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Evolution of fairness 
in the divide‑a‑lottery game
Jeong‑Yoo Kim 1* & Kyu‑Min Lee 2*

In this paper, we show that fairness can evolve in the divide-a-lottery game which is more general than 
the divide-a-dollar game by using an indirect evolutionary approach. In the divide-a-lottery game, the 
size of a pie is uncertain. Two players sequentially bid for a share and they get their bid if the allocation 
based on the bids turns out to be feasible and otherwise neither gets anything. In this game, rational 
players over-compete for a higher share, resulting in a high probability of failure in agreement, 
whereas fair players who dislike the disparity between shares lower their bids thereby reducing the 
failure probability and thus increasing the expected payoff. As a result, fairness strictly dominates 
rationality. This is the mechanism through which fairness evolves. However, this result is not robust 
against even a slight uncertainty about the opponent’s type. Surprisingly, we show a contrasted 
simulation result that only rational players who are strictly dominated by fair players survive 
evolutionarily for most of the parameter values if players have even a slight chance of not knowing the 
opponent’s type. Our simulation results in a local interaction model in which players only know the 
type of closer neighbors capture both insights and demonstrate that moderate proportions of both 
types coexist evolutionarily over time, and that the population average fitness of this polymorphic 
population is higher than monomorphic population consisting only of fair types or rational types.

Although most economists and game theorists assume that material self-interest is the sole motivation of people, 
there is overwhelming counter-evidence gathered by psychologists and experimental economists. This evidence 
indicates that a substantial percentage of human beings are strongly motivated by other-regarding preferences 
including fairness, altruism etc. (For recent theoretical developments in evolution of prosocial cooperative 
behavior in various situations, e.g., in heterogeneous network structures, directional networks, and multilayer 
interactions, see McAvoy et al.1, Su et al.2,3). Considering that the selfish behavior, by definition, maximizes the 
individual’s utility or fitness and thus only homo economicus appears to be able to survive in the long run, it 
is rather puzzling that fair behavior survives in the long run in an evolutionary environment. The evidence of 
fairness is, however, well documented. For example, in the ultimatum game, a robust result across hundreds of 
experiments is that the vast majority of the offers are between 40 and 50 percent of the available surplus (see, for 
example, Güth et al.4, Camerer and Thaler5, Roth6, Camerer7).

In this paper, we show that fairness can evolve in the divide-a-lottery game which is more general than the 
divide-a-dollar game by using an indirect evolutionary approach. (In the indirect evolutionary approach, which 
was developed by Güth and Yaari8 and Güth9, preferences are treated as endogenous in an evolutionary process, 
while actions are still determined by Nash equilibrium). A divide-a-dollar game, which is also known as a Nash 
demand game10 is one of the most widely used bargaining games, describing a procedure of how to split a dollar. 
Unlike the ultimatum game that is sequential in the sense that one player proposes a share and then the other 
player decides whether to accept or reject it, a divide-a-dollar game is simultaneous. The game goes as follows. 
Player 1 and player 2 simultaneously bid the amount of x and y respectively to divide a dollar. If the bids turn out 
to be a feasible division in the sense that x + y ≤ 1 , each of them gets the share of their own bid, but otherwise 
neither gets anything. In this game, both players have a chance to bid, unlike the ultimatum game.

In real situations, bargaining is usually proceeded sequentially and both players have a chance to bid. There-
fore, we consider a combination of the two bargaining games in which the two players offer bids sequentially. 
Unlike the ultimatum game, however, the value of the pie is uncertain. We call this a divide-a-lottery game. So, 
in a divide-a-lottery game, players bargain for a lottery by bidding sequentially. (Wang et al.11 also introduce the 
randomness associated with the size of pies into the model, but they consider a variant of an ultimatum game, 
not a variant of a divide-a-dollar game; hence, no sequential bidding in their model).
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If two rational players bid sequentially, there is a first mover advantage. So, the first bidder bids 1
2
 and the sec-

ond bidder bids 14 when the value of the lottery is uniformly distributed on [0, 1]. It results in a high probability 
of disagreement (i.e., infeasible allocation) due to severe bidding competition. However, a fair player who feels 
disutility from disparate bargaining shares makes the other player reduce the bid, increasing the probability of 
agreement. The upshot is that fairness has the role of lowering the bid thereby increasing the expected payoff. As 
a result, fairness strictly dominates rationality. This is the mechanism through which fairness evolves. However, 
this result is not robust against even a slight uncertainty about the opponent’s type. Surprisingly, we show a 
contrasted simulation result that only rational players who are strictly dominated by fair players survive evolu-
tionarily for most of the parameter values if players have even a slight chance of not knowing the opponent’s type. 
Also, through simulations, we show that moderate proportions of both types coexist evolutionarily over time, 
and that the population average fitness of this polymorphic population is higher than monomorphic population 
consisting only of fair types or rational types.

