7000. As a result, XGBoost 
was utilized as the primary model for the following experiments.

Table 3 shows the heat demand forecasting performance using five ML algorithms on the test dataset. All 
the models generally obtained good performances on the dataset. The boosting algorithms performed better 
than SVR and MLP. The XGBoost algorithm achieved the highest R2 , MSE, and MAE at 0.95, 0.12, and 0.15, 
respectively. On the other hand, MLP showed the lowest heat usage prediction performance with an MSE value 
of 0.25 and R2 at 0.89.

Figure 6 compares the actual and the predicted heat demand for 2021 using the XGBoost model. The heat 
usage values predicted by the model, which are illustrated by the red line, are roughly similar to the actual heat 
usage values, which are illustrated by the blue line. Moreover, each month’s peak and bottom heat usage were 
accurately predicted. However, the model performance was significantly affected, which is due to some uncom-
mon end-user’s heat usage behaviors.

Explainable heat usage prediction. The previous section discussed what model achieved the highest 
heat usage forecasting performance. However, it is challenging to reveal what features are influential and how 

Figure 5.  Heat demand forecasting performance using five different algorithms.

Table 3.  Hourly heat load prediction performance for the five ML algorithms on the testing dataset.

Model MAE MSE R
2

AdaBoost 0.16 0.14 0.94

XGBoost 0.15 0.12 0.95

LightGBM 0.18 0.17 0.91

SVR 0.24 0.21 0.92

MLP 0.23 0.25 0.89

Figure 6.  Daily heat load prediction results on the testing dataset.
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they affect the model predictions. As a result, some interesting XAI approaches are implemented in this section 
in order to attempt to explain how ML models predict the outcomes.

Firstly, three different feature ranking techniques were implemented in order to evaluate each feature’s impor-
tance in regards to predicting the output heat usage by the model, as displayed in Fig. 7. Figure 7a calculates a 
feature’s relative importance by examining the mean and standard deviation of impurity reduction across each 
tree. Figure 7b ranks the feature importance by computing the game’s theoretically optimal shapley  values33. The 
resulting shapley values provide a measure of the relative importance of each feature in the model prediction 
for a particular data point. It requires examining every possible feature combination and assessing the marginal 
impact of each feature on the prediction. Features with higher Shapley values are regarded as more significant. 
Ranking both approaches reveal that the temperature and month features are crucial, which is valid due to the 
end-users heat demand pattern being significantly affected by these two features.

Finally, Fig. 7c visualizes the feature importance assessed by LIME. Positive weights indicate that a feature 
promotes a positive prediction, while negative weights indicate the opposite. The magnitude of the weight rep-
resents the importance of the feature. It is noticeable that a temperature of 4 °C or lower (cold season) presses 
the model to output a higher heat usage.

The previous experiment indicated that the temperature and month features greatly impacted the model’s 
predictions, but it did not explain exactly how the model was affected. As a result, PDP, was implemented in 
order to demonstrate a feature’s marginal effect on the models’ prediction.

Figure 8 shows how temperature and month together impact heat usage in the form of contour lines. Contour 
was proved to work best for analyzing the impact of continuous features in the PDP interaction  plot35.

The contour lines, ranging from 0.000 to 150.000, indicate how specific ranges of the two features affect heat 
usage. A higher value of the contour line implies a greater impact of the two features on heat usage. For example, 
during the summer season when the average temperature is above 22 °C, the features have a negative influence 
on the model prediction, resulting in an average heat demand of less than 50 Gcal and a contour line value of 
under 25.000. On the other hand, contour line values greater than 125.000, corresponding to the winter season 
with an average temperature of fewer than 2 °C, positively impact the model prediction leading to the average 
heat usage of over 120 Gcal.

Figure 9 illustrates how the temperature feature affected the heat demand through the distribution of the 
actual heat demand via fixed values of the temperature variable. It was observable that the hourly heat load 
achieved the biggest average value, which was approximately 150 Gcal, occurred when the temperature feature 
was between -16.5 °C to -0.6 °C, indicating the winter season. Moreover, the hourly heat demand gradually 
dropped when the temperature rose. The lowest hourly heat demand, around 21 Gcal, was recorded when the 
temperature ranged from 26.9 to 38.1 °C , which corresponds to the summer season.

Based on the data, we can conclude that the hourly heat demand is directly proportional to the temperature. 
In the summer, DHW accounts for the majority of the heat demand. In contrast, both DHW and SH contribute 

Figure 7.  Feature importance analysis for the heat usage prediction model.
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Figure 8.  PDP interaction plot for the temperature and month features.

Figure 9.  Actual predictions plot for the temperature variable. Distribution of the actual prediction via different 
variable values.
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to the heat demand during the winter. Additionally, the hourly heat demand is higher during the winter, with 
temperatures below 10 °C, and lower during the summer, with temperatures above 26 °C.

