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Robust morphogenesis by chaotic 
dynamics
J. Reinitz 1, S. Vakulenko 2,3,6, I. Sudakow 4,6* & D. Grigoriev 5

This research illustrates that complex dynamics of gene products enable the creation of any prescribed 
cellular differentiation patterns. These complex dynamics can take the form of chaotic, stochastic, or 
noisy chaotic dynamics. Based on this outcome and previous research, it is established that a generic 
open chemical reactor can generate an exceptionally large number of different cellular patterns. The 
mechanism of pattern generation is robust under perturbations and it is based on a combination of 
Turing’s machines, Turing instability and L. Wolpert’s gradients. These results can help us to explain 
the formidable adaptive capacities of biochemical systems.

More than 50 years ago, Lewis  Wolpert1 proposed the positional information (PI) model to describe patterns of 
different cell types. Seventy years ago, Alan Turing introduced the idea of patterns originating from homogene-
ous states by reaction-diffusion mechanism (RDM)2. In both conceptual models, an organism is represented as 
a pattern consisting of different cells. Both Turing’s and Wolpert’s approaches assume that morphogens, special 
reagents, can change cell states. Modern research has shown that the French flag and reaction-diffusion models 
do not capture all details of real biological patterning  systems3, and the relationship between them remains 
unclear although some ideas are proposed by Green and  Sharpe4.

In this paper, inspired by the ideas of  Brenner5 and Jacob about evolutionary  tinkering6, we show that a 
combination of RDM and PI mechanism gives a universal robust pattern mechanism. Brenner emphasized the 
importance of Turing’s ideas in the context of his famous machine. A Turing machine is a mathematical model 
of computation that defines an abstract machine that manipulates symbols on a tape according to some rules. 
The machine stops when it arrives at a prescribed terminal state. In its turn, Jacob introduced the concept of 
tinkering (evolution uses all available  means6).

We show the dynamics of a generic open chemical reactor is capable to generate an exponentially large num-
ber of different attractors, which may be chaotic, periodic, or steady states. The chaotic or periodic attractors 
can occur if our reaction-diffusion model is not gradient-like and not monotone. The results hold under certain 
mathematical conditions, which admit a transparent chemical interpretation for two-component systems: one 
of the reagents is neither an activator nor an inhibitor for the other reagent, reagent diffusion coefficients are 
sharply different and the space dimension of the system ≥ 2 . The second result is that such open chemical systems 
can be used as a sort of Turing machine (TM), which can produce an exponentially large number of different 
cellular differentiation programs (CDPs, see Fig. 1). CDP is a program, which, by morphogene concentrations, 
produces cell patterns unfolding in time and space, for example, gastrulation patterns, or somitogenesis periodical 
 structures7,8. The number of possible CDPs increases exponentially in the system size.

The proposed cell pattern formation mechanism is robust against fluctuations and perturbations. So, a com-
bination of two of Turing’s basic ideas (machines and instability in chemical systems) leads to general results, 
which sharply extend the Turing  instability2 model. The combined Turing-Wolpert model makes it possible to 
obtain evolving over time patterns that are much more complex than zebra stripes.

The mechanism of attractor and pattern generation can be sketched as follows. One can show (see “Methods”, 
and the  work9) that a generic open chemical system is capable to generate a number of chaotic or periodic attrac-
tors if it involves appropriate spatial heterogeneities. These inhomogeneities work as activators and excite the 
formation of sharply localized segments like to Drosophila segmentation. Segments correspond to local maxima 
of slow reagent concentration. These segments interact in a long-range manner via the fast diffusing component, 
all these mechanisms remind ones described in the  manuscript10 but we are capable to prove that they can lead 
to chaos. The chaotic dynamics allows us to generate complicated cell patterns in space and in time that can be 
shown by the results from these  works11–14 (see Fig. 2).
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Figure 1.  This picture illustrates the concept of a developmental program. On the x-axis, there is a one-
dimensional "organism" composed of various cells that form layered patterns at time moments t0, t1, ..., tn . 
Different types of cells are shown in different colors. The top row of the cells emerges at the last time moment 
tn , the previous row appears at t = tn−1 and the bottom row arises at the initial time moment t = t0 . Each 
column shows how the corresponding cell (located at the bottom) changes its type in time. We refer to this 
two-dimensional spatiotemporal pattern consisting of cells of different discrete types as a cellular developmental 
program (CDP).

