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Graph matching and deep neural 
networks based whole heart 
and great vessel segmentation 
in congenital heart disease
Zeyang Yao 1,2, Wen Xie 1,2, Jiawei Zhang 3, Haiyun Yuan 2, Meiping Huang 2, Yiyu Shi 4, 
Xiaowei Xu 2* & Jian Zhuang 1,2*

Congenital heart disease (CHD) is one of the leading causes of mortality among birth defects, and 
due to significant variations in the whole heart and great vessel, automatic CHD segmentation using 
CT images has been always under-researched. Even though some segmentation algorithms have 
been developed in the literature, none perform very well under the complex structure of CHD. To deal 
with the challenges, we take advantage of deep learning in processing regular structures and graph 
algorithms in dealing with large variations and propose a framework combining both the whole heart 
and great vessel segmentation in complex CHD. We benefit from deep learning in segmenting the four 
chambers and myocardium based on the blood pool, and then we extract the connection information 
and apply graph matching to determine the categories of all the vessels. Experimental results on 68 
3D CT images covering 14 types of CHD illustrate our framework can increase the Dice score by 12% 
on average compared with the state-of-the-art whole heart and great vessel segmentation method in 
normal anatomy. We further introduce two cardiovascular imaging specialists to evaluate our results 
in the standard of the Van Praagh classification system, and achieves well performance in clinical 
evaluation. All these results may pave the way for the clinical use of our method in the incoming 
future.

Congenital heart diseases (CHD) are defects in the structure of the heart or great vessels that present at  birth1. 
The structure defects can involve the walls of the heart, the valves of the heart, and the arteries and veins near 
the heart. Each of these significant structure variations can disrupt the normal flow of blood through the heart, 
which cause serious health problems or death.

Clinical decision-making and surgery planning are the main challenges in the treatment of CHD. Currently, 
2D (e.g., 2D echocardiography) and 3D (e.g., 3D echocardiography, magnetic resonance imaging (MRI), and 
computed tomography (CT)) imaging techniques are widely used to tackle these challenges. Furthermore, if 
surgery is required, CT and MRI are usually mandatory to help surgeons to have an informative knowledge of 
the heart structure. However, such a process is time-consuming and non-intuitive which introduces many dif-
ficulties to especially less experienced surgeons.

In recent years, 3D virtualization techniques (e.g., virtual reality (VR) and augmented reality (AR)) and 3D 
printing have been widely adopted for clinical decision-making and surgery planning of  CHD2–5, greatly making 
up for the limitations of the traditional examination methods. As shown in Fig. 1, 3D medical images (usually 
CT or MRI) of hearts are usually used to produce a digital model of the heart which is then used for VR, AR, 
and 3D printing. Such virtualization of the heart can help surgeons have an intuitive sense of the structure and 
connections of the heart. To obtain the digital models, whole heart and great vessel segmentation are usually 
performed manually which is a time-consuming and costly process. 

Nowadays, the development of deep learning has shown its advantages in the performance of  segmentation6,7. 
There are some works in this area trying to solve the above  problems8–11, and most of these works are based on 
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MRI data and focus on chambers and the whole heart  only12–15. For congenital heart disease, Mukhopadhyay 
et al.16 used total variation random forest to perform fully automatic congenital heart disease in magnetic reso-
nance images (MRI) sequences. Li et al.11 proposed a deep learning method for automatic whole-heart segmenta-
tion in cardiac magnetic resonance (CMR) images with CHD. The state-of-the-art segmentation performance in 
computed tomography (CT) images is obtained by Payer et al.8, they combine 3D U-Net for segmentation and 
a simple convolutional neural network for label position prediction. Recently there are also some works about 
blood pool segmentation of CHD  images17,18, which only handles the blood pool and myocardium.

