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Identification and validation 
of fatty acid metabolism‑related 
lncRNA signatures as a novel 
prognostic model for clear cell renal 
cell carcinoma
Cheng Shen 1,2,7, Zhan Chen 1,2,7, Jie Jiang 1,2,7, Yong Zhang 1,2, Xinfeng Chen 1, Wei Xu 1,2, 
Rui Peng 1,2, Wenjing Zuo 3, Qian Jiang 4, Yihui Fan 5, Xingxing Fang 6* & Bing Zheng 1*

Clear cell renal cell carcinoma (ccRCC) is a main subtype of renal cancer, and advanced ccRCC 
frequently has poor prognosis. Many studies have found that lipid metabolism influences tumor 
development and treatment. This study was to examine the prognostic and functional significance 
of genes associated with lipid metabolism in individuals with ccRCC. Using the database TCGA, 
differentially expressed genes (DEGs) associated with fatty acid metabolism (FAM) were identified. 
Prognostic risk score models for genes related to FAM were created using univariate and least absolute 
shrinkage and selection operator (LASSO) Cox regression analyses. Our findings demonstrate that 
the prognosis of patients with ccRCC correlate highly with the profiles of FAM‑related lncRNAs 
(AC009166.1, LINC00605, LINC01615, HOXA‑AS2, AC103706.1, AC009686.2, AL590094.1, 
AC093278.2). The prognostic signature can serve as an independent predictive predictor for 
patients with ccRCC. The predictive signature’s diagnostic effectiveness was superior to individual 
clinicopathological factors. Between the low‑ and high‑risk groups, immunity research revealed a 
startling difference in terms of cells, function, and checkpoint scores. Chemotherapeutic medications 
such lapatinib, AZD8055, and WIKI4 had better outcomes for patients in the high‑risk group. 
Overall, the predictive signature can help with clinical selection of immunotherapeutic regimens and 
chemotherapeutic drugs, improving prognosis prediction for ccRCC patients.

Renal cell carcinoma (RCC) is one of the most prevalent kinds of urinary tract cancer, impacting approximately 
430,000 individuals worldwide in  20201. Approximately 70% of all RCC cases are clear cell renal cell carcinoma 
(ccRCC), the most common and malignant  subtype2. Overall, the prognosis is uncertain due to tumor recurrence 
or metastasis during the course of the disease, with roughly one-third of patients presenting with metastases at 
the time of  diagnosis3. Metastatic ccRCC is always associated with a high mortality  rate4,5. Patients with RCC that 
metastasizes have a dismal 12% OS rate at 5  years6–8. Despite improvements in diagnosis, screening, surgery, and 
pharmaceutical treatment, the clinical outcome of RCC remains poor. Hence, there is an urgent need to create 
more accurate prognostic models given the significant morbidity and mortality of ccRCC.

Reprogramming of energy metabolism is a characteristic of cancer development and stimulates cell growth 
and  proliferation9. Increasing data suggest that fatty acid metabolism plays a critical role in metabolic reprogram-
ming, influencing cell membrane formation, energy storage, and synthesis of signaling  molecules10,11. According 
to previous research, the rate-controlling enzyme ACLY, which is involved in the first stage of lipid production, 
can promote colon cancer  spread12. Increased lipolysis and fatty acid production in cervical cancer patients lead 
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to lymphatic dissemination via activation of the nuclear factor kB (NF-kB) signaling  pathway9,13. Acute myeloid 
leukemia cells are more likely to survive when their fatty acid oxidation is  activated14, and changes in fatty acid 
metabolism may affect the immune response and the effectiveness of chemotherapy and  radiotherapy15,16. Previ-
ous research has demonstrated that fatty acids can influence the phenotype and function of invading immune 
cells and may result in  immunosuppression17. Recent research has demonstrated glycolytic reprogramming 
in RCC causes down-regulated METTL14 to accumulate BPTF and increase super-enhancers and distal lung 
 metastasis18. Furthermore, RCC reprogrammes glutamine, tryptophan, and arginine metabolism to support 
tumor growth and  carcinogenesis19. However, the prognostic and potential therapeutic implications of genes 
implicated in fatty acid metabolism in ccRCC patients, particularly in immunotherapy, are the subject of sur-
prisingly few investigations.

