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Attention‑based message passing 
and dynamic graph convolution 
for spatiotemporal data imputation
Yifan Wang 1, Fanliang Bu 1*, Xiaojun Lv 2, Zhiwen Hou 1, Lingbin Bu 1, Fanxu Meng 1 & 
Zhongqing Wang 1

Although numerous spatiotemporal approaches have been presented to address the problem of 
missing spatiotemporal data, there are still limitations in concurrently capturing the underlying 
spatiotemporal dependence of spatiotemporal graph data. Furthermore, most imputation methods 
miss the hidden dynamic connection associations that exist between graph nodes over time. To 
address the aforementioned spatiotemporal data imputation challenge, we present an attention‑
based message passing and dynamic graph convolution network (ADGCN). Specifically, this paper 
uses attention mechanisms to unify temporal and spatial continuity and aggregate node neighbor 
information in multiple directions. Furthermore, a dynamic graph convolution module is designed to 
capture constantly changing spatial correlations in sensors utilizing a new dynamic graph generation 
method with gating to transmit node information. Extensive imputation tests in the air quality and 
traffic flow domains were carried out on four real missing data sets. Experiments show that the 
ADGCN outperforms the state‑of‑the‑art baseline.

Many application areas have faced significant challenges as a result of missing data. For example, in weather 
and traffic, missing data from the data gathering process due to sensor failure or network failure will have a 
significant impact on the output of downstream operations. Many real-world settings have incomplete data that 
must be processed. As a result, several studies on spatiotemporal data filling methods, such as statistical  ways1 to 
fill, machine learning filling methods, and deep learning filling methods, have arisen. In this study, an effective 
spatiotemporal approach using deep learning to reconstruct the missing parts of the signal produced better fill-
ing results. The rise of graph neural networks has also facilitated the development of approaches for imputation 
that utilize spatiotemporal correlation. Andrea Cini et al. proposed  GRIN2, which uses a bivariate graph RNN to 
rebuild missing data in different channels of a multivariate time series by learning the spatiotemporal representa-
tion through message passing. However, in the case of this imputation approach, node attributes fluctuate over 
time rather than being constant at one level. For example, in an air quality collection network, the air quality in 
a given area depends not only on the prior air quality in that area, but also on the air quality index of the nearby 
area throughout the previous time. This is because it also takes time for air to travel from one area to another. 
The same is true for traffic flows in the transport sector. As a result, capturing the spatial correlation of nodes 
through time and harmonising temporal and spatial continuity has emerged as a significant challenge in the 
field of data complementation. Zonghan Wu et al. proposed  TraverseNet3 to address this issue, which employs 
an attention technique to pick key neighborhood information and deal with dynamic spatiotemporal relation-
ships. There are also several graph neural networks that parse graphs using attention  processes4. To handle the 
traffic flow prediction problem, for example, the Spatio-Temporal Graph Convolutional Network with Attention 
(ASTGCN)5 model is utilized. A new direction is the building and update of all surrounding nodes to fill in 
missing spatiotemporal data using an attention method.

However, in order to capture underlying spatial relationships, numerous similar studies have mapped out 
deeper graph topologies by creating various adjacency matrices. These methods do not fully exploit the dynamic 
character of spatiotemporal data, because spatial information changes with time, making it difficult to capture 
hidden spatial connections. Therefore, the construction of dynamic adjacency matrices becomes a good way 
to capture spatiotemporal features. For example, Aoyu Liu and Yaying Zhang (2022) presented  STIDGCN6, an 
interactive dynamic graph convolution structure formed by merging adaptive and learnable adjacency matrices.
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In summary, this paper proposes ADGCN, a dynamic graph attention reconstruction model implemented 
with a unified spatiotemporal message passing layer. This model first uses the attention mechanism to construct 
a special messaging layer that assigns each node at each moment a weight value corresponding to its influence. 
The weights are used to connect each nearby node to the central node, aggregating each neighboring node’s state 
information to update the graph. To reconstruct the spatiotemporal deficiency graph, the model additionally 
employs a dynamic, adaptive adjacency matrix to learn time-varying correlations between nodes, an adjacency 
matrix containing static distances, and graph convolution with gating.

The main contributions of this paper are as follows:

• In this paper, an attention-based message passing and dynamic graph convolution network (ADGCN) is 
proposed. The Message Passing Layer in this architecture can traverse messages from any node at any time, 
unifying the continuity of time and space.

• This paper presents the dynamic graph convolution module in the model ADGCN. Dynamic graphs are 
generated by fusing a dynamic adaptive adjacency matrix with a static distance adjacency matrix. It also uses 
gating to pass information and learn spatial correlations between nodes over time for imputation.

• Extensive experiments were conducted on four real data sets in two domains. The experimental results show 
that the model ADGCN proposed in this paper has the most advanced performance compared to the baseline 
model.