Figure 2.  This image shows the generalized French Flag model. A cell pattern can be considered as a string in 
the alphabet (red, blue, or green). This pattern can be produced by chaotic dynamics as follows. Let u be a vector 
of morphogen’s concentrations, which lies in morphogen concentration space U . Suppose that this space is split 
into three subdomains Uj , j = 1, 2, 3 . If u ∈ U1 , morphogen concentrations induce differentiation into a red 
cell, and if u ∈ U2 , u ∈ U3 then one has blue and green cells, respectively. When u-dynamics is governed by a 
chaotic (noisy) system, there exist time moments t1, t2, ..., tm such that the u states enter for Uj at certain time 
moments: there exist t, t +�T , ..., t +m�T such that state u(t + j�t) lies in the corresponding domain Uaj . In 
the considered case, we have a string a = 2313322112 . It is important that the choice of chaotic dynamics and 
specific choice of partition Uj is not essential. Any stochastic (chaotic) ergodic dynamics is capable, earlier or 
later, to generate the needed string.
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According to  Meinhardt10, to generate complex patterns, a reaction-diffusion mechanism should include local 
self-activation and long-range inhibition. The new mechanism, proposed in this paper, which is capable to create 
a number of complicated local attractors, is more sophisticated. It also uses a local activation leading to layered 
patterns for the slow diffusing component but instead of long-range inhibition, we have a more complicated 
interaction structure. In some space domains, the slow reagent serves as an activator while in other ones it works 
as an inhibitor. Such a mosaic (mixed) structure of activation and inhibition arises due to spatial gradients. A 
well-adjusted spatial gradient causes the formation of many well-localized segments, where the slowly diffusing 
reagent u is concentrated. The reagent u in these local layers interacts with fast diffusing component v, which, 
in turn, acts on those layers and so we obtain nonlinear non-local feedback and complex dynamics. Due to the 
mosaic structure of activation and inhibition, this mechanism can lead to chaos. Dynamics induced by each 
group of interacting segments generate different local attractors.

Biological systems are affected by perturbations (including stochastic ones) and the concentrations of gene 
products fluctuate. Moreover, pattern formation goes under environmental noises and mutations. Nonetheless, 
we know that the final result of pattern formation is remarkably stable, i.e., the patterning of real organisms 
is a quite robust (canalized) process. Starting with seminal  works15,16 a number of works were focused on the 
canalization and robustness problem, see, for example, the  research17–20 and the  review21.

By Turing machine (TM) theory, we show that robustness can be provided if the patterning goes into some 
stages (a multistage process) and for each stage, there is a stop signal, which informs that an intermediate targeted 
pattern is achieved. Therefore, the Turing machine theory helps to show the formidable ability of biochemical 
systems to generate different structures and the robustness of this generation.

Note that the pattern and chaos emergence process can be considered as self-organization, and therefore, the 
Turing machines arise as a result of self-organization. The question of the computation power of self-organization 
in physical systems remains highly controversial: some authors  believe22 that it can make hypercomputing (some-
thing stronger than Turing machines). This complex question is outside of our scope in this research.

Moreover, we conducted a theoretical analysis and performed simulations using white noise, prioritizing 
simplicity and utilizing the classical mathematical theory primarily developed for white noise and Wiener pro-
cesses (see the  study23 for an excellent statement). In this work, we do not pretend to describe bifurcations 
between different attractors induced by noises because our method uses structural stability under deterministic 
and random  perturbations24,25.

Results
Model. Let us consider the following reaction-diffusion model with spatial gradients

where u = (u1(x, y, t), u2(x, y, t), . . . , um(x, y, t)) are unknown functions of reagent concentrations defined on 
�× {t ≥ 0} , η(x, y) = (η1, . . . , ηm) is a vector-valued function, which can be considered as a spatially heteroge-
neous source (possibly involving a small space-temporal noisy term), � is the strip (−∞,∞)× (0, 1) ⊂ R

2 , and 
D = diag(d1, . . . , dm) is a diagonal matrix of diffusion coefficients di > 0 . We assume that reaction terms fi(u) 
are smooth, for example, polynomials. We complement (Eq. 1) by standard initial and boundary conditions, for 
example, at y = 0, 1 for certain ui we set the zero Neumann boundary conditions and for other ones, we set the 
zero Dirichlet ones. To simplify the problem, we set periodic boundary conditions along x assuming that all the 
functions u0i  that define initial data are 2π-periodic in x. The initial boundary value problem (IBVP) is defined 
by Eq. (1), and standard boundary and initial conditions define a family of local semiflows St