Long noncoding RNAs (lncRNAs) play a crucial role in metabolic reprogramming in controlling metabolism-
related  pathways20–22. For instance, lncRNA-GLCC1 was discovered to reprogramme glycolytic metabolism 
and was connected to colorectal cancer  prognosis23. In lung adenocarcinomas, ccat1/FABP5 facilitates tumor 
growth by regulating fatty acid  metabolism24. LINC01606 is an oncogene to encourage tumor cell stemness while 
defending colon cancer cells against iron-induced cell  death25. For several cancer types, CDKN2B-AS1 is seen 
as a prospective biomarker or therapeutic  target26.

As a result, we conducted this extensive, systematic study to identify genes involved in fatty acid metabolism 
using a weighted gene coexpression network analysis (WGCNA) approach and then created a lncRNA risk profile 
containing the eight FAM-related lncRNAs (AC009166.1, LINC00605, LINC01615, HOXA-AS2, AC103706.1, 
AC009686.2, AL590094.1, AC093278.2). We tested their value in predicting prognosis and response to chemo-
therapy and immunotherapy in patients with ccRCC. The findings of this study add to our understanding of how 
FAM affects ccRCC and will help ccRCC patients to receive more effective individualized care.

Results
Analysis of FAM‑related gene enrichment. By following the steps illustrated in Fig. 1, we screened a 
total of 907 FAM-associated DEGs, 421 of which were upregulated and 486 downregulated (Fig. 2a and Sup-
plementary File 1). Then, we determined the pathways in which the FAM-associated DEGs are involved using 
GO and KEGG enrichment analyses, including the PI3K-Akt signaling pathway, the HIF-1 signaling system, bile 

Figure 1.  Flow chart of the study. ccRCC, renal clear cell carcinoma; TCGA, The Cancer Genome Atlas; 
DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
lncRNAs, long noncoding RNAs; ROC, receiver operating characteristic.
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secretion, and the carbon metabolism-related signaling pathway in cancer. KEGG analysis is mainly the Meta-
bolic Signaling pathway (Fig. 2b). Analysis of DEG enrichment in biological processes found that these genes 
play a significant role in FAM, response to environmental stimuli, and lipid localization. In the cellular compo-
nent category, the DGEs are primarily abundant in the mitochondrial matrix near the apex of the cell. The DEGs 
are primarily enriched in receptor‒ligand activity, active transmembrane transporter activity, and carboxylic 
acid binding GO activities within the molecular function category (Fig. 2c). Most of the genes upregulated affect 
lipid metabolism.

Web module mining WGCNA. WGCNA was applied to the DEGs filtered from TCGA. The connection 
between genes in the gene network satisfied the scale-free network distribution when the soft threshold power 
β = 9 (scale-free R2 = 0.9) was initially estimated using the scale-free topology criterion (Fig. 3a,b). Then, a phy-
logenetic tree was constructed to mine coexpression modules (cut height ≥ 0.25) (Fig. 3c). Using hierarchical 
clustering, modules were analyzed, and modules on the same branch displayed similar gene expression patterns 
(Fig. 3d). Four coexpression modules were created by combining the related gene modules (Fig. 3e). Among 
them, the tumor score and the gray module showed a strong positive correlation (cor = 0.53; P = 9e−14) (Fig. 3f). 
Consequently, 171 important genes from the gray modules were chosen for additional study (Supplementary 
File 2).