Many authors have demonstrated that fairness evolves in the ultimatum game, not in the divide-a-dollar game 
nor in the divide-a-lottery game. Nowak et al.12 highlighted the role of reputation in the evolution of fairness. 
If players interact repeatedly, accepting low offers as rational players do can induce the next proposer to make 
a low offer, so a fair strategy offering and demanding a high share can fare better than a rational strategy. Rand 
et al.13 introduced the possibility of making mistakes to explain the evolution of fairness. Ichinose and Sayama14 
considered a game which they call not quite ultimatum game in a spatial interaction. Bethwaite and Tompkinson15 
considered players who are concerned about equity of the allocation similar to our model but did not investigate 
the evolutionary process of fairness.

Our result that fairness can survive evolutionarily in a more general bargaining situation than in the ultima-
tum game is a novel finding that does not rely on modeling artifacts in the sense that it is not due to repeated 
interaction (reputation effect) nor spatial structure of interaction.

Methods
Model.  We consider a population consisting of a continuum of players of finite measure. Players are classified 
into two types: rational players (R) and fair players (F). At any time, they are pairwise matched and play a divide-
a-lottery game. The value of a lottery, denoted by v, is uncertain. We assume that it is uniformly distributed on 
[0, 1]. The divide-a-lottery game goes as follows. First, one player (player 1) of the matched pair bids x and then 
the other player (player 2) bids y. After that, the value of v is realized. If it turns out that x + y ≤ v , they get x 
and y respectively and if x + y > v , neither gets anything. We assume that each player of the matched pair can 
be either the first player or the second player with equal probability. Also, we assume symmetric role assignment 
to make our analysis isolated from role assignment. For (reputation-based) role assignment in the dictator game, 
see Yang et al.16 and Li et al.17.

We assume that when a pair is matched, the preference types of the players are known to each other. Since 
there are two possible types of players, it implies that four pairing combinations are feasible in a stage game.

Let the material payoff of player i be πi(x, y) for i = 1, 2 . We assume that each player’s material payoff is 
defined as

This is the expected value of player i’s share, since 1− x − y = P(x + y ≤ v) , which is the probability of agree-
ment, i.e., the probability that the allocation by bids is feasible. Although the payoff functions in the divide-a-
lottery game are similar to those in the duopoly game, we do not believe that our results will be straightforwardly 
applied to behavior of firms. In fact, to the best of our knowledge, there is no empirical finding that most firms 
behave fairly in the duopoly game without maximizing their profits. For endogenous sequencing in the duopoly 
game, see Dowrick18, Boyer and Moreaux19, and Hamilton and Slutsky20.

When players choose their bids in a stage game, they maximize their subjective utility, not the material payoff. 
Let UF

i  represent the subjective utility of fair player i. It is defined by

where α ≥ 0 is a parameter to represent how much this individual cares about fairness and d(x, y) is a difference 
between the shares of the two players. (Some authors assume that the disutility is asymmetric, i.e., disutilities 
when x > y and x < y are different. However, this preference is not really fair). As α → ∞ , the player is fairer. 
(Conceptually, it is possible that α = ∞ , but we will restrict our attention to α ∈ [0, 1] to avoid the case that a 
fair player’s payoff is −∞ .) If α → 0 , the player is almost rational. Throughout the article, we assume a simple 
functional form of d(x, y) = (x − y)2.

Let UR
i  be the subjective utility of a rational player. We assume that the subjective utility of a rational player 

is the same as his material payoff:

(1)π1(x, y) = x(1− x − y),

(2)π2(x, y) = y(1− x − y).

(3)UF
i (x, y) = πi(x, y)− αd(x, y),

(4)UR
i (x, y) = πi(x, y).
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Results
In this section, we analyze the two cases, the case in which each player is informed of the type of the opponent 
he is facing against (complete information case) and the other case in which each player is not informed of the 
opponent’s type (incomplete information case).