P
 . Each semiflow 

St
P
 depends on the problem parameters P , which are external gradients η(x, y) and diffusion coefficients di9. As 

a simple example, one can consider the following two-component system:

where η(x, y), ζ(x, y) are smooth functions, f, g are smooth nonlinearities, for example, polynomials, (x, y) lies 
in the strip [−∞,∞] × [0, L2] . For mathematical tractability, we consider periodic (or zero Neumann) bound-
ary conditions u(x + L1, y, t) = u(x, y), v(x + L1, y, t) = v(x, y, t) , the zero Neumann condition for u at the top 
and the bottom y = 0, L2 and and the zero Dirichlet conditions for v at y = 0, L2 . We also set initial conditions 
for u, v. We consider degradation coefficients �i ≥ 0 , diffusion coefficient du,Dv and sources η, ζ (which can be 
interpreted as maternal morphogen gradients) as a parameter P.

Main results. The following assertions stated in a non-formal manner, unwrap the main results. The first one 
(Claim I) is a corollary of previous  results9:

For generic f, g open system (Eqs. 2, 3) enjoys the property of Universal Dynamical Approximation (UDA): these 
systems can generate all possible finite dimensional structurally stable dynamics when we vary their parameters P . 
In particular, these systems are capable to generate hyperbolic chaotic dynamics, such as Smale horseshoe, Anosov 
flow, etc. These chaotic sets can be at any dimension.

You can find more details and formal definitions of UDA in the upcoming section on the methods. Note that 
the reaction part is fixed and to obtain the needed dynamics, we adjust the diffusion, degradation coefficients and 
external gradients ζ , η . The words ‘generic open’ means the choice of f, g excludes gradient-like and monotone 

(1)ut = D�u+ f (u)+ η,

(2)
∂u

∂t
= du�u− �1u+ f (u, v)+ ζ ,

(3)
∂v

∂t
= Dv�v − �2v + g(u, v)+ η,
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reaction-diffusion systems. In fact, gradient-like systems have the Lyapunov functions which can be interpreted 
physically as energy decreasing along trajectories. In general, the existence of such energy leads to convergence 
to equilibria and rules out stable chaotic or periodic regimes (although an unstable complicated large-time 
behavior is  possible26). In our case the sense of ’genericity’ (the fundamental concept introduced by  Thom27) is 
that if some reaction parts f, g are ’bad’, i.e., our assertion does not hold, then a small smooth correction to f, g 
transforms these functions into ’good’ ones and for them the assertion is valid. Note that the conditions on f, g 
can be formulated  explicitly9, in particular, it can be checked that these conditions hold for the Brusselator and 
other models.

For general multicomponent systems, one can show the following (Claim II):
Under some conditions on the reaction part f, the systems defined by Eq. (1) are capable to generate 2Ma dif-

ferent structurally stable local attractors (which may be periodic or even chaotic), where Ma > Cf md
−1/4
min  , dmin 

denotes the minimal diffusion coefficient, Cf > 0 is a constant depending on the nonlinear part f, m the number of 
components (involved reagents). 

We can consider external sources η(x, y) in Eqs. (2) and (3) as spatial concentrations of certain maternal 
morphogens (for example, Bicoid and Nanos in  Drosophila28). To obtain a complicated attractor, we need an 
appropriate choice of functions η(x, y) . We can thus consider those functions as carrying positional informa-
tion, which helps to create a spatiotemporal pattern. Moreover, we note that in order to have a complex pattern 
u(x, y, t) we need diffusion coefficients of different orders, i.e., some reagents should diffuse much faster than 
others. So, our result means that under certain conditions on diffusion coefficients and on the reaction part the 
positional information can be transformed into a spatiotemporal structure with complex large-time behavior.

In the section on the methods, we show (following the  study13) how chaotic attractors can serve as cellular 
developmental programs (CDPs) and create complicated spatiotemporal cell patterns. Therefore, it is shown 
that dynamical systems are given by Eq. (1) (which realize combined Truing-Wolpert mechanism) are capable 
to realize all possible cell developmental programs (CDPs). The maximal possible number of these programs is 
not less than 2Mdvp with Mdvp ∝ Ma . So, we can formulate the following non-formal assertion:

Assertion on the superpower of Turing–Wolpert mechanism
Combined Turing–Wolpert mechanism can produce any cell patterns unfolding in space and time and has a 

formidable capacity: it is capable to produce exponentially many different cell patterns.
Note that CDPs exhibit more complicated cell dynamics than cellular automata with local interaction. In fact, 

in the CDP case two subsequent in-time rows of cells can be arbitrary (see Fig. 1) whereas if they are generated 
by a cellular automaton with a local interaction, there should be correlations between subsequent rows.