Differentially expressed lncRNAs associated with FAM genes used to develop predictive char‑
acteristics. We examined 1258 lncRNAs linked to differentially expressed FAM genes. There were 555 lncR-
NAs (Supplementary File 3) related to prognosis in ccRCC patients, according to single-variable Cox regression 
analysis. We created a predictive model utilizing LASSO Cox regression and 1000-fold cross-validation to pre-
dict the prognosis of patients with ccRCC (Fig. 4a,b). Eight lncRNAs (AC009166.1, LINC00605, LINC01615, 
HOXA-AS2, AC103706.1, AC009686.2, AL590094.1, AC093278.2) related to FAM were used to create predic-
tive characteristics. The expression levels of the eight FAM-related lncRNAs in ccRCC patients are displayed in 
Fig. 4c (Supplementary File 4). We used the R packages ggalluvial and Cytoscape to further visualize lncRNAs. 
Thirty-eight lncRNA‒mRNA pairs were used for the coexpression network (Fig. 4d). LINC01615, HOXA-AS2, 
AC103706.1, AC009686.2, and AL590094.1 were found to be risk factors and AC009166.1, AC093278.2, and 
LINC00605 protective factors (Fig. 4e). The risk score was calculated as follows: Risk score = (− 0.53 × AC009166.1 

Figure 2.  GO and KEGG analysis of FAM-associated DEGs in cancerous and adjacent tissues. (a) The 907 
FAM-related genes in ccRCC. Yellow dots indicate upregulated genes, and blue dots indicate downregulated 
genes. (b) KEGG analysis of FAM-associated DEGs. (c) GO analysis of FAM-associated DEGs. GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; FC, fold 
change; FDR: false discovery rate; BP, biological process; CC, cellular component; MF, molecular function.
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expression) + (−  0.64 × LINC00605 expression) + (0.35 × LINC01615 expression) + (0.53 × HOXA-AS2 expres-
sion) + (0.55 × AC103706.1 expression) + (0.71 × AC009686.2 expression) + (0.71 × AC009686.2 expres-
sion) + (0.41 × AL590094.1 expression) + (− 0.36 × AC093278.2 expression).

Analysis of the relationship between prognosis and prognostic traits of individuals with 
ccRC. The risk score of each patient was determined according to the algorithm, and the patients were then 
separated into high-risk and low-risk groups based on the median value. Kaplan‒Meier analysis of overall sur-
vival times revealed that the low-risk group’s OS was significantly lower than that of the high-risk group (Fig. 5a, 
p < 0.001). The difference in risk scores is depicted in Fig. 5b, where it can be seen that as risk scores rise, more 
deaths occur (Fig. 5c). Age, grading, staging, M-staging, and risk score were significantly associated with OS in 
ccRCC patients according to one-way Cox regression analysis, and age, grading, staging, and risk score were 
independent predictors of OS in ccRCC patients according to multiway Cox regression analysis (Fig. 5d), indi-
cating that the risk characteristics were independent risk factors for ccRCC prognosis (Fig. 5e). The predictive 
value of other clinicopathological variables was lower than the AUC of the risk score (AUC = 0.776) (Fig. 5f). The 
AUCs for 1-, 3-, and 5-year survival were 0.796, 0.773, and 0.785, respectively, demonstrating good predictive 
performance (Fig. 5g). We examined the differences in clinicopathological characteristics between the high-

Figure 3.  WGCNA network module mining. (a,b) Determination of the optimal soft threshold by network 
topology analysis. The scale-free topology threshold of 0.9 is satisfied when β = 9. (c) Gene dendrogram and 
nodal color of WGCNA. (d) Hierarchical clustering analysis of the WGCNA module. (e) Gene dendrograms are 
based on clustering. (f) Correlation between modules.
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Figure 4.  Analysis of the expected signal, including screening, expression levels, and lncRNA‒mRNA networks 
for the eight lncRNAs related to FAM. (a) Tenfold cross-validation error rate plot. (b) LASSO coefficient 
profiles of FAM-associated lncRNAs. (c) Heatmap (red represents high expression, whereas blue represents low 
expression) of the eight FAM-associated lncRNAs between the normal (brilliant blue) and the tumor tissues 
(red) (R software (version 4.2.1, URL: http:// www.r- proje ct. org)). (d) Prognostic FAM-associated lncRNA 
coexpression network. (e) A Sankey diagram of lncRNAs linked with prognostic FAM. Long non-coding RNAs, 
lncRNAs; renal clear cell carcinoma, ccRCC.

http://www.r-project.org
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risk and low-risk groups to rule out the influence of these factors. However, there was no discernible difference 
between the groups (Fig. 6).