The rest of the paper is structured as follows: Section “Related work” describes related work in the area of 
data imputation. The proposed spatiotemporal reconstruction model ADGCN is described in detail in Section 
“Methods”. The experimental procedures and results are described in Section “Experiment”. Finally, conclusions 
are drawn in summary in Section “Conclusion”.

Related work
Filling of spatiotemporal data. A large literature exists on the filling of missing values in spatiotempo-
ral data. This includes simple statistical methods that look for overall characteristics of the data or similarities 
between time series to fill in missing values. Examples include simple mean fill (MEAN), chain multiple interpo-
lation (Azu et al. MICE)7, etc. There are also methods that consider spatial information for filling, such as matrix 
factorisation (Cichocki and Phan, MF)8, etc.

However, in the field of machine learning, the filling of spatiotemporal data can be viewed as a prediction 
task. It fills in the missing values by predicting the missing position data. Among them, there are several vari-
ants of supervised algorithms for prediction imputation, including the K-nearest neighbor algorithm (KNN) 
(Troyanskaya et al.9; Beretta and  Santaniello10), the vector autoregressive algorithm (VAR), and others. These 
algorithms do not necessarily work very well compared to simple statistics. None of them fully account for the 
spatiotemporal properties of spatiotemporal data, and predictions must be utilized globally to fill in the gaps.

All current advanced spatiotemporal data filling methods employ deep learning algorithms. Among them, 
recurrent neural networks (RNN) and their  variants11,12 based on recursive neural networks are able to achieve 
better results in the complementation task. Cao et al.13 proposed the BRITS model, an RNN-based bidirectional 
GRU with gating structure for multivariate time series imputation that takes into account the correlation between 
different channels to perform spatial imputation. Furthermore, Miao et al.14 proposed rGAIN, a generative 
adversarial model based on a bidirectional recurrent neural network, in which the encoder-decoder imputes 
missing input using a bidirectional RNN. There are also methods that use attention mechanisms to focus on 
time-series relationships for completeness. Wenjie  Du15 and others used self-attention based on diagonal masking 
to explicitly capture temporal dependencies and feature correlations between time steps.

Graph neural networks. Graph neural networks (GNNs) have always had a unique advantage in process-
ing spatiotemporal  data16–19. The graph structure in  GNN20 can efficiently gather spatiotemporal information 
and update the graph by employing the graph’s adjacency matrix and the graph’s convolution operation to fuse 
the information of neighboring nodes. The standard graph neural network only considers static spatial informa-
tion. For example, GraphSAGE (Hamilton, Ying, and Leskovec 2017)21 defines fixed neighbors and aggregates 
each node’s neighborhood and own attributes. Wu et al.22 proposed a graph-wave network that uses extended 
one-dimensional convolution to learn static graph structures from input with spatial dependencies. When both 
spatiotemporal features are present, spatiotemporal graph neural networks (STGNN) can handle data efficiently. 
Weiguo  Zhu23 proposed CorrSTN, a graphical model for traffic flow prediction based on spatiotemporal cor-
relation information. The attention-based mechanism of STGNN can then model time and space separately, 
extracting time–space dependencies. Chuanpan Zheng et al.24 proposed that GMAN captures spatial correlation 
with temporal correlation using multiple spatiotemporal attention modules. Wei Shao et al.25 proposed a new 
dynamic multi-graph fusion model that fuses multi-graph information by modeling intra-graph and inter-graph 
node interactions via spatial and graph attention techniques. In a research work on data filling using graph struc-
tures, Indro Spinelli et al.26 proposed a graph convolutional network fused with generative adversarial networks 
to fill in missing data. Emanuele  Rossi27 and Jiaxuan You et al.28 used graph representation learning to deal with 
missing data.
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Methods
The architecture of the ADGCN model proposed in this paper is shown in Fig. 1 and consists of two main parts: 
(1) A unified spatiotemporal messaging layer constructed using attention mechanisms; (2) Dynamic graph 
convolution method using dynamic adjacency matrix in conjunction with static adjacency matrix, and gating 
to pass information. The detailed steps for each of these two sections are described separately below.

The architecture of the full model implementation is shown in Fig. 2, together with the vector dimensions of 
the model inputs and outputs. Where B represents the batch size, C represents the number of channels 1, Cdim 

Figure 1.  ADGCN Model architecture.

Figure 2.  ADGCN model architecture.
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represents the hidden layer dimension, N  represents the sensor spatial dimension, T represents the temporal 
dimension, and S is the spatiotemporal dimension that fuses the temporal and spatial dimensions, S = N × T . 
The unified spatiotemporal messaging layer and the dynamic graph convolution filling method with gating are 
the two key components that constitute the model.