The proof of Claim I can be obtained by results in the  paper9 and by a simple construction from dynamical 
systems theory. The proof of Claim II is based on Claim I. Below, we outline the main ideas of these demon-
strations. Moreover, in Supplementary Material (SM), we consider two-component reaction-diffusion systems 
with spatial inhomogeneities, which can simulate the known Rössler system exhibiting chaotic behavior. This 
example and simulations made for its finite difference analog illustrate the main principles of attractor and pat-
tern generation stated below, in particular, the complex spatial structure of activation and inhibition by a slow 
diffusing component, and the formation of the layers (segments).

Methods
Stochastic Turing machine and cell pattern generation. Let us draw key points of our approach. 
Really existing organisms can include tens and hundreds of types of differentiated cells. The most effective scheme 
to handle this variety of patterns is to use a binary tree for cell differentiation. As an example, let us consider an 
organism consisting of 4 cell types (generalization on larger sets of cell types can be done in a straightforward 
way). We denote these cell types by gr, wr, gb, and wb. This notation can be explained as follows. Suppose cells r 
and b arise from non-differentiated cells acquiring features r and b. Further, at the second stage of differentiation, 
a differentiated cell can acquire additional features g and w. We encode these cells gr, wr, gb and wb as 00, 01, 10 
and 11, respectively. For example, the string a = (00, 01, 01, 01, 11, 10, 00, 11, 11) corresponds to cell pattern gr, 
wr, wr, wr, wb, gb, gr, wb, wb. Further, we consider, for simplicity, binary strings consisting of r, b cells.

Dynamical systems and cell patterns. Consider a layered one-dimensional (1D) pattern consisting of cells of 
two types, red and blue. We decompose our ’organism’ in small domains of equal length occupied by cells. Then 
the pattern of red and blue cells can be considered as a string, for example, a periodic string (rbrbrbrb) (case P), a 
simple string (rrrrbbb) (case S), or a general non-periodic one (case G). Suppose the cell type depends on a mor-
phogen u ∈ (0, 1) level, say, for u ∈ R1 = (0, 1/2) we have the r-cell, and for u ∈ R2 = (1/2, 1) we have the b-cell. 
Then the periodic pattern G can be obtained by a periodical morphogen concentration via the Turing instability, 
and the simple pattern S can be generated by a monotone morphogen gradient via Wolpert’s mechanism. How-
ever, to obtain a complex non-periodic pattern of a large length we need sophisticated concentration morpho-
gene profiles u(x). It is hard to obtain such u-gradients by diffusion from a source. Moreover, we would like to 
generate any prescribed patterns by a universal and short model. In fact, we know that many genes making mor-
phogenesis are shared between many different organisms. These genes are highly conservative in  evolution29,30. 
On the other hand, we also know that universal TMs are capable to generate any strings in time and they admit 
a compact description. Moreover, any time strings can be obtained by chaotic dynamical  systems11,12, finite 
automata and Markov chains (see below). So, there are simple dynamic models simulating TMs and generating 
all possible time cell strings for a few of cell types.

We show how to use stochastic models to generate prescribed time strings. These models have a sufficient 
number of states (to simulate all types of cells) and function in time up to a stop signal. The stop signal mecha-
nism, borrowed from TM theory, provides canalization (robustness) and regeneration.
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Suppose that we would like to obtain a phenotype given a pattern u(x, s∗) and encoded by a target gene expres-
sion string s∗ = s∗1 · · · s∗m , where si ∈ Sm = {0, 1}m . At each time moment t we have n = 2m states s ∈ {0, 1}m . 
Let w(s, s′, ξ) be the transition probability from s′ to s per one step depending on the environment state ξ . Then 
stochastic gene expression dynamics can be defined, for example, by the following Markov chain

where ps(t) denotes the probability to be in the state s at the moment t. Assume that the terminal state is absorb-
ing, i.e. the process stops when s = s∗ (i.e. w(s, s∗) = 0 for all s∗ ). This dynamical model includes noisy and chaotic 
dynamical systems. The main idea is that under fairly general conditions we reach the target state s∗ within a 
bounded time period τ(s∗) . This time is a random quantity, however, for many processes τ(s∗) can be estimated. 
This construction describes a realization of a stochastic Turing machine, or more specifically, a random finite 
automaton, where s∗ is a terminal state. Note that dependence on the environment parameter ξ can be important 
for plant development, where morphogenesis depends on environmental cues. The morphogenesis time τ is 
proportional to the number of steps in time to reach the target terminal s∗ state.

