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Reinforcement learning 
for patient‑specific optimal 
stenting of intracranial aneurysms
E. Hachem 1*, P. Meliga 1, A. Goetz 1, P. Jeken Rico 1, J. Viquerat 1, A. Larcher 1, R. Valette 1, 
A. F. Sanches 2, V. Lannelongue 1, H. Ghraieb 1, R. Nemer 1, Y. Ozpeynirci 2 & T. Liebig 2

Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve 
treatment outcomes in the follow‑up of endovascular repair is of tremendous medical and societal 
interest, both to support decision‑making and assessment of treatment options by medical doctors, 
and to improve the life quality and expectancy of patients. This study aims at identifying and 
characterizing novel flow‑deviator stent devices through a high‑fidelity computational framework 
that combines state‑of‑the‑art numerical methods to accurately describe the mechanical exchanges 
between the blood flow, the aneurysm, and the flow‑deviator and deep reinforcement learning 
algorithms to identify a new stent concepts enabling patient‑specific treatment via accurate 
adjustment of the functional parameters in the implanted state.

An estimated 2–3% of the population harbour intracranial aneurysms (IAs)1,2, a pathological, localized sac-like 
outpouching of the arterial wall, whose rupture is the leading cause of nontraumatic subarachnoid haemorrhage, 
associated with a high rate of morbidity and mortality and a significant economic  burden3. The increased fre-
quency at which unruptured IAs are being diagnosed, due to the widespread use of cross-sectional neuroimaging 
in routine clinical practice, poses a persistent dilemma for physicians. This is imputable to the lack of definitive 
guidelines for optimal management, which is due to the high prevalence of aneurysms along with low rupture 
rates (with the annual occurrence of subarachnoid haemorrhage being about 10 per 100.000  persons4), and 
preventive treatment carrying risks of adverse  complications5.

Aberrant vascular remodelling occurring through abnormal hemodynamic stress on blood vessels is believed 
to be a major factor in intracranial aneurysms pathophysiology, i.e., formation, growth, and stabilization or 
 rupture6. The stress distribution, as determined by the blood flow and aneurysm geometry, elicits vascular 
remodelling via cell-mediated biologic pathways. This modifies the geometry, the stress, and drives further 
biologic processes, with rupture occurring when the stress on the aneurysm wall exceeds the yield strength of 
the  material7,8. This biomechanical approach has proven relevant in assessing rupture risk, with hemodynamic 
indices such as flow-induced pressure (the stress normal to the vascular wall) and wall shear stress (WSS, the 
viscous frictional force exerted parallel to the blood flow) identified as potentially significant determinants of 
aneurysm natural  history9–12.

Preventive treatment of unruptured intracranial aneurysms consists in occluding the sac to prevent blood 
from flowing directly into the aneurysm, which in turn helps reduce the stress on its wall. The two main options 
have long been surgical clipping and  coiling13. Clipping is invasive, as it requires performing a craniotomy 
and exposing the aneurysm before placing surgical clips across the neck. While highly effective, clipping is 
constrained to easily accessible aneurysms and operations generally bear a substantial complication risk. Endo-
vascular procedures, such as stenting and coiling, minimize the operational risk by avoiding open skull surgery. 
The latter approach involves filling the aneurysm sac with flexible platinum wires that dampen out ingoing blood 
jets and contribute towards the occlusion of the bulge. Since the wires are contained by the sac, wide neck IA or 
fusiform IA cannot be treated this way, due to the high risk of embolic disease and coil detachment.

In recent years, the implantation of flow-diverter (FD) stents has gained increasing acceptance among the 
interventional and neurosurgical communities as an effective alternative treatment  option14. Such an approach 
consists in the endovascular deployment of flexible, highly conforming braided mesh devices along the parent 
artery and across the neck. The blood flow into the aneurysm is damped and redirected by the low porosity layer 
of FD wires covering the neck, reducing the overall circulation in the sac. The blood stagnation that follows a 
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successful deployment causes a thrombus formation in the aneurysm cavity and a subsequent endothelializa-
tion of the  neck15. In some cases, the completely occluded aneurysm is progressively reabsorbed by the parent 
vessel, precluding regrowth by hemodynamic mechanisms. Flow diverter stents have started a breakthrough in 
the endovascular management of intracranial aneurysms (including many wide-necked and fusiform aneurysms 
that were previously considered untreatable) but their mechanism of action is not thoroughly understood, as 
about 5–25% of aneurysms remain with circulation even after multiple-layer  implantations16.