First the raw data is input to the unified spatiotemporal messaging layer, of which the most significant mod-
ule is the spatiotemporal attention module in Fig. 2. We firstly map the data using spatiotemporal embedding 
to extract its spatiotemporal features in order to unify the continuity of time and space. The spatial dimension 
and the temporal dimension are then combined to create the spatiotemporal component. After that, the spati-
otemporal attention matrix is derived from the spatiotemporal attention, and the significance of each node is 
updated by merging the spatiotemporal component inputs. Ultimately, MLP is able to determine the original 
dimension. To reduce the loss of information in the raw data, we use the residuals to add the raw data to the 
output, as shown by the red arrows in Fig. 2.

The second network module is our proposed gated dynamic graph convolution layer, of which the most 
prominent module is the graph convolution layer in Fig. 2. The input is a concatenation of the output sequence 
of the previous network and the original sequence embedded by MLP with the spatiotemporal representation 
H , which is the original data mapped by MLP . To aggregate the node information, this representation is con-
volved with each of our two suggested adjacency matrices for gated graphs. Then, in order to update the node 
information, we perform a dynamic graph convolution operation with the output of the adaptive fusion of the 
dynamic adjacency matrix with the static adjacency matrix. Finally, the final reconstructed sequence is output 
using MLP to derive the complemented data. When processing the next sequence of graphs, we re-enter the 
output data through the MLP embedding as the spatiotemporal representation H at that point into the dynamic 
gated graph convolution layer.

Data pre‑processing and concepts. It begins with a description of how the data is processed and the 
definition of some concepts. Given a collection of multivariate time series with T time steps and N-dimensional 
sensors, consider the sensors in the data as nodes and construct a graph G = (V, E) . Where V  represents the set 
of N sensors at the nodes in the graph, vi ∈ V  is a node. ε = {eij}

N
i,j=1

 denotes the relationship between nodes. If 
nodes vi and vj are adjacent, then eij = 1 ; otherwise, eij = 0 . Define the raw data of the i-th sensor as 
Xi = (xi1, xi2, xi3, . . . , xiT ) , where xit denotes the data in time interval t for the i-th sensor. T indicates the length 
of the data for each sensor. To represent the missing variables in X , introduce the missing mask vector 
M = {mi}

N
i=1,M ∈ RT×N.

where mit is zero if the data xit is missing, and one if xit is observed.
Figure 3 shows the construction of the graph and the training method for filling the data. To begin, the 

red forks in the incomplete data reveal the real missing data, whereas the blue forks represent missing values 
generated at random for training. In this paper, we construct a graph sequence GN ,T with sensors as nodes and 
reconstruct the data using the proposed model. We define the reconstruction error Ltrain,Lval uniformly as:

where ℓ(·, ·) represents the element-level error function (using absolute or squared error), X̃N ,T represents the 
incomplete data node matrix, X̂N ,T is the reconstructed complete data matrix, and MN ,T represents the mask 
matrix. Formally, the objective of multivariate time series filling is to find the estimate X̂N ,T that minimizes the 

(1)Md
t =

{
1 if Xt is observed
0 if Xt is missing

(2)L

(
X̂N ,T , X̃N ,T ,MN ,T

)
=

T∑

t=1

∑N
i=1mit · ℓ(x̂it , x̃it)∑N

i=1mit

Figure 3.  Description of the training method for reconstructing missing map sequences.
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reconstruction error. During training, we should randomly simulate the presence of deficits in order to better 
train the reconstruction task.

Unified spatiotemporal message passing layer. In dealing with the missing problem, the current 
advanced filling method is to use graph neural networks for filling. Traditional graph convolution or message 
passing layers, on the other hand, only transfer node information in space, commonly modeling time and space 
separately and then fusing the information in time and space using techniques like weighing. This situation, on 
the other hand, is bound to result in information loss and irregular learning dynamics.

This paper introduces a new message passing layer for spatiotemporal graph neural networks in order to avoid 
fragmentation of the time–space continuum and to achieve direct transfer of information in time and space. By 
modeling each sensor at each moment as a node of the graph, an attention mechanism is used to calculate the 
neighboring nodes to enable message passing. Figure 4 shows an example of inter-neighbor messaging using 
the moment t2 of one of the sensors i . Long-term spatiotemporal dependencies must be considered, as there 
are effects between different sensors at different points in time. For example, the t2 moment of sensor i will be 
influenced not only by the t2 moments of the other sensors (j, k) , but also by the other moments of j and k . For 
example, traffic jams on one road may generate congestion on another nearby road some time later; rainfall in 
one area can lead to rainfall in another area some time later. This shows that treating spatial and temporal cor-
relation separately is inappropriate.