Complete information about the opponent’s type.  We consider two symmetric matching cases, 
rational player vs. rational player and fair player vs. fair player, and one asymmetric matching case, rational 
player vs. fair player.

Rational player vs. rational player.  Since a stage game is sequential, we use backward induction to obtain the 
subgame perfect equilibrium. If rational player 1 plays against rational player 2, given the bid of player 1, x, 
player 2 seeks to maximize his material payoff by choosing

so we obtain player 2’s best response as a function of x:

Taking account of this response, player 1 chooses x to maximize

Therefore, equilibrium bids are x∗ = 1
2 and y∗ = yR(x∗) = 1

4.
Let πRR be the material expected payoff of a rational player playing against another rational player. The 

material payoffs of rational player 1 and player 2 are π1 = 1
8 and π2 = 1

16 respectively. This shows the first mover 
advantage. The first mover can choose a higher bid than the second mover who is passive. By increasing his bid 
before player 2, he can enjoy a strategic advantage. Since a player can be player 1 or player 2 with equal probability, 
their expected value of the material payoff is πRR = 1

2

(

πRR
1 + πRR

2

)

= 1
2

(

1
8 +

1
16

)

= 3
32.

Fair player vs. fair player.  If a fair player plays against another fair player, player 2 chooses his bid to maximize 
his subjective utility, taking his opponent’s bid x as given:

From the first-order condition for maximizing (8), we obtain fair player 2’s best response function as

Taking this response of player 2 into account, player 1 chooses x to maximize

 Therefore, we obtain equilibrium bids as x∗(α) = 2α2+6α+1
8α2+19α+2

 and y∗(α) = yF(x∗(α)) = 4α2+14α+1
2(8α2+19α+2)

 where 
∂x∗(α)
∂α

< 0 , x∗(0) = 1
2 and x∗(1) = 9

29 < 1
3 and y∗(1) = 19

58 > 9
29 . As α gets larger, i.e., players get fairer, player 1 

bids less to reduce the first mover advantage, and if α = 1 , the first mover advantage disappears completely, 
because x∗(1) < y∗(1) . (It is easy to check that y∗(α) is not monotonic with respect to α).

Let πFF  be their expected value of the material payoff. Then, we can compute πFF  as 
πFF = 1

2 (π
FF
1 + πFF

2 ) =
(8α2+26α+3)(8α2+12α+1)

8(8α2+19α+2)2
.

Rational player vs. fair player.  If player 1 is rational and player 2 is fair, we know from (9) that yF(x) = 1+(2α−1)x
2(1+α)

 . 
Calculating this response of player 2, player 1 chooses x to maximize

Therefore, we obtain x∗(α) = 2α+1
2(4α+1) and y∗(α) = yF(x∗(α)) = 4α2+8α+1

4(α+1)(4α+1) . Note that limα→0 x
∗(α) = 1

2 , 
limα→0 y

∗(α) = 1
4 , limα→1 x

∗(α) = 3
10 , and limα→1 y

∗(α) = 13
40 > 3

10 . (It is interesting to note that 
x∗( 12 ) = y∗( 12 ) =

1
3 , which is identical to the equilibrium outcome of the simultaneous divide-a-lottery game). 

Again, the first mover advantage disappears in the case of fair player 2. Also, we obtain πRF
1 =

(2α+1)2

8(4α+1)(α+1) and 

πRF
2 =

(4α2+8α+1)(2α+1)
16(α+1)2(4α+1)

.

(5)yR(x) = argmax
y

π2(x, y) = y(1− x − y),

(6)yR(x) =
1− x

2
.

(7)π1(x, y
R(x)) = x(1− x − yR(x)) = x

[

1− x −
1− x

2

]

.

(8)UFF
2 (x, y) = y(1− x − y)− α(x − y)2.

(9)yF(x) =
1+ (2α − 1)x

2(1+ α)
.

(10)
UFF
1 (x, yF(x)) = x(1− x − yF(x))− α(x − yF(x))2

= x

[

1− x −
1+ (2α − 1)x

2(1+ α)

]

− α

[

x −
1+ (2α − 1)x

2(1+ α)

]2

.