To further predict the prognosis of ccRCC patients, we constructed nomogram prediction plots integrating 
clinicopathological variables and risk scores to predict prognosis at 1, 3, and 5 years (Fig. 7a). Following calibra-
tion, the findings revealed that the anticipated survival and actual OS rates were in good agreement (Fig. 7b–d).

Relationship between predictive characteristics of various clinicopathological indicators and 
ccRCC patient prognosis. To examine the association between prognostic indicators and predictive mark-
ers in ccRCC patients under various clinicopathological variable classifications, subgroup analysis of survival 
was conducted among patients with varying ages, grades, stages and M stages and both sexes. OS was poorer in 

Figure 5.  Correlation between prognostic features and prognosis for ccRCC patients. (a) Kaplan‒Meier 
analysis of OS rates for patients with ccRCC in high- and low-risk groups. (b) Distribution of risk scores among 
patients with ccRCC. (c) Percentage of patients who died and survived for each risk score. Red denotes the 
number of fatalities, whereas blue denotes the number of survivors. (d) Forest plot of a Cox regression analysis 
with one variable. (e) Multivariate Cox regression analysis forest plot. (f) Risk scores versus clinicopathological 
factors using ROC curves . (g) ROC curves and AUCs for 1-year, 3-year, and 5-year survival predictions. AUC, 
area under the curve; T, tumor; M, metastasis; ROC, receiver operating characteristic; ccRCC, renal clear cell 
carcinoma.
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all high-risk groups than in low-risk groups (Fig. 8), suggesting that predictive characteristics can predict ccRCC 
prognosis under diverse conditions.

Internal validation of predictive characteristics. We randomly divided ccRCC patients into two 
groups to verify the applicability of the prognostic prediction signature based on the whole TCGA dataset; 
the demographic characteristics are displayed in Table 1. The high-risk group of the training cohort had worse 
survival than the low-risk group, in line with the findings for the overall dataset (Fig. 9a, p = 1.22e−12). In addi-
tion, the OS rate was lower in the high-risk group than in the low-risk group in the validation cohort (Fig. 9b, 
p = 4.17e−06). ROC curves for both groups provided an indicator of the patient’s clinical performance. AUCs for 
the training group’s 1-, 3-, and 5-year survival rates were 0.835, 0.808, and 0.814, respectively (Fig. 9c); those for 
the validation group’s 1-, 3-, and 5-year survival rates were 0.752, 0.737, and 0.769, respectively (Fig. 9d).

Infiltration of immune cells and functional analysis. To illustrate the spatial distribution of high- and 
low-risk samples, we visualized the distribution of patients based on the complete genome, FAM-associated gene 
sets, FAM-associated lncRNAs, and predictive characteristics using principal component analysis (PCA). High- 
and low-risk patients grouped into separate quadrants based on predictive factors (Fig. 10). As TME composi-
tion is an essential indicator of the development of cancer, we evaluated the distribution of several immune cell 
subtypes in the two risk groups using several genetic markers. The results showed that patients in the high- and 
low-risk groups had significantly different levels of activated dendritic cells (aDCs), CD8+ T cells, immature 
dendritic cells (iDCs), mast cells, macrophages, T helper cells, T follicular helper (Tfh) cells, T helper type 1 
(Th1) cells, T helper type 2 (Th2) cells, and tumor-infiltrating lymphocytes (TILs) (Fig.  11a). Moreover, the 
high-risk group had higher immune function scores for chemokine receptors (CCR), checkpoints, lysis activity, 
inflammation promotion, part inflammation, T-cell coinhibition, T-cell costimulation, and type I IFN response 
(Fig. 11b), indicating an immunologically active state. Furthermore, immune checkpoint expression differed 
between the groups (Fig. 11c).

Predictive characteristics and ccRCC therapy correlation. We utilized the OncoPredict package to 
predict drug sensitivity scores in the high- and low-risk groups, and sensitivity ratings were favorably associated 
with chemotherapeutic medication IC50 values. The high-risk population showed strong sensitivity to lapatinib, 
AZD8055, and WIKI4 (Fig. 12a–c). In the low-risk group, sensitivity to axitinib, cediranib, and osimertinib was 
high (Fig. 12d–f). Overall, differentiating between high- and low-risk patients can help in developing a personal-
ized treatment plan.

