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Biochemical and genotyping 
analyses of camels (Camelus 
dromedaries) trypanosomiasis 
in North Africa
Ahmed M. Darwish 1,9*, Abdoallah Sharaf 2,3,9, Semir Bechir Suheil Gaouar 4, Neama I. Ali 1, 
Tamer H. Abd El‑Aziz 5, Asmaa M. Abushady 3,6, Zoubeyda Kaouadji 4, Othman E. Othman 1 & 
Miroslav Obornik 7,8

Camels are considered an important food source in North Africa. Trypanosomiasis in camels is a life‑
threatening disease that causes severe economic losses in milk and meat production. Therefore, the 
objective of this study was to determine the trypanosome genotypes in the North African region. 
Trypanosome infection rates were determined by microscopic examination of blood smears and 
polymerase chain reaction (PCR). In addition, total antioxidant capacity (TAC), lipid peroxides (MDA), 
reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were determined in 
erythrocyte lysate. Furthermore, 18S amplicon sequencing was used to barcode and characterizes 
the genetic diversity of trypanosome genotypes in camel blood. In addition to Trypanosoma, Babesia 
and Thelieria were also detected in the blood samples. PCR showed that the trypanosome infection 
rate was higher in Algerian samples (25.7%) than in Egyptian samples (7.2%). Parameters such as 
MDA, GSH, SOD and CAT had significantly increased in camels infected with trypanosomes compared 
to uninfected control animals, while TAC level was not significantly changed. The results of relative 
amplicon abundance showed that the range of trypanosome infection was higher in Egypt than in 
Algeria. Moreover, phylogenetic analysis showed that the Trypanosoma sequences of Egyptian and 
Algerian camels are related to Trypanosoma evansi. Unexpectedly, diversity within T. evansi was 
higher in Egyptian camels than in Algerian camels. We present here the first molecular report providing 
a picture of trypanosomiasis in camels, covering wide geographical areas in Egypt and Algeria.

Trypanosomes are blood parasites that infect wide range of  livestock1. Diseases caused by trypanosomes include 
blood dyscrasias (anemia, leukopenia, thrombocytopenia), organ damage, and  inflammation1. Eleven different 
species of pathogenic trypanosomes have been studied in  Africa2. Three species of trypanosomes are consid-
ered socioeconomically important and highly pathogenic in Africa: Trypanosoma brucei, Trypanosoma evansi 
and Trypanosoma equiperdum3. Recently, the complexity of the African trypanosome subspecies in nature has 
been  explored4. Trypanosoma brucei is a group with five ecotypes, namely T. brucei brucei, T. b. gambiense, T. b. 
Rhodesiense, T. b. equiperdum and T. b. evansi. It is characterized by rapid evolution and can easily invade new 
hosts and regions due to some minor mutations, which can also be induced under laboratory  conditions4. Para-
sitological and serological studies are not able to distinguish between subspecies. Therefore, various genetic and 
molecular methods have been used to further increase the accuracy in the diagnosing trypanosome  subspecies5.
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Oxidative stress triggered by free radicals plays an important role in the pathogenesis of trypanosomiasis in 
camels. Therefore, the determination of oxidants and antioxidant markers may help to determine the degree of 
host tissue damage caused by the infection and the health status of infected  camels6.

Previously, direct Sanger sequencing of PCR amplicons using generic primers was considered the most com-
mon molecular method for diagnosing trypanosome  infection7. This method is rapid and sensitive, but makes it 
difficult to detect multiple different co-amplified genetic variants, which means that trypanosome co-infections 
may go undetected, especially when one trypanosome genotype is present in lower abundance than the  other8,9. 
In contrast, next-generation 18S amplicon sequencing (NGS) enables symmetric high-throughput sequencing 
reactions and is therefore useful for accurately determining the prevalence and genetic diversity of Trypanosoma 
subspecies in animal  populations10. Recent advances in NGS technology enable the study of population genet-
ics and ecology of microparasites and free-living  microorganisms11. It also allows the parallelization of millions 
of sequencing reactions, enabling the investigation of species diversity and prevalence of the parasite in large 
 populations12.