Moreover, Pace et al.19 adopted a semi-automated approach for left ventricle (LV) and aorta (Ao) segmen-
tation in CHD, they use a recurrent neural network recursively evolves segmentation in several steps, which 
requires user interaction to locate an initial seed for segmentation. Yoshida et al.20 using U-net for investigating 
the usefulness of deep learning methods for segmenting the whole heart region and the cardiac cavity region in 
pediatric cardiac CT images. However their results are achieved on a small dataset and only the Dice similarity 
coefficient (DSC) is used for evaluating the segmentation accuracy, which is not suitable for CHD diagnosis to 
some extent. Pace et al.21 proposed an iterative segmentation model and show that it can be accurately learned 
from a small MRI dataset, the model they proposed evolves a segmentation over multiple steps and achieved 
great performance on CHD segmentation. However, the characteristics of MRI images they used are completely 
different from those of CTA. In developing countries, the accessibility of CTA is far greater than that of MRI, and 
the study of the application of CTA in congenital heart disease is equally significant. All in all, fully automated 
segmentation of the whole heart and great vessel segmentation of CHD using CTA images is still an under-
researched piece in the literature.

In this paper, we propose an algorithm that combines deep neural networks and graph matching for the whole 
heart and great vessel segmentation in CHD based on our previous  work22. Note that graph matching has been 
applied in a variety of  applications23–25, but not yet to congenital heart disease segmentation.

Particularly, we first use deep neural networks to segment four chambers and cardiac muscle, where varia-
tions are usually small. Then We extract the connection information and apply graph matching to determine the 
category of all the vessels. For making up for the shortcomings of Dice scores in evaluation segmentation results, 
two cardiovascular imaging specialists engaged to evaluate our results. Experiment results show that our method 
performs better than the state-of-the-art method for multi-modality whole heart and great vessel segmentation 
on both segmentation criterion and clinical evaluation. And as far as we know, this is the first work to perform 
the whole heart and great vessel segmentation and reconstruction in CHD. We hope all these contributions may 
pave the way to the clinical use of our method in the incoming future.

Materials and methods
Patient demographics. The ages of the associated patients range from 1 month to 21 years, and the aver-
age age at repair is 79.75 ± 59.07 weeks, with the majority between 1 month and 2 years. There are 40 females in 
the patients, approximately 60% of the total. Based on the degree of morphological variability of  CHD26, we have 
divided our dataset into two categories: simple and complex. And there are 14 types of CHD, six simple types 
and eight complex ones, which all have been discussed in Table 1. Specifically the eight complex ones including 
Tetralogy of Fallot (TOF), transposition of great arteries (TGA), pulmonary artery sling (PAS), Anomalous Pul-
monary Venous Connection (APVC), common arterial trunk (CAT), aortic arch anomalies (AAH), single ven-
tricle (SV), pulmonary atresia ( PAatresia)). The number of images associated with each is summarized in Table 2. 

Image and acquisition parameters. Our dataset consists of 68 3D CTA images, and all images were 
obtained by a SOMATOM Definition Flash Dual-source CT scanner, using the following protocol: collimation, 
(96–128) × 0.625 mm; rotation time, 270 ms, which corresponds to a 135 ms standard temporal resolution; slice 
thickness, 0.9 mm; reconstruction interval, 0.45 mm. Adaptive axial z-collimation was used to optimize the 
cranio-caudal length. Data were obtained at 40–50% of the RR interval, utilizing a 5% phase tolerance around 
the 45% phase. The dosage is 100 kVp/651 mAs (routine-dose). The size of the images is 512 × 512 × (130–340), 
and the typical voxel size is 0.25 × 0.25 × 0.5 mm3.