To overcome these problems, this paper proposes a message-passing layer that can unify space–time and 
enable nodes to sense messages from their neighbors over time. An attention mechanism is used to assign 
corresponding weights to neighboring nodes and focus on the states of more similar neighboring nodes. The 
spatiotemporal graph is reconstructed by efficiently passing the node’s neighborhood information and establish-
ing a past-to-present connection for each neighbor. This paper uses an attention mechanism to aggregate the 
set of node information xit:T at different moments of the same sensor with the set of node information xjt:T of 
its neighbors to learn to reconstruct the complete data representation. Figure 4 illustrates this learning process.

Where xit:T  is the temporal data of the ith sensor T time length, and the set of sensors 
Xt:T = (x1t:T , x

2
t:T , . . . , x

i
t:T , x

j
t:T , . . . , x

N
t:T ) form the graph GN ,T . The sequence of missing graphs is reconstructed 

after a message passing layer with spatiotemporal attention as the core.
Initially encoding the data as high-dimensional data and extracting significant spatiotemporal features.

Update node i’s information for xit:T in X̃  from time t = 0 to time t = T:

where α(·, ·) is the attention function:

where W is the model parameter.

(3)X̃ = MLP(X )

(4)x̃it:T =
∑

j∈N(u)

α(x
j
t:T , x

i
t:T )Wxit:T

(5)α(x
j
t:T , x

i
t:T ) =

exp(x
j
t:Twj||x

i
t:Twi)

∑
i∈N(u)exp(x

j
t:Twj||x

i
t:Twi)

Figure 4.  The messaging layer of the unified space–time.
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Eventually, use aggregation as well as residual blocks to reconstruct the incomplete data 
X̂t:T = (X̂1

t:T , X̂
2
t:T , . . . , X̂

i
t:T , . . . , X̂

N
t:T ) . The reconstructed graph sequence now goes through the missing mask 

vector M to fill in the missing position data in order to obtain the complete feature vector X̂ ‘
t:T.

Dynamic graph convolution filling method with gating. Following the message passing layer, the 
output X̂ ‘

t:T will be utilized as the input for the next component to be learned. For graph convolution, this part 
will use a combination of building dynamic adjacency matrices and using distances as static adjacency matrices. 
As shown in Fig. 5, the input sequence is mapped to the space–time representation Ht:T ∈ RN×l . Two adja-
cency matrices are also defined: one is a static adjacency matrix Adist ∈ RN×N , using the geographical distance 
between sensors; the other is a dynamic adjacency matrix Alearn ∈ RN×N that can be learned. Simultaneously, 
the connected sequence X̂ ‘

t:T , the mask Mt:T , and the spatiotemporal representation Ht:T are fed into a graphical 
convolutional neural network with a modified gating function, which processes the sequence separately in for-
ward and reverse directions, one step at a time, to update and reconstruct the data. For the adjacency matrix, we 
use the same forward and backward transfer matrices as the adjacency matrix A, denoted Af = A/rowsum(A) 
and Ab = AT/rowsum(AT ) , respectively.

(6)X̂i
t:T = xit:T +MLP(x̃it:T )

(7)X̂ ‘
t:T = Xt:T ⊙M + (1−M)⊙ X̂t:T

Figure 5.  Dynamic graph convolution layer with gating.
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This will then be fed into a gating graph convolutional neural network. This paper incorporates a learning 
module for time and space by replacing the GRU’s fully connected layer with a graph convolution layer that 
selectively maintains information from the previous time step and updates the current sequence.

where rit and uit are the reset and update gates respectively, cit is the cell state information, and x̂it is the output of 
the previous time step. The symbols ⊙ and || denote the Hadamard product and concatenation operators respec-
tively. The reset gate rit determines how the new input information is combined with the previous information, 
and the update gate uit is used to control the extent to which the state information from the previous moment is 
brought into the current state. The computation of hit is to forget some dimensional information in hit−1 passed 
down and to update it by adding some dimensional information input from the current node. The GCN module 
in the context is defined as:

where A represents the set of adjacency matrices Adist and Alearn , and Xin represents the input sequence. W1 and 
W2 are the model parameters, and K is the number of layers.

Subsequently, we will use the adaptive fusion structure to fuse the static adjacency matrix Adist with the 
dynamic adjacency matrix Alearn to make adjustments to the dynamic adjacency matrix Alearn . We define the 
dynamic adjacency matrix Alearn as:

where N1 ∈ RN×c ,N2 ∈ Rc×N are the learnable parameters. Alearn can learn the implicit relationships between 
graph nodes and enhance the model’s ability to capture spatial heterogeneity. However, there is a limit to how 
much Alearn can learn, and as the model is trained, Alearn will be fixed. While the static adjacency matrix defined 
by spatial distance contains geospatial information, we fuse the adjacency matrix Adist with static spatial distance 
to guide the generation of a dynamic adjacency matrix to capture deeper spatial features.

Subsequently, we fuse Alearn with Adist using the adaptive fusion structure.

where Âlearn is the updated dynamic adjacency matrix and β is the learnable adaptive parameter factor. After 
fusion, we get the adjacency matrix Âlearn.