The aim of the present study was to genotype Trypanosoma spp. in Egyptian and Algerian camels (Camelus 
dromedarius) from different herds and geographical regions, and to record their morphological characteristics. 
Moreover, the study was conducted to evaluate the oxidative status as an indicator of oxidative damage in the 
erythrocytes of camels naturally infected with trypanosomes. The different trypanosome species and genotypes 
were identified using the 18S amplicon NGS. Phylogenetic analysis was performed to study the evolutionary 
relationships between the identified trypanosome genotypes and other trypanosomes.

Methods
Ethical approval. The experimental protocol used in the study was approved (131712012023) by the Ani-
mal Care and Use Committee of National Research Centre, Egypt in accordance with the relevant guidelines and 
regulations.

Study area and samples collection. We began the study with a sampling survey of the occurrence of 
trypanosomiasis in native camels in Egypt and Algeria. We selected three different sampling sites in Egypt and 
twelve regions in Algeria where trypanosome-infected camels were expected to be present (Table  S1A). We 
collected 1001 blood samples from Egyptian and Algerian camels: 600 from Egypt (370 samples from Marsa 
Matrouh, 100 samples from Aswan, 30 samples from Giza, 100 samples from Sharqia) and 401 samples from 
Algeria (Table S1A). Blood samples were collected in vacutainer tubes containing ethylenediaminetetraacetic 
acid (EDTA). The Egyptian samples were divided into two parts. The first part was used for blood smears for 
microscopic examination and erythrocyte lysate, whereas the second part was kept at −20 °C for DNA extraction 
for PCR and next generation sequencing.

Examination of trypanosome using a thin peripheral blood smear. A thin smear was made from 
each sample on a microscopic slide. These slides were air dried, then fixed in methanol, and finally stained with a 
10% Giemsa solution in phosphate-buffered saline (pH 7.2). All slides were examined by light microscopy using 
a 40× and an oil lens according to Mathison et al.13.

Assessment of oxidant/antioxidant markers. The oxidant/antioxidant assessment was evaluated only 
in the Egyptian blood samples. The positive PCR samples for Trypanosoma (− ve Babesia and −ve Theilaria) were 
selected only to estimate oxidant/antioxidant parameters. The control samples were selected based on Trypano-
soma-free blood smears and negative-PCR results. Also, the oxidative markers were only done in the blood 
lysate of camels infected with Trypanosoma. Whole blood samples were centrifuged at 3000 rpm for 10 min at 
4 °C. The buffy coat and plasma were removed. The erythrocyte pellets were washed three times with an 0.9% 
isotonic saline solution, then centrifuged and the supernatant was removed. The washed erythrocyte pellets 
were lysed with nine volumes of ice-cold deionized water to prepare 10% of the erythrocyte lysate. Reduced 
glutathione (GSH)  concentration14 total antioxidant capacity (TAC)15, hemoglobin concentration (Hb)16 and 
lipid peroxidation by-products such as malondialdehyde (MDA)  content17 (and superoxide dismutase (SOD) 
 activity18 were determined in the erythrocyte lysate using commercial kits from Biodiagnostic Co, Egypt. The 
activity of catalase (CAT)19 was measured in the erythrocyte lysate, and the decreased absorbance per min/ml 
after decomposition of  H2O2 was considered as the CAT activity. All parameters were determined using a spec-
trophotometer (T80 UV/VIS PG instrument Ltd, UK).