This stochastic mechanism is feasible, however, only when the state number n is not too large. We estimated 
the dependence τ on the state number n by numerical simulations for the Markov chains with constant transition 
probabilities. It is obtained that the average Eτǫ , where the expected value is taken over all absorbing Markov 
chains, is a linear function of the state number n. The standard deviation of τǫ is small for large n with respect to 
Eτǫ (see Figs. A7, A8 and A9 in SM).

So, for large n we have a large τǫ(n) ≈ const n and for too large n the stochastic morphogenesis may continue 
for a long time. We can overcome this difficulty assuming that the long target pattern s∗1 · · · s∗n is split into inter-
mediate target patterns s∗,k = s∗mk

· · · s∗mk+1
 , where the long string s∗ is a concatenation of shorter strings s∗,k , 

k = 1, . . . , p . The index k indicates the k-th stage of morphogenesis.
Then the full time τǫ(s∗) needed to obtain the target string is the sum τ(s∗) =

∑Nm
k=1

τ(s∗,k) . If all the pro-
cesses are independent, and a new process starts just the previous stage is completed, then for large numbers 
Nm the total time τ(s∗) will be very stable due to classical theorems of probability theory (although the times for 
separate stages are random and can fluctuate). So, we obtain that the stochastic multistage morphogenesis is a 
well-canalized process, which is robust against external perturbations ξ.

Let us consider a simple example: a random search of a target string on m-dimensional Boolean hypercube 
Sm . Let s∗ be a target pattern, which is uniformly randomly chosen as a vertex of Sm . We choose another random 
vertex s0 as a starting state. At each step, we move from the current vertex to a neighboring one (that corresponds 
to a flip of some component sj ). Our walk ends when we reach the target state. It is clear that for a random initial 
state, such a search continues τ = O(2m/2) steps (see Fig. A8, the top right line in SM). Note that the random 
walks on hypercube are considered in the  research31.

However, if the process goes in a few stages then the time τ is essentially smaller and the fluctuations of τ are 
smaller. In fact, let us represent a target string s∗ as a concatenation of several strings s∗,1, ..., s∗,k . Suppose for 
simplicity that lengths l(s∗,j) (of s∗,j are equal: l(s∗,j) = m′ = m/k and the search of s∗ goes in a k stages. First we 
go to s∗,1 by a random walk on the hypercube Sm′ of dimension m′ . Just the process reaches s∗,1 we fix components 
of m′ = m/k of the first components of s. Then we move to s∗,2 by a random walk on the second hypercube of 
dimension m′ , etc. All this search requires O(k2m′

) steps. This means that we have an exponential acceleration 
by a decomposition (the results of numerical simulations are shown in Fig. A8 in SM). We define the normalized 
standard deviation σ(τ) of τ as σ(τ) = Eτ/

√
Var τ  , where EX and Var X denotes the expected value and the 

variation of random quantity X. Then computations show that σ(τ) ≈ 1/
√
k and σ(τ) ≈ 1 when the process goes 

in a single stage. A stochastic dynamics defined by Eq. (4) can be used to make morphogenesis. The key idea is as 
follows. Each pattern is encoded by a genotype s. We suppose that the pattern corresponding to a viable organ-
ism (obtained by an evolution) is encoded by s∗ . Then we use s∗ as a terminal (absorbing) state in the dynamics 
defined by the Master equation (4). In the next subsection, we consider the realization of dynamics (Eq. 4) and 
TMs via reaction-diffusion models.

Universal dynamical approximation. Let us outline the concept of Universal Dynamical Approxima-
tion (UDA) (that term is inspired by the  work32). To explain this concept, remind that many neural networks 
such as multilayered perceptrons (MLP) enjoy the property of universal approximation: for each prescribed suf-
ficiently smooth output function f defined on a compact domain D ⊂ R

n of a Euclidean space Rn and each ǫ > 0 
we can adjust parameters of MLP in such a way that the output of fnet(q) of the network is ǫ-close to f(q) for all 
entries q from the domain D33.