We take the hidden state output at each time step through the MLP as one fill, i.e., we use the mask Mt to 
guide the missing positions and replace X̂(1)

t  with the missing position data in the original data Xt to form the 
filled data X̂t . The sequence then continues to learn the fill function after the fill.

To update the hidden state Ht , the updated sequence features X̂t and the set of adjacency matrices A are fed 
back into the gated graphical convolutional neural network. The feature X̂t will be mapped to a new spatiotem-
poral representation Ht by an MLP . Then continue processing the input graph Gt+1 for the next time series. This 
method combines the forward and backward sequences to produce the final output, which is the whole data 
after reconstruction.

Experiment
This section evaluates four typical datasets often used in the field of data imputation utilizing current state-of-
the-art baselines as well as the method provided in this paper. The final results show that the method proposed 
in this paper achieves the most advanced performance of all the baselines.

Datasets. This paper uses real datasets from two domains: an air quality dataset and a transport domain 
dataset, both with spatiotemporal characteristics. The datasets contain both the sensor timing data and the sen-
sor geolocation data. The constructs were deficient for better training during the experiment. Details of the 
dataset are shown in the Table 1 (P for Point Missing, B for Block Missing).

(8)rit = σ
(
GCN

(
[Adist ,Alearn],

[
x̂it
∣∣∣∣mi

t

∣∣∣∣hit−1

]))
+ btr

(9)uit = σ
(
GCN

(
[Adist ,Alearn],

[
x̂it
∣∣∣∣mi

t

∣∣∣∣hit−1

]))
+ btu

(10)cit = tanh
(
GCN

(
[Adist ,Alearn],

[
x̂it
∣∣∣∣mi

t

∣∣∣∣rit ∗ hit−1

]))
+ btc

(11)hit = uit ⊙ hit−1 +
(
1− uit

)
⊙ cit

(12)GCN(A,Xin) =

K∑

k=0

(
Ak
f XinW1 + Ak

bXinW2

)

(13)Alearn = SoftMax(Relu(N1N2
T ))

(14)Âlearn = βAlearn + (1− β)Adist

(15)X̂
(1)
t = MLP(Ht−1)

(16)X̂t = Mt ⊙ Xt + (1−Mt)⊙ X̂
(1)
t .
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Air quality (AQI) dataset. The Urban Computing Project (Zheng et al.30,31) has published several datasets, 
including the impact of air quality on human life. In particular, the Air Quality Index (AQI) dataset contains 
hourly measurements of six pollutants from 437 air quality monitoring stations in 43 cities in China over a 
one-year period (from May 2014 to April 2015). Of these, the missing rate reached 25.67%. Yi et al.32 conducted 
imputation experiments in a simplified version of the AQI, and this dataset is also taken into account in this 
paper. The simplified version (AQI-36) contains data from 36 air quality monitoring stations and has a 13.24% 
missing rate. For the sake of experiment comparability, the months of March, June, September, and December in 
the dataset are used as the test set in this paper, as in the GRIN setting. The time step was chosen to be T = 24 in 
AQI and for AQI-36 a time step of T = 36 was chosen for the experiment. The geographical coordinates of each 
monitoring point in this dataset will be utilized to generate the static adjacency matrix in the article. To obtain 
the adjacency matrix from the geographical distance between nodes, we use a threshold Gaussian kernel (SHu-
man et al. 2013)33. For example, the weight Ei,j of the edge between the i-th node and the j-th node at a certain 
threshold δ is defined as:

where dist(·, ·) is the calculated geolocation distance function, d is the width of the Gaussian kernel and δ is the 
threshold value. To maintain experimental consistency, we set d to the standard deviation of the geographical 
distances provided in the dataset and δ to a distance of 40 km.

Traffic flow datasets. In the field of data imputation, traffic flow data is also commonly used as a dataset 
to verify the effectiveness of imputation. This paper therefore uses the PEMS-Bay and METR-LA datasets from 
Li et al.29. METR-LA contains 4 months of sensor readings from 207 sensors on Los Angeles County motorways 
(Jagadish et al. 2014)34 with a sampling rate of 5 min; PEMS-BA Y contains 6 months of data from 325 traffic sen-
sors in the San Francisco Bay Area with a sampling rate of 5 min. Both datasets have a time step of 24, i.e. 2 h of 
data. Similarly, the Leigh dataset uses the provided sensor geolocation data to construct a static adjacency matrix 
using a threshold Gaussian kernel. This paper will be consistent with the experimental setup in GRIN, using 
70% of the data for training, 10% as the validation set and 20% as the test set. Where we simulate the presence 
of missing data by referring to the settings in GRIN: (1) Block loss, i.e., at each step of each sensor, we discard 
5% of the available data at random; (2) Point loss, where we simply mask 25% of the available data at random.