(11)URF(x, yF(x)) = x(1− x − yF(x)) = x

[

1− x −
1+ (2α − 1)x

2(1+ α)

]

.
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On the other hand, if player 1 is fair and player 2 is rational, equilibrium bids are x∗(α) = 1+3α
2+9α and 

y∗(α) = 1+6α
2(2+9α) , and accordingly the equilibrium material payoffs are πFR

1 =
(3α+1)(6α+1)

2(9α+2)2
 and πFR

2 =
(6α+1)2

4(9α+2)2
.

Let πR and πF be the equilibrium expected material payoffs of a rational player and a fair player respectively 
when a rational player and a fair player are matched. Then, they can be computed as

Table 1 shows the computation results of material payoffs.
If the fitness of a player is determined by his material payoff, we can see from Table 1 that fairness is the 

dominant strategy for any α ∈ [0, 1] . For the numerical proof, Fig. 1A shows that πF > πRR and πFF > πR for 
any α ∈ (0, 1] . So, if strategies evolve in proportion to the material payoffs, only fairness can survive evolution-
arily in the long run. Here, as a dynamic solution concept, we are using a long-run asymptotic (local) attractor 
that can be roughly defined by the population distribution to which an initial distribution converges over time 
whenever it starts from the neighborhood.

Proposition 1 Only fair players can survive evolutionarily if a randomly matched pair in a population plays 
a divide-a-lottery game and the players know each other’s type.

The analytic proof is omitted, because it is well known that a strict Nash equilibrium is an evolutionarily 
stable strategy (ESS) by Maynard Smith and Price21 which is a long-run asymptotic attractor. In this game, (F, F) 
is a strict Nash equilibrium.

At this moment, it is worthwhile to compare this game with the prisoners’ dilemma (PD) game. In a PD game, 
cooperation (C) is strictly dominated by defection (D), but (C, C) yields higher fitness than (D, D). In other 
words, (C, C) is the collectively rational outcome (socially efficient outcome), whereas (D, D) is the individually 
rational outcome (privately optimal outcome). The discrepancy is where social dilemma comes from. In our 
divide-a-lottery game, fairness strictly dominates rational behavior, but unlike the PD game, the individually 
rational outcome (F, F) yields higher fitness than (R, R). This is the main difference from the PD game. Also, it 
is interesting to note that the collectively rational outcome in this game is (F, R) and (R, F), not (F, F), for most 
parameter values except for very small values of α ∈ (0, 0.04) (Fig. 1B). This implies that for most values of α , 
a polymorphic population is socially better than a monomorphic population consisting only of fair players in 
terms of the population average fitness.

Since the complete information assumption that drives this result is too strong to properly capture the real 
world phenomenon, we relax the assumption and consider the incomplete information case in the next section.

Incomplete information about the opponent’s type.  In this section, we assume that players cannot 
tell the type of the opponent but only know the proportion of each type. Let p be the proportion of fair players 
in the population. A rational player 1 chooses xR to maximize

The first order condition leads to

(12)πR =
1

2

(

πRF
1 + πFR

2

)

,

(13)πF =
1

2

(

πFR
1 + πRF

2

)

.

(14)
E(π1) = (1− p)x(1− x − yR(x))+ px(1− x − yF(x))

= (1− p)x

[

1− x −
1− x

2

]

+ px

[

1− x −
1+ (2α − 1)x

2(1+ α)

]

.

α

πF
πRR
πFF
πR

α

πF πR
πFF

α

πF πR
πFF

A B

Figure 1.   Values of material payoffs for complete information cases. For the comparison of material payoffs, we 
observe the values of each material payoff (A), and ( πF + πR)-vs. 2 ∗ πFF (B, inset), according to the parameter 
α.
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A fair player chooses xF to maximize

Thus, we obtain

Substituting (15) and (17) into (6) and (9), we get

Let π IR
i  and π IF

i  be the equilibrium material payoffs of a rational (or fair respectively) player i where i = 1, 2 in the 
case of incomplete information. Then, we can compute the expected value of the material payoff of each type as

where

Let us consider the following replicator dynamics

where π̄ I = (1− pt)π
IR + ptπ

IF . Then, we can find the limiting distribution of R and F. Figure 2A shows our 
simulation results that only the monomorphic population consisting only of rational players emerge as a result 
of evolution for most parameter values (black region), while a polymorphic population can emerge for high 
values of α (degree of fairness) and p0 (initial proportion of fairness) (yellow region). Figure 2B shows the aver-
age of material payoffs in the limiting states for various combinations of (p0,α) . It implies that the polymorphic 
population consisting of mixture of rational players and fair players is better than the monomorphic population 
consisting solely of rational players in terms of the population average fitness. This implies that the population 
distribution is very unlikely to converge to the monomorphic population distribution that yields the highest 
population average fitness when players interact with each other globally with equal probabilities.