Figure 6.  Heatmap (Purple: high expression; brilliant blue: low expression ) for the connections between, 
clinicopathologic features and the risk groups (R software (version 4.2.1, URL: http:// www.r- proje ct. org)). 
lncRNAs, long noncoding RNAs; T, tumor; M, metastasis.

http://www.r-project.org
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Correlation between risk scores/FAM genes and clinical variables. We examined the relationship 
between the above clinical factors and risk ratings of the eight FAM genes based on gene expression and associ-
ated clinical data we collected from TCGA. The results demonstrated that AC009686.2, AL590094.1, and risk 
scores were connected with age, tumor stage, and tumor grade and that AC093278.2 correlated with tumor stage 
and tumor grade (Fig. 13).

Discussion
Renal cancer is a heterogeneous disease. According to the latest research, it is thought that the majority of 
ccRCC cases are caused by a combination of mechanisms, including dysregulation of hypoxia-inducible factor 
(HIF) signaling, mutations in vital histone and chromatin-modifying enzymes, and metabolic reprogramming 
of cellular  metabolism27,28. Despite improvements in targeted therapy and diagnostic methods in recent years, 
metastasis and invasion in malignancies such as ccRCC can result in a gravely unfavorable  prognosis29. Suni-
tinib, a broad-spectrum small-molecule inhibitor of receptor tyrosine kinases (RTKs), is currently the standard 
treatment for first-line treatment of advanced clear cell renal cell carcinoma (ccRCC). However, the majority of 
patients develop resistance and experience disease  progression30,31.

Accumulating data show that angiogenesis, growth, proliferation, and aggressiveness of cancer cells all 
strongly correlate with metabolic  instability32,33. According to preliminary data, the physiological behavior of 
human malignancies is thought to be related to aberrant glycolytic  metabolism34. In colorectal cancer, abnor-
mal anaerobic metabolic pathways are crucial for development of tumor stem cells (CSCs), which promote 
rapid tumor development, progression, and medication  resistance35,36. In addition, cellular energy production, 
membrane synthesis, and signaling pathways linked to tumor formation are all impacted by  FAM32,37. Fatty acid 
anabolism/catabolism dysregulation may promote development of cancerous  cells10. Previous research has shown 
that the glutathione redox system prevents the ccRCC iron mortality induced by poor lipid  metabolism38, and 
a recent study revealed that FE2F1 activates SREBP1-dependent fatty acid production to increase proliferation 
and metastasis of ccRCC 39. Although several researchers have concentrated on the role that FAM plays in dif-
ferent tumors, it is still unclear how this issue applies to ccRCC. It may be possible to gain new knowledge about 

Figure 7.  Creation and validation of a nomogram. (a) Clinicopathological factors and risk scores combined 
with a nomogram to predict survival in ccRCC patients at 1, 3, and 5 years. (b–d) Calibration curves to assess 
whether expected survival at 1, 3, and 5 years agrees with actual OS rates. M, metastasis; OS, overall survival; 
ccRCC, clear cell renal cell carcinoma.
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the biological behavior of these tumors and identify novel and more potent therapeutic approaches by revealing 
important molecular markers linked to FAM and investigating their role in the development of ccRCC.

In the current work, we thoroughly investigated the function of FAM genes in ccRCC. First, the PI3K-Akt, 
HIF-1, and other tumor-related signaling pathways were found to be primarily enriched among DEGs; thus, FAM 
genes with differential expression are linked to tumor growth. Then, we chose the genes in the gray modules that 
were highly related to tumors for ensuing analysis after using WGCNA to identify four modules. We uncovered 
eight important FAM genes that may serve as predictive biomarkers in clinical management of ccRCC patients, 
as based on LASSO and multivariate Cox regression analysis. Through univariate and multivariate Cox regression 
analyses, a prognostic risk score model that divide patients into high-risk and low-risk categories was produced, 
with the prognostic risk score as an independent prognostic factor. The model’s prediction ability was validated 
with risk assessment nomogram clinical characteristics (age, sex, and tumor TNM stage). Here, we present a risk 
model that may be used to identify ccRCC patients with poor prognosis and to manage this disease.