Baseline approach. The filling method proposed in this paper is complementary in the spatiotemporal 
dimension and mainly considers other advanced filling methods for comparison: (1) VAR, a vector autoregres-
sive one-step ahead predictor, set with a batch size of 64 and a learning rate of 0.0005, using SGD to train the 
model to predict the next value using the last five historical observations; (2) SAITS, which uses self-attention to 
fill in missing data from a time series. For the setting of the hyperparameters, we use the hyperparameter range 
from the original paper; (3) BRITS, a model that in data with a bidirectional recursive approach. It uses the 
network hyperparameters adopted for the AQI-36 dataset, with the hidden state size set to 128 in the AQI and 
METR-LA datasets compared to 256 in the PEMS-BA dataset; (4)  E2GAN35, an end-to-end generative model to 
estimate missing values in multivariate time series, with parameter settings consistent with those in BRITS. (5) 
rGAIN, the GAIN with a bidirectional recursive encoder and decoder, has parameter settings consistent with 
those found in BRITS. (6)  CSDI36, a new time series imputation method, the fraction-based diffusion model, 
which uses a fraction-based diffusion model based on observed data to fill in missing values. (7) GRIN, which 
reconstructs missing data in different channels of a multivariate time series by learning the spatiotemporal rep-
resentation through message passing, with the same parameter settings as in the original paper. As well as some 
simple statistical filler methods: (8) MEAN, mean fill; (9) MICE algorithm, multiple interpolation of chain equa-
tions; (10) KNN, K-nearest neighbor algorithm; (11) MF, Matrix decomposition algorithm.

Experimental setup. The experiments in this paper were implemented using Pytorch, trained and experi-
mentally validated on an NVIDIA TeslaV100 GPU. For the ADGCN algorithm in this paper, the ADAM opti-
mizer was used and trained using the cosine learning rate scheduler. The initial value of the learning rate was 
0.001, and 300 rounds were used for training, with 160 randomly sampled batches of 32 elements per round, set 

(17)Ei,j = exp

(
−
dist

(
i, j
)2

d

)
, dist

(
i, j
)
≤ δ

Table 1.  Details relating to the  datasets3,29.

Dataset Node Time step Missing% Constructive missing%

AQI-36 36 36 13.24 10.67

AQI 437 24 25.67 11.33

METR-LA (P) 207 24 8.10 23.0

(B) – – – 8.4

PEMS-BAY(P) 325 24 0.02 25.0

 (B) – – – 9.07
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in line with GRIN. The evaluation method uses three metrics, MAE (mean absolute error), MSE (mean square 
error) and MAPE (mean absolute percentage error), to evaluate the performance of the model:

Hyperparameter experiments. In this section, we design hyperparameter experiments to find more effi-
cient hyperparameters. The experiments keep the batch size the same as the settings in the other baselines, so 
we only change the size of the hidden layers in the model with the number of layers of the graph convolution. 
The number of graph convolution layers is set to 1 and 2, while the hidden layer sizes are set to 32, 64, and 128. 
Figure 6 shows the results of hyperparametric tests on the AQI dataset for air quality.

Figure 6 shows the results of hyperparametric tests on the AQI dataset for air quality. The model achieves 
optimal performance when the batch size is 32, the hidden layer size is 128, and the number of graph convolution 
layers is 1. As a result, this hyperparameter setting will be used for all of our upcoming experiments.

Experimental results. In this section, the performance of the baseline is compared with the model pro-
posed in this paper on four real data sets from two classical domains. Table 2 shows the experimental results of 
the model and baseline on the air quality dataset. Table 3 shows the results of the complementary performance 
on the traffic flow dataset. The results show that the ADGCN outperformed the baseline in all cases.

The experimental results show that ADGCN achieves the best performance in complementing spatiotem-
poral data in different scenarios. Statistical approaches are often utilized less efficiently to fill in the data than 
deep learning methods, as deep learning methods can seek for correlations between data as well as extract tem-
poral and spatial aspects from the data. rGAIN learns the distribution of real data using generative adversarial 
networks, temporal reminder matrices, and classifiers to estimate missing values that converge to the true data 
distribution for filling. BRITS is based on recurrent neural networks that directly learn missing values in bidi-
rectional recursive dynamical systems. SAITS uses a self-attentive mechanism to capture temporal dependencies 
and feature correlations to impute the data. CSDI, on the other hand, used a diffusion model to fill in the data.