The UDA concept generalizes universal approximation for the networks. Many evolution equations under 
reasonable boundary conditions define global semiflows in the appropriate functional phase  spaces34,35. We 
denote such semiflows by St

P
 and they depend on the parameters P involved in equations, and boundary condi-

tions. More formally, let us consider an evolution equation in a Banach space B depending on the parameter P:

Assume that for some P this equation generates a global semiflow St . We obtain then a family F of global 
semiflows St

P
 where each semiflow depends on the parameter P.

Suppose for an integer n > 0 there is an appropriate value Pn of the parameter P such that the corresponding 
global semiflow St

Pn
 has an n-dimensional normally hyperbolic locally invariant manifold Mn embedded in our 

phase space B by a C1-smooth map defined on a ball Bn ⊂ R
n.

(4)ps(t +�t) =
∑

s′∈Sm
w(s, s′, ξ(t))ps′(t)

(5)ut = Au+ F(u,P).
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The restriction of semiflow St
Pn

 to Mn is defined then by a vector field Q on Mn . Then we say that the family 
St
P
 realizes the vector field Q (this terminology is coined by Poláčik26,36).

The family St
P
 enjoys UDA if for each dimension n this family realizes a dense (in the norm C1(Bn) ) set of 

vector fields Q on the ball Bn.

Corollary 1 If the family St
P
 has UDA property, the Theorem on Persistence of Hyperbolic Sets implies that some 

semiflows St
P
 exhibit a chaotic large-time behavior.

In other words, one can say that the UDA semiflows can simulate, by parameter variations, any finite-
dimensional dynamics defined by a system of ordinary differential equations on the domain D ⊂ R

n within 
any prescribed accuracy ǫ (in C1(D)-norm). This property implies that semiflows St

P
 can generate all structur-

ally stable dynamics (up to orbital topological equivalency). Among the systems enjoying UDA, there are a 
number of fundamental ones: quasilinear parabolic  equations26,36, time-continuous and time-recurrent neural 
 networks37, a large class of reaction-diffusion systems with heterogeneous  sources9, generalized Lotka-Volterra 
 system38, Oberbeck-Boussinesq  model39. Also, the Euler equations on multidimensional manifolds exhibit similar 
 properties32. Note that for time continuous and time recurrent neural networks and generalized Lotka-Volterra 
system the UDA property follows from Universal Approximation Theorem for  MLP37. Such systems could be 
Turing complete and used as TMs.

Attractor and pattern formation mechanisms. We follow the  work9 and for simplicity let us restrict 
ourselves by two-component case m = 2 (see Eqs.  2 and 3). Let the corresponding diffusion coefficients be 
sharply different: d1 = du = ǫ2 << d2 = Dv , where ǫ > 0 is a small parameter. The main idea is as follows. We 
use local excitation for slow component u and long-range non-local interaction between v and u. First spatial 
gradients η, ζ cause the formation of many well-localized segments, where the slowly diffusing reagent u is con-
centrated.

This reagent concentration u interacts with fast diffusing component v, which, in turn, acts on u and so we 
obtain nonlinear non-local feedback and complex dynamics. Dynamics induced by each group of interacting 
segments generate different local attractors. We can have at least Nloc of such groups. So, by adjusting different 
initial data for u, v we can obtain 2Nloc of different local attractors, and each attractor (if it is chaotic and structur-
ally stable) can generate the corresponding CDPs. So, we show that fairly general chemical reactors with spatial 
gradients can create chemical patterns consisting of many narrow segments and those patterns help to activate 
a number of different CDPs.