Based on a literature review, these eight genes are somewhat related to cancers, and five genes linked explicitly 
to ccRCC were found among them according to PubMed. For instance, it has been revealed that the tumor-infil-
trating lymphocyte-associated long noncoding RNA LINC01615 is involved in predicting ccRCC 40. By controlling 
several lncRNAs, sorafenib plays a role in the response to sorafenib in several cancer cell  types41. Among three 
additional genes, AC103706.1 may be able to determine the prognosis of individuals with renal  subhyalinosis42, 
and the ccRCC immune microenvironment and prognosis can be predicted by the ferroptosis-related long non-
coding RNA AL590094.143. Ac093278.2, an immune-related long noncoding RNA, is used to predict prognosis in 
ccRCC 44. A PubMed search for "GENE and ccRCC" revealed that the three genes AC009166.1, LINC00605, and 
AC009686.2 have not been investigated in ccRCC. Additional fundamental and clinical studies are necessary to 

Figure 8.  Kaplan‒Meier survival curves for high- and low-risk patients based on clinicopathological factors. 
(a,b) Age. (c,d) Sex. (e,f) Grading. (g,h) Staging. (i) M staging. M, distant metastases.
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confirm the mechanisms underlying the predictive value of the eight genes on which our observations and risk 
models are based, as well as to develop new therapeutic targets to improve OS in ccRCC patients.

Many researchers have reported the relationship between FAM and the TME. For instance, under hypoxic 
conditions, Tregs in glioblastoma depend on fatty acid oxidation (FAO) for  energy45. Significant CD8+ T-cell 
infiltration has been linked to clinical outcomes and immunological response in ESCA, according to earlier 
 research46,47. An elevated CD8+ T-cell to Treg ratio has been linked to poor prognosis in RCC 48. In samples from 
individuals with ccRCC in the high-risk category, we noted a rise in infiltrating CD8+ T cells, indicating poor 
prognosis. Furthermore, poor prognosis is linked to advanced thyroid carcinoma and high tumor-associated 
macrophage  infiltration49. The high-risk group also had greater type I IFN response scores and less antitumor 
immunity in addition to increased tumor immune cell infiltration. IFN production is a major regulator of PD-L1 
expression in tumor cells and host cells, and it may enhance the benefit of anti-PD-1  therapy50. Therefore, a 
diminished antitumor immune response may portend worse outcome for those at risk. In general, patients with 
advanced cancers have a better chance of surviving with checkpoint inhibitor-based  immunotherapy51.

To our knowledge, this work is the first investigation of prognostic FAM-related lncRNAs in ccRCC. The 
signature, which is based on eight FAM-related lncRNAs, offers a practical way to predict clinical outcome and 
offers some guidance for choosing immunotherapeutic and chemotherapeutic treatments. However, there are a 
number of limitations that should be considered. First, we solely used data from TCGA for internal validation, 
and external validation requires data from other databases to confirm the applicability of the prediction signa-
ture. Second, we used information from public databases as retrospective data. Therefore, additional real-world 
data in the future are required to confirm therapeutic applicability. In addition, our research lacks validation 
by in vivo and in vitro experiments. The next step is to confirm how FAM-related lncRNAs function in ccRCC.

Conclusion
In conclusion, our FAM-associated lncRNA signature can independently predict prognosis of patients with 
ccRCC. Furthermore, it offers a potentially fruitful route for selecting antitumor immunotherapy and chemo-
therapeutic drugs.

Methods
Data acquisition and processing. Through TCGA (https:// portal. gdc. cancer. gov/), we accessed RNA-
seq data with FPKM normalization for renal clear cell carcinoma (TCGA- KIRC) together with related clinical 
and prognostic data. lncRNA expression and survival time data were gathered for 611 patients. Patients with 

Table 1.  Clinical characteristics of the different cohorts of patients. T, tumor; M, metastasis; N, lymph node.