DNA extraction and 18S rDNA amplification. DNA was isolated from 200 μl blood sample using the 
QIAamp 96 DNA blood kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions, and eluted 
in 60 μl elution buffer, and measured using Nanodrop (Thermos). Samples were screened using generic Trypa-
nosoma spp. 18S rDNA PCR primers Tryp_F (5’-TGC TGT TGC TGT TAA AGG GT-3’) and Tryp_R (5’-TTG TGT 
CTG AGT GTT CGC GG-3’). Two μl of DNA was used for each PCR reaction, and the reaction volume of 25 μl 
contained the following components: Taq PCR buffer (final concentration 10 mM Tris–HCl, pH 9.0, 1.5 mM 
MgCl2, 50 mM KCl, 0.1% Triton X-100, and 0.01% (w/v) stabilizer), 2 μM of each primer, 1 mM total dNTP’s 
and 1.25 U of Taq enzyme Reaction conditions were as follows: 1 cycle at 95 °C for 3 min followed by 35 cycles 
at 94 °C for 30 s, 55 °C for 45 s, and 72 °C for 2 min, and final extension step at 72 °C for 5 min. Ten μl of PCR 
product was run on a 1.5% agarose gel at 100 V. The gel was stained with ethidium bromide and visualized using 
a gel imaging system and a 1 kb Plus DNA ladder to calculate the relative fragment length.
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18S amplicons preparation and sequencing. Fifteen trypanosome-positive samples represent all 
infected geographic regions. Camel herds in Algeria and Egypt were selected for 18S amplicon sequencing 
(Table  S1B). Euk1391f. (5′GTA CAC ACC GCC CGTC3′), EukBr (5′TGA TCC TTC TGC AGG TTC ACC TAC 3′), 
and blocking primers (GCC CGT CGC TAC TAC CGA TTGG/ideoxyI/TTA GTG AGG CCC T/3SpC3/) were used 
to amplify the V9 region under the following conditions for the primary reaction: an initial pre-amplification 
step at 94 °C for 3 min, followed by 35 cycles at 94 °C for 30 s, 65 °C for 15 s, 57 °C for 30 s, 72 °C for 90 s, and a 
final extension step at 72 °C for 10 min. Samples were amplified in triplicate, i.e., each sample was amplified in 
3 replicate 25-µl PCR reactions. Triplicate PCR reactions were pooled into a single volume (75 µl) for each sam-
ple. Individual reactions were performed in 25 μl volumes consisting of 1 μl DNA, 10 μl PCR master mix (2x), 
9 μl PCR water, 0.5 μl forward primer (10 μM), 0.5 reverse primer (10 μM), and 4 μl blocking primer (10 μM) 
(Thermo Fisher Scientific Inc.). A mammalian blocking primer (AGC CCG TCG CTA CTA CCG ATTGG/ide-
oxyI//ideoxyI//ideoxyI//ideoxyI//ideoxyI/TTA GTG AGG CCC T/3SpC3/) is used to reduce the probability of 
host genomic DNA uptake. The C3 spacer (/3SpC3/) is a chemical modification that prevents extension during 
the PCR. Amplicons from each sample were run on an agarose gel and quantified using Quant-iT PicoGreen 
dsDNA Assay Kit. Finally, the amplicon pool was cleaned up using the MoBio UltraClean PCR Clean-Up Kit 
and its concentration was measured using Nanodrop (Thermos). The resulting amplicons were sequenced using 
the Illumina Novaseq platform (Novogene, Cambridge, UK) according to the manufacturer’s recommendations.

Phylogenetic analysis. All available nucleotide reference sequences (390 sequences) of the small subu-
nit (18S) ribosomal RNA gene of trypanosomes were retrieved from NCBI GeneBank (www. ncbi. nlm. nih. 
gov: 09:2022), which contains sequences of specimens from 35 different trypanosomes’ species/sub-species. 
The retrieved sequences were combined with the obtained trypaqnosome OTU sequences (3 OTUs) in a single 
sequence dataset.

Sequences were aligned using MAFFT  software20 and ambiguously aligned regions were excluded for further 
analysis using trimAl  software21 Alignments were tested using ProtTest  v322 to select an appropriate model for 
nucleotide substitution. Two maximum likelihood phylogenetic trees (ML) were constructed using RAxML-NG23 
and IQ-TREE 2  software24. ML analyses were performed with 1000 bootstrap replicates. Supporting values from 
both programs are shown on the ML tree. The phylogenetic tree was rooted with Dicoba (Leptomonas pyrrhocoris 
and Leishmania sp.) sequences.

Statistical analysis. Results were expressed as means ± SE for both infected and control groups. Data were 
statistically analyzed with independent t-tests using SPSS computer software. Differences were considered sig-
nificant at the level (P < 0.05) and highly significant at the level (P < 0.001)25.

Informed consent. The authors declare that they consent to participate to this study.