(15)xR =
αp+ α + 1

6αp+ 2α + 2
.

(16)

E(π1) = (1− p)
[

x(1− x − yR(x))− α
(

x − yR(x)
)2
]

+ p
[

x(1− x − yF(x))− α(x − yF(x))2
]

= (1− p)

[

x

(

1− x −
1− x

2

)

− α(x −
1− x

2
)2
]

+ p

[

x

(

1− x −
1+ (2α − 1)x

2(1+ α)

)

− α

(

x −
1+ (2α − 1)x

2(1+ α)

)2
]

.

(17)xF =
3α3(1− p)+ α2(7− 5p)+ α(p+ 5)+ 1

9α3(1− p)+ 4α2(5− 3p)+ α(6p+ 13)+ 2
.

(18)yR(xR) =
5αp+ α + 1

4(3αp+ α + 1)
,

(19)yR(xF) =
6α3(1− p)+ α2(13− 7p)+ α(8+ 5p)+ 1

2[9α3(1− p)+ 4α2(5− 3p)+ α(6p+ 13)+ 2]
,

(20)yF(xR) =
2α2p+ 2α2 + 5αp+ 3α + 1

4(α + 1)(3αp+ α + 1)
,

(21)yF(xF) =
6α4(1− p)+ 4α3(5− 4p)+ α2(23− 5p)+ 5α(p+ 2)+ 1

2(α + 1)[9α3(1− p)+ 4α2(5− 3p)+ α(6p+ 13)+ 2]
.

(22)π IR
=

1

2
(π IR

1 + π IR
2 ),

(23)π IF
=

1

2
(π IF

1 + π IF
2 ),

(24)π IR
1 = (1− p)xR(1− xR − yR(xR))+ pxR(1− xR − yF(xR)),

(25)π IR
2 = (1− p)yR(xR)(1− xR − yR(xR))+ pyR(xF)(1− xF − yR(xF)),

(26)π IF
1 = (1− p)xF(1− xF − yR(xF))+ pxF(1− xF − yF(xF)),

(27)π IF
2 = (1− p)yF(xR)(1− xR − yF(xR))+ pyF(xF)(1− xF − yF(xF)).

(28)pt+1 = pt
π IF

π̄ I
,
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This result is quite puzzling. In this game, fairness strictly dominates rationality in the case of complete infor-
mation, as shown in Tab.1. It means that it is better for a player to play fairly, regardless of the opponent’s type. 
This seems to imply that a player does not need to know the opponent’s type, because he will get a better payoff 
when he plays fairly than when he plays rationally. Then, how can rational players still survive evolutionarily if 
players cannot be sure of the opponent’s type? Specifically, when p0 ≈ 0 , how can it be possible that π IR > π IF in 
the case of incomplete information, although p0 ≈ 0 means that the population consists only of rational players 
so Table 1 seems to suggest that only fair players can survive because πF > 3

32 ? The answer for this puzzle can 
be found from the difference between πF = 1

2 (π
FR
1 + πRF

2 ) given in (13) and π IF = 1
2 (π

IF
1 + π IF

2 ) given in (23) 
when p0 ≈ 0 . Note that πRF

2 = yF(xR)(1− xR − yF(xR)) and π IF
2 ≈ yF(xR)(1− xR − yF(xR)) given in (27) 

when p0 ≈ 0 . Although they look the same, the values of xR in the two formulas are different, depending on what 
the opponent is. In the former (in the complete information case), it is computed from the assumption that the 
second mover is fair. (We used the notation x∗(α) instead of xR in the analysis of complete information case to 
distinguish them). In the latter (in the incomplete information case), however, the rational player chooses xR , 
expecting that the second mover is highly likely to be rational when p0 ≈ 0 . (In other words, the true opponent 
type and the expected opponent type can be different in the case of incomplete information, whereas it is not 
possible in the case of complete information). So, xR in this case is larger and thus it is more likely to be rejected. 
Hence, πRF