Variables Entire TCGA dataset (n = 507 )

Internal validation cohort

First cohort (n = 255) Second cohort (n = 252)

Age (%)

 ≤ 65 336 (66.3) 165 (64.7) 171 (67.9)

 > 65 171 (33.7) 90 (35.3) 81 (32.1)

Gender (%)

 Female 174 (34.3) 91 (35.7) 83 (32.9)

 Male 333 (65.7) 164 (64.3) 169 (67.1)

Grade (%)

 G1 + 2 227 (44.8) 115 (45.1) 112 (44.4)

 G3 + 4 272 (53.6) 138 (54.1) 134 (53.2)

 GX + unknown 8 (1.6) 2 (0.8) 6 (2.4)

Stage (%)

 I + II 306 (60.3) 151 (59.2) 155 (61.5)

 III + IV 198 (39.1) 101 (39.6) 97 (38.5)

 TX + unknown 3 (0.6) 3 (1.2) 0 (0)

T (%)

 T1 + 2 324 (63.9) 160 (62.7) 164 (65.1)

 T3 + 4 183 (36.1) 95 (37.3) 88 (34.9)

M (%)

 M0 392 (77.3) 202 (79.2) 190 (75.4)

 M1 73 (14.4) 37 (14.5) 36 (14.3)

 MX + unknown 42 (8.3) 16 (6.3) 26 (10.3)

N (%)

 NO 16 (3.2) 10 (4.0) 6 (2.4)

 N1 266 (52.4) 135 (52.9) 131 (52.0)

 NX 225 (44.4) 110 (43.1) 115 (45.6)

https://portal.gdc.cancer.gov/
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less than 30 days of follow-up were excluded; 507 patients met the inclusion requirements. The patients were 
randomly assigned in a 1:1 ratio to a training group (n = 255) and test group (n = 252). GeneCards (https:// www. 
genec ards. org) provided download access to 9368 genes involved in FAM.

Screening for DEGs. First, FAM genes in GeneCards with correlation values below 7 were disregarded. 
Then, DEGs were obtained by comparing normal and ccRCC tissues in TCGA and the filter criteria using a false 
discovery rate (FDR) of < 0.05 and |log2-fold change (FC)| ≥  152. Nine hundred-seven differentially expressed 
FAM-related genes were subsequently identified for further investigation.

Functional enrichment analysis. Using the "ggplot2" package, we carried out analyses using the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. We found mRNAs that had 

Figure 9.  Internal validation of OS prediction signatures based on internal datasets. (a) Training group 
Kaplan‒Meier survival curves. (b) Test group Kaplan‒Meier survival curves. (c) ROC curves and AUCs for 1-, 
3-, and 5-year survival in the training group. (d) ROC curves and AUCs for 1-, 3-, and 5-year survival in the test 
group. ROC, receiver operating characteristic; AUC, area under the curve; OS, overall survival.

Figure 10.  PCA profiles showing patient distribution based on (a) genome-wide; (b) zinc finger-associated 
genes; (c) zinc finger-associated lncRNAs; and (d) risk scores. The separation between red and green dots is 
stronger in the high- than in the low-risk group.

https://www.genecards.org
https://www.genecards.org
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strong correlations with the 8 FAM-related lncRNAs mentioned above while assessing the biological function of 
these lncRNAs in ccRCC. Five coexpression networks of lncRNAs and mRNAs were created and visualized with 
Sankey plots. Correlation coefficient criteria were set at > 0.4 or -0.4, and P values < 0.001 were deemed statisti-
cally significant.

WGCNA. According to an earlier  description53, ccRCC-related modules were identified using the WGCNA 
(version 1.61) package. To summarize, soft thresholds were calculated using a scale-free topology criterion. The 
minimal module size was set to 50 genes, and the ideal soft threshold was selected. Dynamic tree cuts with the 
MEDissThres option set to 0.25 were used to identify modules.