Where CSDI produces better results on the AQI-36 dataset with only 36 nodes, our model yields better 
performance when we switch to the larger AQI dataset with 437 nodes. Also, on other large traffic datasets, our 

(18)MAE
(
imputation, target,mask

)
=

∑N
n

∑T
t

∣∣(imputationnt − targetnt
)
⊙masknt

∣∣
∑N

n

∑T
t |masknt

(19)MSE
(
imputation, target,mask

)
=

∑N
n

∑T
t

((
imputationnt − targetnt

)
⊙masknt

)2
∑N

n

∑T
t |masknt |

(20)MAPE
(
imputation, target,mask

)
=

∑N
n

∑T
t

∣∣(imputationnt − targetnt
)
⊙masknt

∣∣
∑N

n

∑T
t |target ⊙masknt |

× 100%

Figure 6.  Hyperparameter experimental results.
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model produces better results in comparison. Because of the spatially distinctive nature of the dataset in this 
paper, CSDI may not achieve optimal results.

However, E2GAN, rGAIN, BRITS, CSDI, and SAITS ignore the spatiotemporal properties of the data and do 
not use its spatial properties to fill in, considering only the temporal nature of the data. Furthermore, MPGRU is 
a GNN-based one-step prediction, similar to DCRNN, on which GRIN is an enhancement, intending to rebuild 
missing data in distinct channels of a multivariate time series by learning the spatiotemporal representation 
through message passing. This paper proposes ADGCN to address the fact that the time-dependent cycles of 
the neighbors of message-passing nodes in GRIN may be delayed or dynamic, severing the continuity between 
time and space. It can unify the temporal and spatial messaging layers in messaging and can dynamically adapt 
the adjacency matrix of spatial node neighborhood relationships.

In conclusion, the experimental results show that the ADGCN can capture both temporal and spatial infor-
mation, achieving the best filling performance in spatiotemporal data imputation tests.

Robustness experiments. The Tables 1 through 3 show how well the model fills in missing data, however 
this section will raise the rate of missing data for experimental validation in order to confirm the model’s robust-
ness.

The two large traffic speed datasets described above were used as examples for the experiments. As an exam-
ple, visualize the 25%, 50%, and 75% missing data rate scenarios constructed for every 5 min of data in the San 
Francisco Bay Area PEMS-Bay traffic dataset for the entire day of May 2, 2015. Figure 7 shows the distribution 

Table 2.  Comparison of model performance for an average of 5 experiments filled on the air quality domain 
dataset. *  please note: mse and mape(%) for SAITS are not reported  in37, but were calculated for this article. 
The best results are in bold.

Model

AQI-36 AQI

mae mse mape(%) mae mse mape(%)

MEAN2 53.48 4578.08 76.77 39.60 3231.04 59.25

KNN2 30.21 2892.31 43.36 34.10 3471.14 51.02

MF2 30.54 2763.06 43.84 26.74 2021.44 40.01

MICE2 30.37 2594.06 43.59 26.98 1930.92 40.37

VAR2 15.64 833.46 22.02 22.95 1402.84 33.99

E2GAN 15.78 741.81 22.66 21.52 1240.81 32.21

rGAIN2 15.37 641.92 21.63 21.78 1274.93 32.26

BRITS2 14.50 662.36 20.41 20.21 1157.89 29.94

SAITS37* 18.16 843.53 37.16 21.33 1253.23 31.74

CSDI 9.74 383.63 11.32 19.71 1196.59 27.96

MPGRU 2 16.79 1103.04 23.63 18.76 1194.35 27.79

GRIN2 12.08 523.14 17.00 14.73 775.91 21.82

ADGCN 11.93 502.31 17.13 13.49 642.00 20.19

Table 3.  Comparison of model performance for an average of 5 experimental fills on the traffic flow domain 
dataset. *  please note: mse and mape(%) for SAITS are not reported  in37, but were calculated for this article. 
The best results are in bold.

Model

METR-LA PEMS-BAY

Blocking missing Point missing Blocking missing Point missing

mae mse mape (%) mae mse Mape (%) mae mse Mape (%) mae mse Mape (%)