Ground-truth labels generation. All labeling was performed by experienced radiologists, and the time 
for labeling each image was 1–1.5 h. Within the range from the superior plane of the clavicle to the plane of the 

Figure 1.  Illustration of 3D virtualization and 3D printing in CHD surgery: (a) is a typical coronal CT scanning 
of CHD; (b) is a horizontal section of heart segmentation results using virtualization reality (VR) for CHD 
surgery planning; (c) is a view in augmented reality (AR) for guiding real-time surgery; (d) is a printed model 
using 3D printing.
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aortic hiatus of the diaphragm, we identified seven target cardiovascular structures: the left ventricle (LV), right 
ventricle (RV), left atrium (LA), right atrium (RA), myocardium (Myo), aorta (Ao), and pulmonary artery (PA). 
During the procedure, the CTA images were imported into the Mimics software and labeled using threshold-
ing. We assumed that the target and background of the image occupy different ranges of gray levels, with small 
differences in the gray values between adjacent pixels within the target and background. However, the pixels on 
both sides of the target-background interface have a large difference in gray value. Based on the prior knowl-
edge of the anatomy recognized by the radiologist, we selected seven different gray threshold values to mark 
the anatomical structures. Then, we compared the gray values of each pixel in the image with these threshold 
values, and according to the comparison results, the pixels were classified into different categories. This process 
produced a continuous gray threshold image, and the target was extracted from the background. Next, we used 
the differences in characteristics such as gray level, color, and texture between the target and background to 
achieve cardiovascular edge detection. We first performed threshold segmentation and then mask editing. After 
these preprocessing steps, we used a three-dimensional reconstruction algorithm combining shear deformation 
to obtain the three-dimensional reconstruction of the cardiovascular model at different levels. Due to the large 
variability of the cardiovascular structures in congenital heart disease, vena cavae (VC) were also labeled as part 
of RA, and pulmonary veins (PV) were labeled as part of LA for ease of processing, as they are connected, and 
their boundaries are relatively hard to define. Anomalous vessels such as the delayed joining of the subclavian 
vein to the superior vena cava and abnormally enlarged pulmonary veins were also identified and classified as 
one of the seven aforementioned cardiovascular substructures based on their connections.

Framework overview. The whole heart and great vessel segmentation method have two sub-tasks: heart 
segmentation and great vessel segmentation. The overall framework is shown in Fig. 2.

Whole heart segmentation. Segmentation was performed with multiple U-Nets27, and the network 
structure of the adopted 3D U-net and 2D U-net is shown in Fig. 3. There were several steps in segmentation: 
Region of interest (RoI) cropping extracts the area that includes the heart and its surrounding vessels. We resized 
the input image to a low resolution of 64 × 64 × 64, and then adopt the same segmentation-based extraction  as8 
to get the RoI. Chambers and myocardium segmentation resized the extracted RoI to 64 × 64 × 64 which had fed 
to a 3D U-net for segmentation. Chambers and myocardium refinement refined the boundaries of chambers and 
myocardium based on the outputs of chambers and myocardium segmentation and blood pool segmentation. 
Due to the limited GPU  memory8, the input of 3D U-net was usually limited to low resolution or small size, 
and accordingly, the chambers and myocardium segmentation results may lose boundary information. This was 
critical for CHD where significant variations exist. To address this issue, we refined the boundary of chambers 

Table 1.  Types of CHD and their descriptions.

Types Description

ASD A hole in the wall (septum) that divides the upper chambers (atria) of the heart

VSD A hole in the wall (septum) that separates the two lower chambers (ventricles) of the heart

AVSD A large hole in center of the heart affecting all four chambers

PDA The ductus arteriosus fails to close after birth

CoA A part of the aorta, the tube that carries oxygen-rich blood to the body, is narrower than usual

PS A stenosis of main pulmonary artery and/or its branches

TOF A heart birth defect that includes 4 defects: ventricular septal defect, right ventricle outflow tract stenosis, aorta overriding and 
secondary right ventricular hypertrophy

TGA The main pulmonary artery and the aorta are switched in position, or “transposed”

PAS Left pulmonary artery originates from the right pulmonary artery, encircles the right main-stem bronchus, and distal trachea 
before entering the hilum of the left lung

APVC The lungs pulmonary veins don’t connect completely or partly to the left atrium like usual

CAT A single common blood vessel comes out of the heart, instead of the main pulmonary artery and aorta

IAA Aorta is not completely developed, part of the aorta is missing, leaving a gap

SV One lower chamber (ventricle) does not develop, and the heart has only one pumping chamber

PAatresia The valve that controls blood flow from the heart to the lungs doesn’t form at all

Table 2.  The types of CHD in our dataset and the case number associated with them. Note that some images 
may correspond to more than one type of CHD.