2  is lower, so is the fitness of a fair player in the case of incomplete information.
The overall intuition for the case of incomplete information goes as follows. If players have complete informa-

tion about the opponent’s type, a rational player (player 1) bids very high to the rational opponent, so rational 
player 2 is severely exploited, while he bids lower to the fair opponent, because he knows that the fair opponent 
(fair player 2) will bid so high that his high bid would be very likely to lead to a failure in bargaining. However, if 
players have incomplete information about the opponent’s type, a rational player who is unsure of the opponent’s 
type must bid lower than when he faces a rational opponent, and so a rational player 2 is not very much exploited. 
This is one of the main reasons why rational players fare better under incomplete information. Similarly, a fair 
player who is unsure of the opponent’s type can bid higher if there is a high probability that the opponent is a 
rational type. So, incomplete information can have the role of making a rational player play more like a fair player 
and making a fair player play more like a rational player. (If a player is the second mover, his decision does not 

 0

 0.2

 0.4

 0.6

p f
in

al

α

A

α

B π

Figure 2.   Numerical observation of final fraction of fair players ( pfinal ) and the average fitness of the population 
( π̄final ) from the replicator dynamics of incomplete case. (A) For each pair of parameter values p0 and α , the 
final fractions of fair players in equilibrium are presented as color scale. The black region means only rational 
players can survive in final state while both types of players can coexist in the yellow region. (B) For each pair 
of parameter values p0 and α , the average fitness of the population ( π̄final ) in equlibrium are presented as color 
scale, too. The yellow region denotes a higher average fitness compared to the brown region. It indicates that 
evolution does not favor the population distribution with the highest average fitness, when players interact 
globally.

Table 1.   Payoff matrix (material payoffs). πR =
612α4+924α3+441α2+86α+6

16(α+1)(4α+1)(9α+2)2
 , πF =

1224α5+3492α4+3106α3+1169α2+196α+12

32(α+1)2(4α+1)(9α+2)2
 , πFF

=
(8α2+26α+3)(8α2+12α+1)

8(8α2+19α+2)2

R F

R 3

32
,
3

32
πR ,πF

F πF ,πR πFF
,πFF
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depend on the opponent’s type. So, the incomplete information of the opponent’s type does not affect his choice 
under complete information).

Under complete information, a rational player earns a low material payoff because he is significantly exploited 
when he is the second mover. On the other hand, under incomplete information, he is not so much exploited 
because the opponent is not sure whether he is rational or not. However, if the proportion of fair players is very 
high, it becomes an almost complete information game, and the advantage of fairness in the case of complete 
information is almost balanced with the advantage of rationality in the case of incomplete information, so both 
of the two types can survive and evolve over time.

Local interaction on a network.  In this section, we consider a simple network structure on which players 
interact locally to play a divide-a-lottery game. For recent studies on local interaction in other situations such as 
the prisoners’ dilemma game with social diversity or the snowdrift game, see Perc and Szolnoki22 and Hauert and 
Doebeli23. Initially, there are n(= 100) players on a circle. The type of each player (R or F) is assigned randomly 
according to the pre-assigned ratio of fair players ( p0 ). Here, we introduce two parameters, interaction radius 
( rinter ) and information radius ( rinfor ). Each player interact only with neighbors within the given rinter . As we 
investigated the cases of complete and incomplete information about the opponent’s type in previous subsec-
tions, players know the type of her neighbor within the given rinfor and does not know outside of the length rinfor . 
Then, players observe their own fitness and their neighbors’ within the interaction radius after they play the 
divide-a-lottery game with the neighbors. Finally, each player decides to change her type by imitating the type of 
her neighbors when the average fitness of her neighbors of different types is greater than the fitness of her own 
type. The simulation continues until the dynamics becomes stable. We observe the fraction of fair players at the 
final step of simulation ( pfinal ) with varying two parameters of initial fraction of fair players ( p0 ) and fairness 
careness α as the average of 103 times of ensembles (see Fig. 3).