Results
Microscopic examination. Microscopic examination of the blood smear showed the presence of trypa-
nosomes in four sample (3/370 samples collected from Mersa Matrouh governorate were positive) and (1/30 
samples collected from Giza governorate were positive). The level of parasitemia in these parasitologically posi-
tive samples was relatively high, ranging from 1 to 5 trypanosomes/HPF. In addition, apicomplexan parasites 
Babesia and Theileria were observed in four and ten samples, respectively. The morphological characteristics of 
Trypanosoma spp. are slender with either tapering or blunt ends, with long free flagella and a well-developed 
undulating membrane (Fig. 1a). Theileria sp. on the other hand is characterized by schizonts within lympho-
cytes (Fig. 1b). Finally, Babesia sp. is characterized by a large trophozoite stage typically divided into a pair of 
merozoites (Fig. 1c).

Biochemical analysis. We determined three biochemical indicators in the blood of the camels studied. 
Although the infected camel frequency in Egypt was low, at 7.2% by PCR detection (Table 1), the oxidant and 
antioxidant markers had significantly increased compared with infection-free camels (the control) (Table 2). 
Serum contents of MDA (3.46 ± 0.164) and GSH (0.30 ± 0.005) had recorded a high significant (P < 0.001) 
increase in infected camels compared with infection-free camels (1.42 ± 0.025 and 0.11 ± 0.003 respectively). 
Serum contents of TAC were not significantly different between infected and healthy camels (0.46 ± 0.009 vs. 
0.48 ± 0.012). While the serum content of SOD (4.24 ± 0.113) and CAT (0.18 ± 0.007) had recorded a significant 
increase in infected camels compared with healthy camels (3.31 ± 0.044 and 0.06 ± 0.003).

Diagnostic PCR. Polymerase chain reaction results showed that 43 (10%) of the 426 samples collected from 
the Egyptian regions were trypanosome positive (Table 1 and Fig. 2). Moreover, the highest infection rate was 
recorded in Mersa Matrouh (10.8%), while the lowest was 2% in Aswan (Table 1 and Fig. 2). On the other hand, 
103 of the 402 samples (25.6%) collected from the Egyptian regions were trypanosome positive. The highest 
infection rate with trypanosomes within the Algerian regions was 63.3% in Adrar and the lowest was 25% in 
Namma. Interestingly, no trypanosome infection was detected in the samples from Masila, Laghuouat, Ouargla, 
Gradaia, ELOued and Biskra collection sites (Table 1 and Fig. 2).Biochemical analysis.

18S amplicons data analysis. A total of 30,000–500,000 reads were obtained from each sample. Reads 
were prepared, filtered, and OUTs were generated using USEARCH  software26). In total, we identified 271 OTUs 
and we assigned their taxonomy using BLAST search against SILVA 18S small subunit database version  13227. 

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
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Finally, the relative abundance of amplicons of the identified OTUs in each sample was calculated. Out the 271 
OTUs generated only 3 OTUs (OTU_9, OTU_178, and OTU_256) could be taxonomically assigned to trypano-
somes. In addition, we were able to assign all three OTUs to Trypanosoma evansi. The diversity of OTUs in the 
samples showed that 77 OTUs were shared between the Egyptian (Egy) and Algerian (DZA) infected samples, 
including 2 trypanosome OTUs (OTU_9 and OTU_178) (Fig. 3). Interestingly, 10 OTUs were specific to the 
Egyptian infected samples, including the trypanosome OTU (OTU_256), while 57 OTUs were specific to the 
Algerian samples and did not contain any trypanosome OTUs (Fig. 3).