Simple CHD 37 Complex CHD 31

NormalASD AVSD VSD PDA CoA PS TOF TGA PAS APVC CAT AAH SV PAatresia

17 4 26 7 4 4 7 4 3 20 4 8 2 7 2
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and myocardium by reusing the blood pool segmentation results, which were in high resolution. Specifically, 
we removed the portion of the blood pool that corresponded to the chambers from the results of blood pool 
segmentation, and the remaining blood pool was added to its surrounding chambers to refine the boundaries. 
With the refined boundary of chambers, the boundary of the myocardium was also refined as the chambers and 
the myocardium share a large portion of boundaries as shown in Fig. 4. An illustration of the refinement process 

Figure 2.  Overview of the proposed framework combining deep learning and graph matching for whole heart 
and great vessel segmentation in CHD.

Figure 3.  Network structures of the adopted 3D U-net and 2D U-net.

Figure 4.  Pulmonary atresia ( PAatresia ) and common arterial trunk examples (CAT) in our dataset, with large 
variations from normal heart anatomy.
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is shown in Fig. 5. Comparing (b) with (e), we can notice that part of the boundary information is lost, and the 
boundary is indeed refined after the process as shown in (d). 

Great vessel segmentation. First, blood pool segmentation was conducted on each 2D slice of the input 
using a 2D U-net27 with an input size of 512 × 512. Note that to detect the blood pool boundary for easy graph 
extraction in graph matching later, we added another class blood pool boundary in the segmentation. Second, 
graph matching identified Ao, PA, and anomalous vessels using the outputs of blood pool segmentation and 
chambers and myocardium segmentation. Great vessels could be obtained by removing the chamber areas from 
the blood pool, which need to be segmented to identify Ao, PA as well as anomalous vessels. To address sig-
nificant variations that occurred in CHD, we adopt a surface thinning  algorithm28 to obtain skeletons of blood 
vessels for graph matching, and the workflow is shown in Fig. 6. A graph library is built based on medical knowl-
edge to represent all the possible connections between great vessels and anomalous vessels. First, we illustrate 
all the possible combinations of PA and Ao, and the corresponding key points and their categories (Ao and PA) 
are labeled. We then extracted the graphs corresponding to Ao, PA, and anomalous vessels or their mixtures.

However, due to inaccurate blood pool segmentation or small anomalous connections, sometimes only one 
large graph corresponds to Ao and PA, which makes the matching difficult. Thus, these extracted graphs (corre-
sponding to Ao and PA) should be disconnected from each other, and Ao and PA have their own corresponding 
graphs which can be matched with the ones in the library. To tackle this issue, we applied multiple smoothing 
in various scales (e.g., using a 3 × 3 × 3 kernels (all 1) 1 to 7 times iteratively for smoothing) to extract several 
candidate graphs. Then we matched these graphs with the ones in the library to identify the most similar pairs.

Particularly, we model the graphs as distributions, and such graph similarity is calculated using the earth 
mover’s distance (EMD) which is a widely used similarity metric for  distributions29. Two factors need to be mod-
eled: the weight of each bin in the distribution, and the distance between bins. We model each sampled point in 
the sampled skeleton as a bin, the Euclidean distance between the points as the distance between bins, and the 
volume of blood pool around the sampled point as the weight of its corresponding bin. Particularly, the weight is 
defined as r3 where r is the radius of the inscribed sphere in the blood pool centered at the sampled point. With 
graph matching, the categories of the extracted graphs as well as the categories of the corresponding vessels in 
these graphs could be determined (based on the labeled graphs in the library). The vessels that left out in the 
smoothing process were finally classified by a simple region growing  technique30. 