A substantial body of work is ongoing to improve aneurysm treatment outcomes by increasing the flow-
diversion effect of the implanted  stent17,18. The functional performance is largely dependent on implantation 
(e.g., sizing, landing zone) and geometrical features (e.g., braid angle, wire density, wire diameter) with wire 
material properties also being an important contributor. Hemodynamically, we believe that the pore density is 
a key parameter, as it must be high enough to occlude the aneurysm sac  satisfactorily15, but not so high that it 
would trigger inflammatory remodelling associated with low-WSS  values19. Nonetheless, there is currently a lack 
of empirical evidence supporting the superiority of one design over the others, meaning that the type of stent 
used for each patient is often based on the length of the lesion and the personal preference of the physician (even 
availability of stock). Therefore, the ability to design novel stent concepts from fast and accurate identification 
of patient-specific functional parameters is of utmost importance to provide clinical insight, optimize treatment 
decision-making, and improve prognosis. This has never been done before.

In order to make progress towards this objective, the present study combines multi-physics computational 
fluid dynamics (CFD) and deep reinforcement learning (DRL) to prove the applicability of such an optimiza-
tion workflow for patient-specific stent design. On the one hand, CFD has risen to a prominent position in the 
endovascular research community due to its potential for rupture risk prediction via objective, quantitative, 
and mechanism-based  parameters20,21, and its contribution to the design, development and evaluation of endo-
vascular management  methods22,23. On the other hand, DRL has been shown to perform with unprecedented 
efficiency in several areas, e.g., language  processing24,  robotics25,26, autonomous  driving27,  finance28 or healthcare 
 management29,30, including recent inroads in computational  biomechanics31.

The efforts for coupling CFD and DRL are developing rapidly, with a handful of pioneering studies provid-
ing insight into the performance improvements to be delivered in shape  optimization32–34 and flow  control35–37; 
 see38 for a review. This is largely ascribed to the sustained efforts and commitment of the machine learning 
community, which has allowed expanding the scope from computationally inexpensive, low-dimensional model 
 reductions39–41 to complex two- and three-dimensional Navier–Stokes  systems42–50. Nonetheless, DRL has never 
been applied to hemodynamics computations (let alone biomedical flow computations in patient-specific geom-
etries), even though we believe the field has matured up to the point where a breakthrough may be in reach for 
targeted control of unruptured intracranial aneurysms.

Results
Pre‑stent hemodynamics.  Direct numerical simulations of the three-dimensional, incompressible 
Navier–Stokes equations performed with the Carreau–Yasuda rheological model of blood are used to investigate 
two patient-specific models of unruptured intracranial aneurysm. In the first place, the focus is drawn on the 
geometry labelled A, whose vascular information is provided in Fig. 1. It is a side-wall, wide-neck aneurysm 
of the supraclinoid internal carotid artery (ICA), proximal to the ICA bifurcation into the anterior cerebral 
artery (ACA) and the middle cerebral artery (MCA); see Fig. 1 for provision of the detailed vascular informa-
tion. The posterior communicating artery (PComA) is neglected, as it branches off well past the aneurysm. The 
ophthalmic artery (OA) is also neglected, although it branches off at this section of the ICA, in the vicinity of 
the aneurysm. Nonetheless, we do not anticipate any significant effect on the hemodynamics given its patient-
specific smallness ( ∼ 0.5 mm in diameter), plus this outflow is often neglected in numerical simulations as it is 
a common clinical practice to let flow diverters occlude it if no other viable option is  present51. The simplified 
model therefore ultimately features a single source of inflow (the ICA) and two outflows (ACA/MCA).

Figure 1.  Patient-specific geometries and datasets for the two ICA aneurysms investigated in this study. The 
rightmost plot provides one period of the patient-specific inflow pulses used for the CFD simulations. The range 
of Reynolds numbers in the parent vessel (based on the inlet diameter, inlet velocity and infinite-shear rate 
viscosity) is 220-490 for patient A, and 160-370 for patient B (resp. at diastole and systole).
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The vessel walls, taken to be impermeable and rigid, are treated with body-fitted, unstructured adapted grids 
(see Fig. 2a). The numerical solutions are customized to the patient (also labelled A) specific physiology using 
vascular geometries reconstructed from three-dimensional rotational angiography (3D-RA) images and pulsatile 
volumetric inflow rates adjusted to two-dimensional phase-contrast magnetic resonance imaging (2D-PCMRI) 
measurements. All quantities of interest, including velocity, WSS (the local, instantaneous, intra-saccular wall 
shear stress of pivotal importance in this context), SAWSS (the instantaneous WSS spatially averaged over all 
intra-saccular positions), and TAWSS (the local WSS averaged over a cardiac cycle), are computed from parallel 
hemodynamics simulations run over two cardiac cycles (representing approximately 1.6 s of physical time) with a 
reference inflow sequence of consecutive pulses starting in the end-diastolic state. This is because the solution has 
settled into regular, sinusoidal oscillations by the end of the first cycle, as obtained from preliminary comparison 
of WSS data over up to ten cardiac cycle.