The results of relative amplicon abundance showed that the range of trypanosome infection was higher in 
Egypt (20–90%) than in Algeria (1–70%) (Fig. 4). The Egyptian samples (EGY1 and EGY2) had the highest rela-
tive abundance of trypanosomes within all samples. Samples EGY1 and EGY2 were from Marsa Matrouh and 
Barqash regions and from Sudani and Maghrabi camel herds, respectively, while the Egyptian samples from the 
Aswan region (EGY3) had a low relative abundance of trypanosomes (~ 15%) (Table S1B and Fig. 4). Moreover, 
the samples with the highest relative abundance of trypanosomes in the Algerian samples (DZA.AD2, DZA.
BE1, DZA.EL1, and DZA.EL2) were from different camel herds in the Adrar, Bechar, and El-Bayedh regions, 
while the samples with the lowest relative abundance of trypanosomes were from the Adrar, Bechar, Tindouf, 

Figure 1.  Microscopically observation of the blood films, stained with quick stainthe observation shows the 
presence (a) Trypanosoma spp., (b) Schizonts of Theileria spp., and (c) Babesia spp. inside lymphocyte some 
blood film.
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and El-Bayedh regions (Table S1B and Fig. 4). Interestingly, the samples with the highest and lowest relative 
abundance of trypanosomes were from the same geographic regions (Adrar, Bechar, and El-Bayedh) but from 
different camel herds (Table S1B and Fig. 4).

In addition, sequence analysis of the 18S amplicons of selected trypanosome positive samples showed that 
Egyptian camels were infected with a low relative abundance of other parasites, while Algerian camels were 
infected with high relative abundance of other parasites such as Ascomycota, Arthropoda, Ciliophora, Basidi-
omycota, Apicomplexa, Mucoromycota, Protalveolata, Cryptomycota, Nematozoa, Gracilipodida, Neocallimastigo-
mycota, and Parabasali beside Euglenozoa (Fig. 4).

Phylogenetic analysis. In our phylogenetic tree, all trypanosome sequences were clustered in paraphilic 
clades without admixture (Fig. 5). The phylogenetic tree showed that all the trypanosome OTUs identified in 
this study grouped in a clade in the root of the Trypanosoma evansi (Fig. 5). The Egyptian-specific OTUs form a 
sister group with Trypanosoma evansi, while the common OTUs between Egyptian and Algerian samples were 
clustered together (Fig. 5).

To better understand the relationships between the different Trypanosoma evansi genotypes in the sequenced 
samples, the trypanosome Amplicon Sequence Variants (ASV) were identified in each sample (Table S1C). Sub-
sequently, the identified trypanosome ASV sequences were extracted and a phylogenetic tree was constructed 
in the same manner as described above. The unrooted trypanosome ASV phylogenetic tree grouped all ASV 
sequences into three clusters but failed to cluster any of the ASV samples (Fig. 6). All ASV samples were assigned 
to the three clusters except for the ASV sequences of some Algerian samples (DZA.AD1, DZA.BE2, DZA.TI1, 
and DZA.EL4) (Fig. 6).

Table 1.  Trypanosome Infection percent in the Egyptian and Algerian regions based on the PCR diagnosis.

Egypt Samples no Positive number Percent

Location

 Mersa Matrouh 370 40 10.8

 Aswan 100 2 2

 Giza 30 1 3.3

 Sharqia 100 0 0

 Total 600 43 7.2

Algeria

 Bechar 23 13 56.5

 Masila 2 0 0

 Namma 4 1 25

 Bayedh 16 10 62.5

 Tindouf 33 17 51.5

 Adrar 30 19 63.3

 Tam 85 43 50.6

 Laghuouat 26 0 0

ouargla 114 0 0

 Gradaia 15 0 0

 Oued 27 0 0

 Biskra 26 0 0

401 103 25.7

Table 2.  Oxidant/antioxidant markers in erythrocytes lysate (mean ± SE) in T. evansi infected and healthy 
control animals. *Significant (P < 0.05). **Highly significant (P < 0.001).