Van Praagh classification system. A brief illustration of the Van Praagh classification system is shown 
in Fig. 7. In the Van Praagh system, a three-part notation consisting of letters separated by commas and encom-
passed by a set of braces is used to succinctly describe the visceroatrial situs, the orientation of the ventricular 
loop, and the position and relation of the great vessels. Van Praagh’s symbolic representation may be combined 

Figure 5.  Illustration of chambers and myocardium refinement. (a) Is obtained from blood pool segmentation 
(high resolution). (b) Is from chambers and myocardium segmentation (low resolution). (c) Is the remaining 
blood pool by subtracting chambers (b) from blood pool (a). It is added to the surrounding chambers to refine 
the boundaries (d). (e,f) Are the ground truth and CT image, respectively.

Figure 6.  Illustration of great vessel segmentation with graph matching. With smoothing, the skeleton of 
great vessels can be easily extracted, and then its corresponding graph is obtained for graph-matching-based 
classification of Ao, PA, and anomalous vessels.
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with those of atrioventricular and ventricular arterial connections as shown in Fig. 7a–d. In Van Praagh’s con-
vention, the first letter (S or I) refers to the atrial position (solitus or inversus), the second letter (D or L) to the 
ventricular loop, and the third letter to the position of the origin of the aorta (recognized by its two coronary 
ostia) in relation to the origin of the pulmonary trunk. The arrangement of boxes and abbreviations is identical 
in all similar models presented in Fig. 7. 

Experiments. All the experiments were run on an Nvidia GTX 1080Ti GPU with 11 GB memory. We imple-
mented our 3D U-net using Pytorch based  on8. For 2D U-net, most configurations remain the same as those of 
the 3D U-net except that 2D U-net adopts 5 levels and the number of filters in the initial level was 16. Both Dice 
loss and cross-entropy loss were used, and the loss function is as follows:

where pji and gji  are the predicted and ground truth label maps at pixel i for the jth class. and the training epochs 
were 6 and 480 for 2D U-net and 3D U-net, respectively. Data augmentation was also adopted with the same 
configuration as in Ref.8 for 3D U-net. Data normalization was the same  as8. The learning rate was 0.0002 for 
the first 50% epochs, and then 0.00002 afterward.

Due to the scarcity of related CT CHD segmentation algorithms, our work is one of the pioneers in exploring 
and addressing this challenging task, we adopted Seg-CNN8 that achieves the state-of-the-art performance in 
whole heart and great vessel segmentation of hearts in normal anatomy for comparison. The configuration was 
the same as that in Ref.8.

For both methods, fourfold cross-validation was performed (17 images for testing and 51 images for training). 
The split of our dataset considers the structures of CHD so that any structure in the testing dataset also had a 
similar presence in the training dataset, though they may be not of the same type of CHD. 

The Dice score was used for segmentation evaluation. For evaluation, we adopt both general segmentation 
criteria and clinical evaluation for the assessment of our method. The Dice score was used as a general segmenta-
tion criterion for fourfold cross-validation. For clinical evaluation, two cardiovascular imaging specialists were 
introduced to evaluate our segmentation results in the standard of Van Praagh classification  system31–33.