The peak-systolic streamlines in Figs. 2 and 3 show that the flow remains close to parabolic in the inflow 
segment (hence reminiscent of Hagen–Poiseuille flow), but quickly becomes helical because the curved vessel 
geometry acts as a source of flow instability, as recently assessed in patient-specific  geometries53. Most of the 
blood enters the aneurysm at the proximal part of the neck in the form of a high-speed jet ( ∼ 0.73 m/s in velocity 
magnitude), impinging on and reflecting off the aneurysm wall, rolling up into complex vortical structures and 
finally swirling out of the bulge and to the outflow segments. This creates a strongly heterogeneous WSS pattern, 
with most of the distal part of the dome sustaining high WSS classically associated with aneurysm growth and 
rupture, as clearly illustrated in Fig. 3a, b. Maximum local, instantaneous WSS values of more than ∼ 169 dyne/
cm2  have been measured near the impaction zone, which is about 8 times normal WSS in cerebral  arteries52.

Virtual stenting.  Endovascular treatment is modeled by wrapping a distribution of identical, cylindri-
cal wires around a toroidal envelope inscribed in the arterial segment containing the aneurysm (half of them 
clockwise and the other counter-clockwise). In order to achieve heterogeneous functional parameters (in the 
sense that the pre-deployment stent structure must have variable pore density and porosity), the proximal end 
section of the envelope is divided into four quadrants, each of which with a specific (possibly different) number 
of uniformly distributed wires.

Figure 2.  Pre-operative hemodynamics of aneurysm A. (a) Cut view of the employed anisotropic tetrahedral 
mesh. (b) Velocity streamlines at systole.

Figure 3.  Pre-operative normalized TAWSS of aneurysm A. (a) Proximal view. (b) Distal view. The color scale 
has been adjusted to emphasize low/high WSS areas associated with remodelling and rupture  risk52.
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The parametrization foresees the modification of six design variables: the number of wires in each group, 
their radius and a winding factor (the same for all wires) that controls the local braiding angle between wires. 
Given the difference in scales between the vascular vessels (about a few mm in diameter) and the stent strut 
thickness (about a few ten µm), we rely on a hybrid meshing approach wherein the stents are embedded in the 
body-fitted vascular  grid54,55. Anisotropic adaptation in the vicinity of the stent envelope, as shown in Fig. 2a. 
We then use the monolithic immersed volume method  (IVM56) together with anisotropic mesh adaptation in 
the vicinity of the stent envelope to solve the interaction between the blood flow and the stent material. This 
allows easy handling of any complex device whose struts may be in contact with, or form very small gaps with 
the vessel walls, without additionally conforming the vascular grid to the stent geometry.

The proposed approach is first used to assess the ability of the method to capture numerically the flow diver-
sion effect using a standard homogeneous stent strut distribution made of 24 wires (12 in each braiding direction, 
3 in each group) with a radius set to 60 µm. We believe this is a reasonable compromise between desirability and 
feasibility, as thinner wires mirroring more accurately those of real medical stents (whose radii are in a range 
from about 15 to 30 µm) would escalate the CPU time and memory requirements (due to the need to embed 
large stent meshes and to additionally refine the vascular grids). All wires are braided with winding factor 25, 
that yields a braiding angle of 75◦ and a porosity of about 68.5%, (pore density of 3.1 pores/mm2), all values 
estimated from a pre-deployment, cylindrical stent structure.

Visualizations of the inflow jet, intra-saccular flow pattern (Fig. 4a) show that the stent significantly disrupts 
the blood flow, more of which is diverted away from the aneurysm and flows directly to the outflow segments. 
Nonetheless, the flow organization inside the aneurysm is essentially reminiscent of its unstented counterpart, 
with blood entering at the proximal part of the neck and swirling in and out after impinging on the distal wall. 
The key difference lies in the inflow jet having lower velocity (about 0.60 m/s in velocity magnitude) and weaker 
shear, hence less vorticity, and ultimately less shear stress on the aneurysm wall. This is further illustrated by the 
TAWSS distributions in Fig. 5a, c, where the instantaneous WSS peaks at about ∼ 120 dyne/cm2 . This represents a 
reduction of about 30% with respect to the unstented case illustrated in Fig. 3, although we notice the persistence 
of a heterogeneous WSS pattern over the distal part of the dome.