Parameters Control Infected

TAC (mmol/l) 0.48 ± 0.012 0.46 ± 0.009

MDA (nmol/ml) 1.42 ± 0.025 3.46 ± 0.164**

GSH (µg/mg Hb) 0.11 ± 0.003 0.30 ± 0.005**

SOD (U/mg Hb) 3.31 ± 0.044 4.24 ± 0.113*

CAT (µmol H2O2 decomposes/min/ml) 0.06 ± 0.003 0.18 ± 0.007*
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Discussion
T. evansi is the most widespread parasite in camel blood, causing significant morbidity and mortality in camels 
and ranking first in among camel diseases; in particular, it was currently associated with secondary bacterial 
and parasitic  infections28. In this study, suspected trypanosomiasis was investigated during blood collection. 
Although the study lasted two years and was conducted in different locations in Egypt and Algeria, the occurrence 
of trypanosomiasis seems to be similar and no significant difference was found by PCR diagnosis. However, the 
PCR method was recommended for trypanosomiasis  diagnosis29. This could be due to the lack of medical care 
and veterinary  services30. A similar explanation was reported from  Sudan31. Detection of parasites in blood is 
difficult because parasitemia is recurrent and may be below the limit of detection of microscopic examination, 
and therefore positive cases are likely to be missed. In the only four microscopically positive samples, parasitemia 
was relatively high and ranged from 1 to 5 trypanosomes / HPF, indicating the acute phase of infection. The 
present study showed that the PCR method had a higher sensitivity in the diagnosing trypanosomiasis than 

2
16
27

85

300

Figure 2.  A geographic plot was generated using microreact tool (https:// micro react. org), indicating the 
distribution of camel blood sampling sites from 3 different geographic localities in Egypt and other 12 different 
geographic locations in Algeria. The plot shows also the number of collected samples per site as relative size and 
the infection rate in each site is indicated.

57 1077

DZA

EGY

Figure 3.  Venn diagram shows the overlaps and differences of the identified OTUs in Egyptian and Algerian 
selected samples for 18S amplicon sequencing.

https://microreact.org
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microscopic examination of blood  smears31 which have unacceptably low sensitivity especially in the chronic 
phase. The infection rate of Trypanosoma spp. infection was 10% in Egypt and 25.6% in Algeria (Table S1A and 
Fig. 2). The present data showed a significant increase in the level of MDA in erythrocytes as a lipid peroxida-
tion biomarker in the camels infected by trypanosomes compared to the healthy camels. This may be due to the 
increased levels of free radicals as a result of trypanosome infection (Table 2). The present result is consistent with 
T. evansi infected  camels6,  horses32,33,  buffaloes34 and  rats35. Due to its function as an  O2 and  CO2 transporter, 
erythrocytes are constantly exposed to free radicals. Therefore, they have strong antioxidant defenses that convert 
free radicals into intermediates that are much less  reactive36. GSH, SOD and CAT are considered to be strong 
antioxidant defense systems in erythrocytes. The dismutation of superoxide anion  (O2

-) and hydrogen peroxide 
 (H2O2) was catalyzed by SOD, while GSH and CAT catalyze the degradation of  H2O2 into  H2O and  O2

37. Our 
results showed a significant increase in GSH level, and the activities of SOD and CAT were observed in infected 
camels and not in healthy camels. Increased levels of SOD and CAT have been reported  previously34,38. This may 
be due to stimulation of the antioxidant system to remove free radicals generated by trypanosome infection. In 
previous studies  camels6,  horses33 and  rats35 infected with T. evansi showed a significant decrease in GSH, SOD 
and CAT concentrations, which was explained by the depletion of their stores due to oxidative stress.

On the other hand, a high parasite diversity was observed with 271 OTUs in more than 15 parasite fami-
lies covering the most important parasites identified in Egypt and Algeria in fauna: Euglenozoa, Ascomycota, 
Arthropoda, Ciliophora, Basidiomycota, Apicomplexa, Mucoromycota, Protalveolata, Cryptomycota, Nematozoa, 
Gracilipodida, Neocallimastigomycota, and Parabasalia. The 271 different OTUs identified are thought to represent 
the intraspecific diversity of Egyptian and Algerian parasites. This diversity should be taken with caution, as the 
Illumina platform has a low error  rate39, and errors are common in PCR. However, the error was calculated using 
UNOISE2 to filter and group the sequences into OTUs to generate more biologically relevant sequence  data26. 
Indeed, the present 18S amplicon sequencing results showed an unexpectedly high diversity within T. evansi iso-
lated from Egyptian camels more than from Algerian camels (Table S1C and Fig. 6). The large number of genetic 
variants could reflect the long period of isolation in Egypt and Algeria or indicate a wide range of  vectors40,41. 
This increase in diversity of T. evansi could also indicate genetic exchange that occurs in several other trypano-
somes such as T. brucei42 and T. cruzi43, leading to the formation of hybrid species that increase genetic diversity.