Ethics declarations. All data analyzed were collected as part of routine examination and diagnosis, and 
this data collection involves no procedures for which written consent is normally required outside the research 
context. All analysis procedures performed in studies involving human participants’ data were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Declara-
tion of Helsinki and its later amendments or comparable ethical standards. And the informed consent is waived 
under the approval of the Research Ethics Committee of Guangdong General Hospital, Guangdong Academy of 
Medical Science under Protocol No. 20140316.
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Figure 7.  Illustration of clinical evaluation in the standard of Van Praagh classification system. (a) Is a model of 
four so-called normal hearts-that is, hearts with atrioventricular and ventriculoarterial concordant connections. 
The vertical line above the box represents the position of the ventricular septum. Note that in situs inversus, 
the aortic origin lies to the left of pulmonary trunk origin. The red dotted line represents the location of 
ventriculoarterial connections. (b) Is a model of varieties of ventriculoarterial connection. Aortic origin in the 
transposition of the great arteries and the double outlet ventricles (DORV, DOLV) is indicated by D when it lies 
to the right of the pulmonary artery origin and L when it lies to the left. (c) Schematically show the great vessel 
configurations on axial cross-sectional images at the level of valves when in a normal position (left column) or 
inversion (right column) and in normal relation (bottom row) or transposition (top row). (d) Schematically 
show d-malposition (top) and l-malposition (bottom) of the great vessels.
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Discussion
General segmentation results. The comparison with Seg-CNN8 is shown in Table  3. Our method 
achieves a 5.8–19.2% higher mean Dice score across all the seven substructures (12% higher on average). The 
highest improvement is attained in Ao, which is due to its simple graph connection with successful graph match-
ing. The least improvement is obtained in the myocardium, which is because the myocardium is not well consid-
ered in the high-resolution blood pool segmentation. Visualization of CAT segmentation using our method and 
Seg-CNN is shown in Fig. 8. Our method is capable of accurately segmenting the Ao and PA, with only minor 
instances of incorrect segmentation between the PA and LA. However, Seg-CNN wrongly segments the main 
part of the Ao as PA due to the limitations of pixel-level segmentation, in which the U-net-based framework only 
takes into account the surrounding pixels and fails to adequately incorporate connection information.

The segmentation performances of Seg-CNN8 and our method in different scenarios (simple and complex 
CHD)26 are shown in Table 4. Both methods achieve higher mean Dice with lower standard deviations in sim-
ple CHD than in complex CHD, as complex CHD has more complicated structure variations. Compared with 
Seg-CNN, our method achieves about 12% higher average mean Dice score on both simple and complex CHD. 
Our method also achieves a 1.9% reduction on the standard deviation of Dice score in simple CHD compared 
with Seg-CNN8.

Finally, visualizations of segmentation results from our method with the best, median, and worst Dice scores 
among all the test images are shown in Fig. 9. The segmentation results in Fig. 9a achieve the best accuracy, and 
most of the structures are segmented correctly, with some errors in the connections between RA and Ao, and 
the wrong connections are indicated by the red circle. The segmentation results in Fig. 9b,c have some severe 
wrong segmentations: the one in Fig. 9b has an anomalous vein from RA which is segmented as part of Ao due 
to the boundary extraction error in blood pool segmentation, and the one in Fig. 9c suffers from the boundary 
extraction error between LA and PA. This type of error also results in the worst Dice score as shown in Fig. 9d, 
which corresponds to ground truth provided in Fig. 9d. In the ground truth, a thick anomalous vein from RA 
crosses Ao, and PA has no trunk vessels and is of a very small volume. Compared with the ground truth, the thick 
anomalous vein from RA is misclassified as PA, and the majority of PA is misclassified as LA.

Clinical evaluation results. The detail of clinical evaluation results are shown in Table 5. All results were 
assessed independently by two cardiovascular imaging specialists, and discordant reads were reviewed and dis-
cussed until a consensus was reached. Our method had not made mistakes in some simple CHDs like ASD, 
AVSD, VSD, PS, and CoA. Specifically, we found the position of the atrium of a PDA case changed from situs sol-

Table 3.  Mean and standard deviation of Dice score, and paired t-test of between the state-of-the-art method 
Seg-CNN8 and our method (in %) for seven substructures of the whole heart and great vessel segmentation. 
Significant values are in bold.