Prediction characteristics of FAM‑related lncRNAs. Using "limma" software, we determined the 
association between FAM-related genes and lncRNAs. Applying the filters |R2| > 0.4 and p < 0.001, a total of 
1258 FAM-related lncRNAs were retrieved along with their associated expression data. We initially performed 
one-way Cox regression analysis to obtain FAM-related lncRNAs linked to prognosis in ccRCC patients. Then, 
we used LASSO Cox regression analysis to obtain FAM-related lncRNAs to create predictive features. Risk 
score = beta i * expression i, where beta i is the coefficient and i is the lncRNA, was applied to define the prognos-
tic model. In both datasets, risk scores were computed for each sample. The samples were split into high-risk and 
low-risk groups based on the median risk score, which served as the cutoff point. The survivor and survminer 
R packages were employed to conduct Kaplan‒Meier survival analysis to compare the survival rates of the two 
groups. Clustering of risk characteristics was visualized using principal component analysis (PCA) utilizing 
"Limma" and "scatterplot3d"54,55. Additionally, univariate and multivariate Cox regression analyses were carried 
out to evaluate the association between clinical variables and risk scores. The timeROC package in R was utilized 

Figure 11.  Immuno-infiltration analysis. Results of ssGSEA scoring. (a) Sixteen immune cell scores. (b) 
Thirteen immune-related function scores. (c) Expression of immune checkpoints in high- and low-risk 
populations. ssGSEA, single-sample gene set enrichment analysis; aDCs, activated dendritic cells; iDCs, 
immature dendritic cells; NKs, natural killer cells; pDCs, plasmacytoid dendritic cells; Tfh, T follicle helper cell; 
Th1, T helper factor type 1; Th2, T helper cell type 2; TIL, tumor-infiltrating lymphocyte; Treg, T-regulatory 
cell; APC, antigen-presenting cell; CCR, chemokine receptor; HLA, human leukocyte antigen; MHC, major 
histocompatibility complex; IFN, interferon. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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to validate the accuracy and capacity of  prediction56. All approaches were included in an internal validation 
cohort to confirm the applicability of the predictive signature.

Creating column line diagrams. We created nomogram survival charts that predicted 1-, 2-, 3-, and 
5-year survival in patients with ccRCC by combining risk scores with age, sex, stage, and stage M clinicopatho-
logical features. Calibration curves were then applied to determine whether the predicted survival is compatible 
with actual survival.

Drug sensitivity analysis with predictive signatures. We assessed the contribution of predictive fea-
tures in predicting response to ccRCC treatment using the Genomics of Drug Sensitivity in Cancer (GDSC) 
database. This public dataset collects information on therapeutic sensitivity and molecular indicators of drug 
response in cancer  cells57. OncoPredict was used to download GDSC2 gene expression profiles and related 
drug response  information58. We used sensitivity ratings to estimate the half-maximal inhibitory concentration 
(IC50) of each medicine in ccRCC patients.

Quantification of immune infiltration levels. The "gsa" program was utilized to compare immune cells 
and pathways between the two groups utilizing ssGSEA. Using the "GSVA" program, single-sample gene set 
enrichment analysis (ssGSEA) was employed to determine the infiltration score of 16 immune cells and activa-
tion of 13 immune-related  pathways59. Finally, we investigated the correlation between risk scores and immuno-
logical checkpoints by contrasting gene expression levels between high-risk and low-risk groups.

Statistical analysis. R software (version 4.2.1, http:// www.r- proje ct. org) was used to conduct all statistical 
analyses. Expression levels of DEGs related to FAM in healthy and malignant tissues were compared using the 
Wilcoxon test. FAM-related lncRNAs were discovered to be an independent prognostic risk factor for ccRCC 
based on univariate and multivariate Cox models. The area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve was used to determine how accurately the FAM-related lncRNA model predicts 
ccRCC. All statistical tests were two-sided, with p < 0.05 regarded as statistically significant. Statistical analyses 
were carried out using the R environment and the Bioconductor package (version 3.5.5).

Figure 12.  Drug sensitivity analysis. (a–c) Predicted sensitivity scores for lapatinib, AZD8055, and WIKI4 as 
chemotherapy candidates for patients with high FAM-related lncRNA scores. (d–f) Axitinib, cediranib, and 
osimertinib are candidates for patients with low scores. *p < 0.05; **p < 0.01; ****p < 0.0001.

http://www.r-project.org
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