Comparison with similar studies. Numerous studies have been conducted in the past to predict and 
analyze DH head demand. However, direct comparisons with these studies are difficult due to differences in 
DH network designs, input data, and architecture implementations or experimental setups. We use operational 
data from DHS to predict heat usage patterns and compare our results using the XGBoost model, which exhibits 
the best prediction performance. The recorded MAE value from this study was 15%, which is smaller than the 
reported MAE of 18.07% by Huang et al36. In addition, the computed evaluation metrics are also superior to the 
following  reseach37,38. Specifically, the proposed XGBoost model outperforms the study suggested by Ivanko 
et al38 in terms of MSE and correlation coefficient, achieving 12% and 0.95 on the testing set, respectively, com-
pared to MSE of 45.04% and a coefficient of determination of 0.81. In terms of the correlation coefficient, the 
XGBoost method also shows better hourly prediction performance than the ANN model proposed by Bünning 
et al37, with a correlation coefficient of 0.95 for one hour compared to 0.88.

Discussion
This section provides a discussion based on our approach and the obtained results. Furthermore, a discussion 
about the interpretability of the study is also presented.

Model performance. To establish the best heat demand prediction model, five different models were evalu-
ated with varying sizes of training datasets. Then, three evaluation metrics (MSE, MAE, and R2 ) were calculated. 
Figure 5 demonstrates the learning trend of these models as the number of training samples increases. When 
the training dataset size is less than 2000, MLP and SVR exhibit the highest accuracy. However, these models 
have drawbacks such as the need for sequential data and extended training times, making them more suitable 
for applications that can handle longer training periods. On the other hand, for larger training datasets (over 
2000 samples), the accuracy of the three boosting algorithms is higher. Boosting algorithms, such as AdaBoost 
and XGBoost, are more appropriate for granular control and frequent updating due to their short training time, 
stability, and forecasting accuracy. Nonetheless, all models can generate predictions swiftly (within a second) 
after being trained. Hence, the time required for training and retraining the models is the primary constraint for 
their overall implementation.

Collinearity, which refers to the correlation between predictor variables, always exists in real-world  data29. 
However, the impact of collinearity on prediction models varies due to differences in principles. Previously, sev-
eral approaches have been introduced to address collinearity problems, such as pre-selection based on thresholds, 
clustering predictors, and regularization techniques. Regularization is a method used to reduce the complexity 
of the SVM model and prevent  overfitting14. Similarly, boosting-based models like AdaBoost, XGBoost, and 
LightGBM can effectively handle multicollinearity problems by adjusting the number of variables sampled at each 
 split28, which acts as a regularization parameter. In contrast, MLP’s ability to withstand collinearity is relatively 
weak, which may explain its relatively low accuracy.

The way in which heat is distributed varies greatly depending on the size of the DH network, and the pro-
posed framework is appropriate for smaller networks where the behavior of customers has an impact on the 
load pattern. It is possible to apply the framework to other small-scale DH networks, in order to anticipate the 
hourly heat demand, as long as records of the hourly heat demand and environmental factors such as wind speed, 
humidity and temperature are available.

Interpretability. Model interpretability for AI models refers to the ability to transform the training and 
testing processes into logical rules. The model’s ability to display the significance and ranking of input  variables39 
allows it to exhibit interpretability. The interpretability of a predictive model is crucial in evaluating the rational-
ity of heat demands in a DH network. A lack of conformity to accepted principles in variable importance can 
indicate model instability or system  malfunction4. Boosting-based methods are highly interpretable as they do 
not require the interpretation of tree structures by ML professionals, and each decision corresponds to a logical 
 rule14. These models can output visual results of variable importance, with the weight and rank of variables dif-
fering depending on the model’s inherent principles, as displayed in Fig. 7. However, temperature and month 
were consistently the most influential variables, with humidity and holiday having a negligible impact, indicating 
the limited influence of these variables on heat usage.

On the other hand, SVR and MLP were less interpretable, with MLP being considered a black box method due 
to its difficulty in identifying the features extracted from each layer of the network. The use of a linear kernel func-
tion in SVR leads to a more interpretable model, but models with other kernels can be challenging to  interpret39.

Conclusion
Hourly heat demand forecasting is essential for heating providers to optimize heat production and heat supply 
operations. This research presents an hourly heat usage prediction system that is based on standard regression 
algorithms, and it systematically investigates the input features’ influence on the models’ outcomes.

First, additional weather information, which includes the outdoor temperature, wind flow speed, and humid-
ity of the corresponding hourly historical heat demand, were extracted during the data collection process, and 
they were used as the input features. After that, various data preprocessing procedures were implemented in 
order to clean the dataset. The preprocessed dataset was utilized in order to thoroughly analyze the common 
heat demand patterns. Finally, the dataset was inputted into five well-known regression algorithms, namely SVR, 
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MLP, XGBoost, AdaBoost, and LightGBM, in order to determine what model is the most suitable for the heat 
usage prediction task based on standard evaluation metrics.

The XGBoost model achieved the lowest MSE via various experiments, which was less than 0.01, and it was 
robust when the number of samples in the training dataset increased. Finally, various XAI methods, such as 
SHAP and PDP were applied in order to thoroughly analyze how the model gave a particular prediction. The 
results showed that temperature and time-related variables are the most critical features that contribute to the 
model’s predictions.

More attention will be directed in the future toward novel heat load prediction techniques, such as multi-step 
ahead prediction. In addition, collecting a larger dataset with additional variables can improve the performance 
and efficiency of the model.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Code availability
The source code for all the analyses presented in this study can be found on these GitHub repositories: https:// 
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