Method LV RV LA RA Myo Ao PA Overall

Seg-CNN 67.3 ± 13.9 65.0 ± 12.0 70.2 ± 7.8 76.0 ± 7.5 71.5 ± 8.3 63.0 ± 13.3 52.3 ± 12.3 66.5 ± 10.7

Our method 82.4 ± 10.5 77.6 ± 14.3 78.6 ± 7.4 82.7 ± 7.5 77.3 ± 8.3 82.2 ± 8.1 67.1 ± 19.8 78.3 ± 10.8

t-value 7.15 5.57 6.44 5.21 4.07 10.17 5.24 6.40

P < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

(a) Ground truth with CAT (b) Our method with CAT (c) Seg-CNN with CAT

RA

LA

Ao
PA

Ao RA

LALA

Ao

PA

RAPA

PA
PA

Figure 8.  Visualized comparison between the state-of-the-art method Seg-CNN8 and our method. The 
differences from the ground truth are highlighted by the red circles.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7558  | https://doi.org/10.1038/s41598-023-34013-1

www.nature.com/scientificreports/

Table 4.  Mean and standard deviation of Dice score, and paired t-test of between the state-of-the-art method 
Seg-CNN8 and our method (in %) in simple and complex CHDs. Significant values are in bold.

Types Seg-CNN Our method t-value P

Simple CHD 70.3 ± 8.3 82.6 ± 6.2 6.2 < 0.05

Complex CHD 62.7 ± 14.4 74.1 ± 14.5 14.5 < 0.05

Ao

LA

PAPA

Ao
RA

LA LA

Ao

PA

(b) 
Ground truth Ground truth

PA

Ao RA

LA

Ao

LA

PA

LA

Ao

PA

PA with Dice: 50.5%APVC with Dice: 83.0% AVSD with Dice: 79.9%

Ground truth

(c) (d) 

RA

LA

PA
Ao

VSD with Dice: 87.2% Ground truth
(a) 

Figure 9.  Visualization of our segmentation results with (a) best, (b,c) median, and (d) worst Dice score among 
all the test images. Their corresponding ground truth is also shown, and red circles indicate the segmentation 
error.
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itus to situs inversus. More common wrong segmentations happened in complex CHD. In a TOF case, we found 
the ventricular loop changed from curved rightward to curved leftward. Interestingly we found the position of 
the aortic origin changed with pulmonary trunk origin, the aorta was anterior to and leftward of the pulmonary 
trunk origin, the anomaly is described as levotransposition (l-transposition) or congenitally corrected transposi-
tion, which is shown as L-TGV in Fig. 5. In a single ventricle case, we found the ventricle was segmented into the 
left and right two parts. The overall percentage of correct connections in atrioventricular, ventriculoarterial, and 
the relationship of the great vessels is 0.986 (70/71), 0.97 (69/71), and 0.986 (70/71).

Our method achieves much better performance than the state-of-the-art segmentation method. However, 
in the 3D segmentation process, although each type of CHD shown in Fig. 9 achieves good accuracy under the 
general segmentation criterion, there are still some tiny wrong-connected segmentations. Thus far, we have con-
sidered connection features in the blood pool and considered the shapes of the vessels to improve our segmenta-
tion results. However, the presence of certain defects may be attributed to the failure of boundary extraction in 
blood pool segmentation. From a data perspective, the initial threshold-based construction of ground-truth labels 
also limits the differentiation of boundary and boundary extraction, which is also a limitation of our study and 
may contribute to the occurrence of these errors in segmentation. In order to enhance performance, additional 
structural features should be taken into account, such as local tissue changes. This requires innovative approaches 
from the deep learning community and deeper collaboration between computer scientists and radiologists.