In more detail, for each N = O(ǫ−1/2) we can adjust such gradients η, ζ that the u-component is a linear 
combination of N fixed smooth functions ψi(x) with coefficients Xi(t) slowly depending on time. Each ψi is well 
localized at a point x̄i : it is an exponentially decreasing function of ǫ−1(x − x̄i) . Then the reagent u is concen-
trated at the right lines x = x̄i and the expression level of u at i-th line is determined by the magnitude Xi . Thus 
we are dealing with an analog of the segmentation process omnipresent in morphogenesis (in fact, it reminds 
segmentation in Drosophila, where the morphogen Bicoid gradient causes the formation of segments as a result 
of a complex interaction with other  proteins40–42). The large time dynamics of the magnitudes Xi are defined by 
a big N-component coupled oscillator system. The i-th oscillator with the state Xi(t) interacts with other ones via 
linear interaction terms. Due to localization properties of ψi if the distances between oscillators are much more 
than ǫ this interaction force between oscillators is exponentially weak. Using this interaction fading property 
we can decompose the coupled oscillator system into Ma almost independent dynamical systems, where each 
system involves n̄ = N/Ma variables. For this end, we decompose the points x̄i , i = 1, ...,N into groups x̄j,k , where 
k = 1, ...,Ma and j = 1, ..., n̄ . The points of the k-th group are located close to each other (distances of the order 
ǫ1/2 ) while segments belonging to different groups are separated (distances between segments from different 
groups are > 1/2N  ). By a variation of the system (Eq. 1) parameters, one can obtain the following. The k-th 
segment group generates an n-dimensional dynamical system, which has at least two local hyperbolic attractors 
A

(l)
k  , l = 1, 2 . The whole big dynamical system for all magnitudes Xi consists then of Ma almost independent 

(up to exponentially small corrections) n̄-dimensional dynamical systems. This big system has then at least 2Ma 
different local attractors.

Transformation of chaotic time dynamics into developmental programs. In this subsection, we describe how 
chaotic (or stochastic) gene signals in time can be transformed into cellular patterns of terminal differentiation 
in space. Let us state first a formal mathematical definition of the cell developmental program. Such programs 
transform smooth morphogenetic fields into discrete cell patterns.

Let us consider strings s = (s1, s2, ..., sm) consisting, for example, of symbols sj ∈ {r, b} (an extension to larger 
alphabets is straightforward). The set of strings SD = {s(1), s(2), ..., s(m)} , the time moments tj = j�T and points 
x̄1 < x̄2 < · · · < x̄n , where j = 1, ..., n , can be called a developmental program if the morphogen values take 
prescribed values at given time moments tk at given points x̄j:

where a morphogenetic operator M transforms 1D patterns u(x) into strings s of the length n. This formal defini-
tion is illustrated by Fig. 1. In the simplest case, similarly to the French flag model, one has M(u(·))(x̄j) = r if 
u(x̄j) > u0 and M(u(·))(x̄j) = b otherwise. For a more complicated example connected with a partition of the 
phase space of morphogen concentrations, see Fig. 2.

(6)M(u(·, tk))(x̄j) = m(x̄j , tk) = s
(k)
j , ∀k, j,
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We use the results of the  work11–13 and it can be described as follows. The idea can be illustrated by Fig. 1. The 
left column of the cells is a string a1 = a(1, t1)a(1, t2) · · · a(1, tK ) , ai ∈ {r, b} , the next one is a string a2 , and the 
last column is a string aNc (K) , where Nc is the number of the cells, K is the number of steps in time, and a(j, tk) 
denotes the type of the cell emerged at j position along x-axis at the moment tk . Each column (the string, or the 
1D-pattern) can be generated by a TM. In turn, these TMs can be simulated by few-dimensional chaotic dynami-
cal  systems11,12. This dynamical system is defined by interactions between the amplitudes Xi(t) corresponding to 
the k-th segment group (see the previous subsection). So, we set Ma = Nc , further we take Ma chaotic dynamical 
systems and each system generates the prescribed string (the column on Fig. 1) at a moment in time.

Let us consider first how to generate 1D-patterns consisting of the cells of two types, say, red and blue cells. 
Imagine an arbitrary string of cells of different types located along the x-axis (this might model 1D-organisms, 
like a worm, or a segmented embryo, see Fig. 1). Let w be a morphogen and its concentration is bounded, 
w ≤ w+ . Suppose the red cells appear when the average concentration w in the cell lies in Wr = (0,w+/2) and 
the blue cells emerge when this concentration is more than w+/2 : w ∈ Wb = (w+/2,w+) . Therefore, to generate 
such strings, we should satisfy conditions w̄(j, tk) ∈ Wa(j,tk) for all j = 1, ...,Nc , k = 1, ...,K , where w̄(j, k) is the 
morphogen concentration averaged over j-th cell at the moment tk of cell differentiation. Suppose that u-reagent 
serves as a source of the morphogen w: dw�w − b2w = u− u0 , where the parameter β = bdw

−1/2 determines the 
rate of decreasing w-concentration in space and u0(x, y) is a function. We adjust this constant in an appropriate 
way. The conditions w̄(j, tk) ∈ Wa(j,tk) can be satisfied if the time evolution of the amplitudes Xj(t) corresponding 
to segments located at the j-th cell is governed by chaotic (or stochastic) dynamics. Note that the precise choice 
of this dynamics plays no role, but the corresponding attractor should be ergodic and  mixing13.