For given rinter = 10 and rinfor = 1 , we can find that there are mainly two phases of final states: (1) At higher 
α and higher p0 , only fair players survive (white region) and (2) rational players are predominant with higher α 
and lower p0 values. This means that the emergence of fairness can be determined by the given condition of α 
and p0 . Note that if α is too high, it may not be good for a fair player because his bid becomes lower (Fig. 3A). 
For different combinations of rinter and rinfor , the results are qualitatively similar (see Fig. S1). At lower values 
of α , both types of players can coexist, as depicted in yellow color in Fig. 3A. This is also confirmed in Fig. 3B 
which illustrates how some initial distribution reaches a stationary spatial distribution over time by simulations. 
Note that in the case of some nodes, they oscillate unstably at first, and then become stable and maintain their 
types over time. Also, Fig. 3C shows that a polymorphic population consisting of both of rational players and 
fair players is better than the monomorphic population consisting only of fair players in terms of population 
average fitness. This is mainly because πF + πR > 2πFF for most parameter values of α . This figure implies that 
the evolution process in a local interaction favors the ultimate population distribution that yields high popula-
tion average fitness.

Before closing this section, we highlight the intuition for why fair players can survive evolutionarily. If two 
rational players play the game, there is a first mover advantage. Player 1 preempts an advantageous position by 
making a high bid which makes player 2 makes a low bid. However, if player 2 is fair, player 1 cannot bid high 
because he knows that the fair opponent will not reduce his bid very much due to his concerns for fairness. This 
makes player 1 reduce his bid. So, as α is larger, i.e., player 2 is fairer, player 1 reduces his bid more so that player 
2 increases his bid, and thus player 1’s payoff gets smaller and player 2’s payoff gets larger, until they bid the same 

simulation 
time step

0

50

100

150

200

F RR R F R F

α

A B

α

C π

Figure 3.   Results of local interaction of a network. (A) Simulation result of final fraction of fair players 
( pfinal ) according to the parameter α and p0 for the given interaction radius rinter = 10 and information radius 
rinfor = 1 . The white region indicates that only fair players can survive while both types of players can coexist 
in the yellow and orange region. (B) For the given α = 0.1 and p0 = 0.1 , we illustrate how individual players 
change their types according to simulation steps. The blue (red) circle denotes fair (rational) players respectively. 
(C) Simulation result of average final fitness of the population ( π̄final ) according to the parameter α and p0 for 
the given interaction radius rinter = 10 and information radius rinfor = 1 . The yellow region indicates that the 
population average fitness is very high compared to the other regions shown in red and black.
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when α = 1
2 . If α exceeds 12 , player 2 begins to reduce his bid, although he still bids more than player 1. So, player 

1’s payoff begins increasing as α gets larger. Figure 4 shows this intuition.
If both players are fair, the situation is similar. In this case, the best response curves are both upward sloping. 

Since player 1 takes the best response function of player 2 as given, he will choose the optimal point along the 
best response curve of player 2 which is lower than x = 1

3 , the intersection of the two best response curves. Since 
the best response curve of player 1 is upward sloping, low x means low y. Since both x and y are reduced, both 
fair players get higher payoffs than rational players. It is illustrated in Fig. 5.

Figure 4.   Comparison of bids and payoffs with rational opponent and fair opponent. Black lines denoted by 
xR(y) and yR(x) are reaction curves when both players are rational, and the red line denoted by yF(x) is the 
reaction curve when the player is fair. Blue curves are the two players’ indifference curves that yield same utility 
to each player. The cap-shaped curve is player 1’s indifference curve. His utility increases as it moves downward 
towards x-axis, while player 2’s utility increases as it moves inward towards y-axis. If the second player is 
rational, his reaction curve is yR(x) , so player 1 chooses the point that gives the maximum utility on yR(x) . It is 
the tangent point of yR(x) and the indifference curve, (1/2, 1/4) if α = 0 . If the second player is fair, the tangent 
point of yF(x) and the indifference curve is (3/10, 13/40) if α = 1.

Figure 5.   Equilibrium bids when both players are fair If player 1 is fair, his indifference curve has the zero slope 
on xF(y) , not on xR(y) , because xF(y) is the optimal point for him given y. This figure shows the equilibrium 
bids (9/29, 19/58), which is the tangent point of player 1’s indifference curve and player 2’s reaction curve yF(x) , 
when both are fair, if α = 1.
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Discussion
In this paper, we demonstrated that fair players can survive evolutionarily in a divide-a-lottery game. Moreover, 
we showed that rational players can also survive in the environment in which the bargaining players do not 
know each other’s type until they play the bargaining game with the opponent, depending on the initial popu-
lation distribution. Considering the reality that players often compete with their local neighbor whose type is 
not known (until they interact) and for the pie the value of which is uncertain, we believe that this result gives 
a sensible prediction in the real world.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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