Unless we can achieve excellent performance in every segmentation result, using the Dice score to evaluate 
our method is not a satisfactory choice. Due to the uncertainty and incomprehensibility of the U-Nets network, 
pixel-level segmentation criterion may result in some segmentation parts being consistent with the ground truth, 
while some critical parts are not. It is easy to understand from Fig. 5. In chambers and myocardium refinement, 
either boundaries from high-resolution segmentation results or low-resolution segment wrong will cause refined 
boundaries do not consistent with the ground truth, and introduce connection mutations to segmentation results. 
When it comes to 3D printing and virtual surgery planning, the impact of those connection mutations is serious. 
The existence of some basic anatomical errors is not acceptable clinically, it is necessary to introduce another 
criterion clinically to guarantee there is not an atrium defect from segmentation compared with the ground truth.

However, there are still no recognized clinical criteria to instruct the training process of the segmenta-
tion network. In the standard of Van Praagh classification system, our two cardiovascular imaging specialists 
introduced a new clinical evaluation to assess our method. Because the Van Praagh notation imposes on its 
users a systematic approach to anatomic description, it is a helpful device for structuring the interpretation of 
segmentation results as well as the reporting of evaluation. By manual evaluation of the segmentation results of 
each case, we roughly proved the clinical availability of our method. From detailed check results from Table 5, 
we can notice that most types of CHD achieve correct segmentation, which gives us the confidence to further 
complete our method. In view of wrong segmentation still existing, it is not realistic to let clinicians evaluate 
every automatic segmentation result. Even though specialists find some wrong connections in PDA, will only 
affect imaging analysis to some degree. However, wrong connections happened in complex CHD like TOF, TGA, 
and SV, are very different from the ground truths. As our goal is to achieve fully automatic segmentation and 
reconstruction of the CHD model that can guide surgery, the lack of clinical-level criterion will seriously affect 
the future development of our method. Although our clinical evaluation used in this paper is not excellent, we 
will try to solve those problems in future work.

Table 5.  Results of clinical evaluation. Total cases gives all case number of each type CHD, Wrong cases shows 
wrong segmentation results number, and Description presents the specific type of the wrong segmentation, 
with bold and black italics indicating specific wrong parts. Divided by types according to Table 2.

Types Total cases Wrong cases Description

ASD 17 0

AVSD 4 0

VSD 26 0

PDA 7 1 {S → I, D, S}

CoA 4 0

PS 4 0

TOF 7 1 {S, D → L, S}

TGA 4 1 {S, D, S → L-TGV}

PAS 3 0

APVC 20 0

CAT 4 0

AAH 8 0

SV 2 1 {S, X → D, S}

PAatresia 7 0

Normal 2 0
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Conclusion
In this paper, we proposed a whole heart and great vessel segmentation framework for CT images in CHD. 
We first used deep learning to segment the four chambers and myocardium followed by the blood pool, where 
variations were usually small. We then extracted the connection information and applied graph matching to 
determine the categories of all the vessels. We collected a CHD dataset in CT with 68 3D images, and the ground 
truth has seven categories: LV, RV, LA, RA, myocardium, Ao, and PA. 14 types of CHD are included in this dataset 
which is made publicly available. Compared with the state-of-the-art method for whole heart and great vessel 
segmentation in normal anatomy, our method has achieved 12% improvement in Dice score on average, and 
well performance when evaluated by clinical evaluation. We hope these results may pave the way for the clinical 
use of our method in the incoming future. Due to the limited GPU memory, currently, we used a 3D U-net to 
process a down-sampled CT image, which cannot segment the related structures precisely. In the future, with 
more advanced GPUs, we may try to process CT images with much larger dimensions. A fusion (or an ensem-
ble) network should be further adapted to take the outputs of the 2D U-net and the 3D U-net and output the 
final segmentation. In addition, a two-stage training strategy should be applied in which the 2D U-net and the 
3D U-net are firstly trained, and then all three networks are fine-tuned together. In this way, the segmentation 
accuracy can be further improved potentially.

Data availability
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