Many factors could explain the observed differences between trypanosomes in Egyptian camels and Algerian 
camels, e.g., environmental and physiological differences, stress, and immune function may also contribute 
to more diverse parasite  infections44. Although there is no evidence that immune function is compromised 
in Egyptian camel populations, a collaborative study with woylies (Bettongia penicillata) using fecal cortisol 
metabolite (FCM) concentrations as an indicator of stress found higher FCM concentrations in woylies (both 
transported and resident animals) after  translocation44. Finally, epidemiological factors such as population size 
and status among species could also lead to differences in their exposure to trypanosome vectors or susceptibility 
to  infection41. Although all trypanosomes can be detected early in the blood due to their ease of  decomposition45, 
it is not possible to distinguish the species due to their close similarity in appearance, so they have been ranked 
as the currently accepted subspecies (T. brucei, T. brucei gambiense, and T. brucei rhodesiense)46. Trypanosoma 
brucei evansi and T. b. equiperdum were considered separate species for more than a  century5. Since there are 
no obvious differences from T. b. brucei in their nuclear  genome47, the complete loss or deletions of mitochon-
drial DNA makes T. b. evansi and T. b. equiperdum as petite mutants  8947,48. Although T. b. rhodensiense differs 
by the serum resistance-associated (SRA) gene, this gene is being shared between T. b. rhodesiense and T. b. 
brucei in East  Africa49,50. Trypanosoma brucei gambiense-specific genes such as glycoprotein (TgsGP)51, have 
been identified in some strains of T. b. rhodesiense and T. b. brucei. In addition, the T. b. evansi-specific variant 
surface glycoproteins (VSGs)52,53 have been reportedly identified recently in several strains of T. b. brucei and T. 
b. gambiense54. Therefore, ambiguous distinctions between T. b. brucei, T. b. gambiense, and T. b. rhodensiense 
are tenuous at best and depend largely on the evolution of  VSGs4. Our study has shown that next generation 

Figure 4.  Relative Abundance of the OTUs in Egyptian and Algerian selected samples for 18S amplicon 
sequencing, shows the diversity of different parasites in Egyptian and Algerian camels including trypanosomes.
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sequencing (NGS) technologies are very useful in determining diversity in a community, as they allow identi-
fication of multiple parasites and more accurate estimation of their prevalence, as well as detection of different 
genotypes for trypanosomes.

Conclusion
Polymerase chain reaction was more sensitive than microscopic observations in diagnosing trypanosomes. The 
prevalence of trypanosome infection was found to be higher in Algeria than in Egypt. In addition, there was a 
highly significant increase in MDA, GSH, SOD and CAT levels in the blood of trypanosome-infected camels 
compared to the uninfected control, while the TAC level was not significantly changed. The sequence analysis of 
the 18S amplicons of the positive samples showed that the range of trypanosome infection was higher in Egypt 

Figure 5.  A maximum likelihood (ML) phylogenetic tree showing the evolutionary relationships of between 
the identified trypanosome OTUs sequences (in red), and 390 the Trypanosomes’ small subunit (18S) ribosomal 
RNA gene reference sequences retrieved from NCBI database (09/2022). The ML branch support values are 
given in % (IQ-TREE/RAxML-NG), and the number of leaves of the collapsed clade is mentioned. In addition, 
Babesia vogeli’s sequences (5 sequences) were retrieved as an out-group.
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than in Algeria with a low relative abundance of other parasites. Although the results of phylogenetic analysis 
showed that some Trypanosoma sequence of Egyptian camel samples formed a separate group from the group 
that combined the rest of the Egyptian camel samples with the Algerian camel, the two groups were related to 
T. evansai. Finally, all trypanosome ASV sequences were clustered into three clades with no evidence of ASV 
or sample clade specificity.

Data availability
The fifteen datasets of 18S amplicon sequencing are available at the NCBI Short Read Archive (SRA) with the 
GenBank Accession No.: PRJEB55278.
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