MEAN2 7.48 139.54 12.96 7.56 142.22 13.10 5.46 87.56 8.75 5.42 86.59 8.67

KNN2 7.79 124.61 13.49 7.88 129.29 13.65 4.30 49.90 6.90 4.30 49.80 6.88

MF2 5.46 109.61 9.46 5.56 113.46 9.62 3.28 50.14 5.26 3.29 51.39 5.27

MICE2 4.22 51.07 7.31 4.42 55.07 7.65 2.94 28.28 4.71 3.09 31.43 4.95

VAR2 3.11 28.00 5.38 2.69 21.10 4.66 2.09 16.06 3.35 1.30 6.52 2.07

E2GAN 3.00 23.49 5.21 2.98 22.80 7.99 1.97 12.20 3.16 1.77 9.73 2.83

rGAIN2 2.90 21.67 5.02 2.83 20.03 4.91 2.18 13.96 3.50 1.88 10.37 3.01

BRITS2 2.34 17.00 4.05 2.34 16.46 4.05 1.70 10.50 2.72 1.47 7.94 2.36

SAITS37* 2.30 16.88 4.00 2.26 16.32 3.94 1.56 14.02 2.50 1.40 7.88 2.30

CSDI 2.23 15.92 3.64 2.20 14.32 3.42 1.50 13.77 2.50 1.22 7.75 1.82

MPGRU 2 2.57 25.15 4.44 2.44 22.17 4.22 1.59 14.19 2.56 1.11 7.59 1.77

GRIN2 2.03 13.26 3.52 1.91 10.41 3.30 1.14 6.60 1.83 0.67 1.55 1.08

ADGCN 2.02 13.22 3.51 1.89 10.31 3.27 1.07 5.23 1.73 0.66 1.52 1.07
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of the data at different deletion rates in a heat map. While the vertical coordinate denotes the various detectors, 
the horizontal coordinate denotes the time of day when the data was taken, and the degree of color denotes the 
various speeds. When the rate of missingness rises, it can be observed that the dataset contains an increasing 
number of zero items, which are represented by an increasing number of black dots on the heat map. To confirm 
the stability and robustness of the model, comparison experiments with the baseline were run at various deletion 
rates. Table 4 shows the results of the robustness experiments.

As shown in Table 4, the proposed ADGCN model shows excellent performance in all cases, below the 
complementary error of other state-of-the-art models. Therefore, the model proposed in this paper has good 
robustness, and with the increase of the missing rate, the model still shows excellent filling performance.

Ablation experiments. In this section, the paper uses ablation experiments to verify the effectiveness 
of the two-part module in the ADGCN. The ADGCN is separated into three components: a message-passing 
layer without the attention mechanism (DGCN) and a model removing the dynamic graph adjacency matrix 

Figure 7.  Heat map of the PEMS-Bay dataset at different deletion rates.

Table 4.  Comparison of model MAE results when data absence rate increases. The best results are in bold.

Model

METR-LA PEMS-BAY

25% 50% 75% 25% 50% 75%

BRITS37 2.34 2.52 3.02 1.47 1.55 2.17

SAITS37 2.26 2.48 3.74 1.40 1.50 2.96

GRIN37 1.91 2.05 2.39 0.67 0.79 1.09

ADGCN 1.89 2.01 2.35 0.66 0.75 0.99
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(AGCN), as well as the full ADGCN model. In addition, we replace the fully connected layer in GRU with graph 
convolution in the gated graph dynamic graph convolution module. Therefore, in order to verify the validity of 
this transformation, we will switch back to the fully connected structure of GRU for experiments to compare 
with our model. The performance of the four models is compared in Table 5.

Since most studies ignore the continuity of time and space, during the model’s design process, we established 
each sensor at each moment as a node of the graph and used the attention mechanism to give each node’s neigh-
bor a corresponding weight to update the graph. After the graph was constructed, a dynamic graph convolution 
module with gating was created to recreate the missing graph sequence via graph convolution of the adjacency 
matrix, merging static distances with a dynamically adaptive adjacency matrix based on spatiotemporal data.

From the results in Table 5, it is clear that ADGCN cannot obtain the best complementary effect no matter 
which part is missing. We also replace the fully connected layer of GRU with a graph convolution operation, 
which can better integrate temporal and spatial information. Experiments show that the use of graph convolu-
tion works better.

Conclusion
This paper proposes a dynamic graph neural network reconstruction model, ADGCN, capable of unifying time 
and space. This method treats the sensor state at each moment as a node of the graph and updates the graph by 
giving its weight through an attention mechanism to complete the construction of a unified temporal and spatial 
messaging layer. And dynamic spatial correlation is represented by a dynamic adaptive module, in which the 
input spatiotemporal information is used to construct the graph adjacency matrix structure, which is then fused 
with the defined static distance adjacency matrix. The ADGCN model explores the connections between each 
node in the network at each point in time in order to capture hidden temporal and spatial correlations and to 
simulate the spatial dynamics of node correlations. Experiments on four real-world datasets show that combin-
ing the temporal and spatial continuums and dynamically constructing spatial node interactions improves data 
imputation. Additionally, we test various sets of parameter values for experiments during the model’s training 
phase before choosing the best ones, demonstrating that the model ADGCN proposed in this paper outperforms 
the state-of-the-art baseline. To further verify the robustness of ADGCN, this paper will increase the missing rate 
on two major traffic datasets to verify the stability of the model. Experimental results show that the imputation 
performance of the model decreases as the missing rate increases but still yields the best performance compared 
to the state-of-the-art imputation methods. Therefore the model has good robustness. In addition, this paper uses 
ablation experiments to verify the validity of each module design in the ADGCN model. The model ADGCN 
proposed in this paper outperforms the state-of-the-art baseline.

Data availability
Data contained within the Supplementary Material is reproduced from https:// github. com/ Graph- Machi ne- Learn 
ing- Group/ grin. The data presented in this study are available in Supplementary Material here.
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