Discussion
The phenotype morphogenesis and its robustness are considered. The pattern formation robustness problem 
initiated by seminal  papers15,16 was under intensive discussion last  decades17,18,20,42,43 among many others, see 
the  review21. A number of different approaches have been proposed: heat shock proteins and other molecular 
chaperones, methylation, microRNAs, emergent or embedded mechanisms, which are based on gene regulation 
network  properties18,42,44 and nonlinearities in development.

The approach, proposed in this paper, looks directly opposite to many previous ones, where the formation 
of targeted patterns and robustness are achieved by a delicate tuning of gene network  properties42,44,45. Based on 
Turing machine theory and the results of dynamical system theory, we come to counter-intuitive conclusions: a 
delicate tuning of reaction parts or network interconnections is not obligatory to generate complex target pat-
terns and attractors in a robust manner. The general idea can be formulated as follows: timing instead of tuning. 
We can take any dynamical system, which generates complicated Turing complete dynamics (now we know a 
number of such systems) and then, if the target pattern is predetermined, this dynamics generates this pattern. 
The mechanism of pattern formation is robust with respect to noise and other perturbations if it goes in several 
stages, each of which, upon reaching a certain terminal state, ends up (similarly to Turing machines) with a stop 
signal. Such multistage morphogenesis, where each stage finishes with a stop signal, is robust with respect to 
perturbations. The idea that evolution can use any means to produce effective structures (evolutionary tinker-
ing) was proposed by  Jacob6. Here, we assert that practically any dynamical system with complicated large-time 
behavior can be used to generate complicated patterns.

For popular reaction-diffusion models, our mechanism of complex pattern and attractor generation is based 
on two fundamental ideas: a generalisation of Turing  instability2, and on the Wolpert concept of positional 
 information1. Note that the idea to use spatial heterogeneity was proposed still in the  paper2. One can take suf-
ficiently general chemical interaction and just adjust the correct positional information. Note that such robust 
morphogenesis can be performed via practically arbitrary chemical dynamics (if we adjust correctly spatially 
extended gradients). In fact, we show that if Wolpert’s and Turing’s pattern formation mechanisms work together 
then they can create, in a practically arbitrary nonlinear chemical reactor (corresponding to an open chemical 
system), complicated attractors of high complexity and even produce a number of such attractors and the cor-
responding cell patterns.

Note that the experimental data show that many genes exhibit an oscillatory  behavior46,47. A model describing 
the chaotic behavior of transcription factors (TFs) is proposed in the  research47, where it is shown that such a cha-
otic behavior could be useful for survival and leads to the formation of heterogeneous cell populations. Note that 
oscillatory gene dynamics was used to describe somitogenesis, the well-studied examples of pattern formation in 
the developing embryo are presented  here7,8,46 and the first mathematical model is introduced  here48. According 
to a popular formulation of this problem appearing in encyclopedias such as Wikipedia, “Somites are bilater-
ally paired blocks of paraxial mesoderm that form along the anterior–posterior axis of the developing embryo 
in segmented animals. In vertebrates, somites give rise to skeletal muscle, cartilage, tendons, endothelium, and 
dermis”. Although at an initial stage, somites manifest a periodical layered structure really the intrinsic states of 
cells are not periodic (otherwise, it would be impossible to obtain complex organs with further development). 
So, the true pattern is not periodic, and we believe, that instead of time-periodical dynamics chaotic dynamics 
should generate such non-periodicity in space-layered patterns.

These results show that there are chemical systems, which can be considered in the light of the analogy of 
Universal Turing machines (UTMs). A UTM can make all computations, which can be done by other TMs, and 
so, UTMs generate all possible string outputs when we vary their input. In our case, we have fixed (up to a few 
parameters to adjust) spatially extended systems, which, depending on initial data, generate different develop-
mental patterns. So, open chemical systems of fairly general form serve as Universal Generators of spatiotemporal 
patterns and that generation is based on a complicated gene expression, chaotic or stochastic. A few genes are 
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sufficient to encode those UPGs. Therefore, it is natural to expect that such chemical media could appear as a 
result of biological evolution.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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