DRL optimization.  The optimization objective considered herein consists of bringing back the post-oper-
ative value of MWSS (defined as the maximum of SAWSS over a full cardiac cycle) to a setpoint of half the pre-
operative value, hence the reward

where the 0 subscript denotes a pre-stent quantity. This choice is intended to reduce high WSS associated with 
aneurysm growth and rupture, while avoiding low WSS conditions that might initiate apoptotic pathways via 
undesired vascular  remodelling19. In practice, the  MWSS0 for patient A is 76.6 dyne/cm2  (roughly half the 
maximum local, instantaneous value reported above), which yields a setpoint of 38.8 dyne/cm2 .

Single-step PPO, a reinforcement algorithm intended for situations where the optimal policy is independ-
ent of  state48, is used to evolve five (out the six) design parameters, as the wire radius has been set to 60 µm to 
keep the computational cost affordable, although it is a free parameter that could also be learnt from data. For 
each learning episode, the DRL agent (a deep neural network) therefore outputs five discrete values: four values 
{nj∈1...4} between 3 and 7 in step of 1 for the numbers of wires (one per set of equally spaced wires) and one 
value k between 20 and 35 in steps of 5 for the winding factor, hence 2500 parameter combinations comprising 
between 24 and 56 wires in total. The generated stent configurations have nominal braiding angles in a range 
from 65◦ to 95◦ and porosities in a range from 30.5 to 68.5% (pore densities between 3.1 and 22.7 pores/mm2). 
all values estimated from pre-deployment, cylindrical stent structures. The reward evaluation proceeds from 
hemodynamics simulations run over two cardiac cycles, with MWSS computed over the second cycle, after which 
the network is updated for 32 epochs using 8 environments and 2 steps mini-batches.

(1)r = −|MWSS−MWSSref| with MWSSref =
MWSS0

2
,

Figure 4.  Post-operative, peak-systolic velocity streamlines of aneurysm A. (a) After treatment with a 
homogeneous stent made of 24 wires. (b) After treatment with a 34 wire, non-uniformly braided stent. The stent 
design is the result of the optimization provided in the following sections (see DRL optimization).
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A total of 68 episodes have been run for this case, which represents 544 simulations, each of which lasts 20 min 
using 32 cores, hence 5,760 h of total CPU cost (equivalently, 45 h of resolution time). A moving average reward is 
also computed as the sliding average over the 100 latest values to assess convergence a posteriori (see Fig. 6). The 
reward convergence history in Fig. 6 evidences the successful convergence of the PPO algorithm coupled with 
patient-specific hemodynamic simulations. After 50 episodes (representing 400 simulations, hence 400 out of 
the 2500 possible designs), the DRL agent indeed starts to systematically pick the specific stent shown in Fig. 6d, 
whose red patch singles out the region of interest located in front of the aneurysm neck. The latter is made of 
34 wires (17 in each braiding direction, distributed into four groups of 5, 3, 5 and 4 wires, respectively) braided 
with winding factor 25. This yields in a nominal average porosity of 55%, with pore densities (in deployed state) 
ranging between 2.3 and 16.0/mm2 in the neck region facing the aneurysm.

Such a design is meant to be optimal for the patient specific aneurysm geometry and pulse, which is assessed 
now by comparing numerically the post-operative hemodynamics treated with the optimal stent designed by 
DRL (that earns a MWSS of 37.8 dyne/cm2  differing from the intended setpoint by 1%) and with the standard 
homogeneous stent considered so far (that earns a MWSS of 54.7 and is clearly inferior for the chosen reward). 
The peak-systolic streamlines in Fig. 4 illustrates the different flow deviation effect of the optimal stent. The latter 
successfully and adequately cuts down the inflow jet (that was inducing high WSS values on the distal part of 
the bulge, whose velocity magnitude is now about 0.47 m/s) while substantially altering the intra-saccular flow 
organization, found to involve fewer vortex structures, more parallel streamlines, and less swirling. We note 
that the optimal stent also substantially reduces the blood velocity at the exit of the aneurysm: 0.26 m/s, to be 
compared to 0.35 m/s without stent and using the standard, homogeneous stent. The result on the WSS distri-
bution is even more patent, as Fig. 5 shows that the DRL stent has completely eliminated the unstented area of 
maximum WSS (the local, instantaneous WSS now peaks at about 91 dyne/cm2 , which represents a reduction 
of about 45% with respect to the unstented case.) while restoring an almost homogeneous WSS pattern, which 
the homogeneous stent had failed to achieve.

Generalizability study.  For the sake of generalization (and in order to assess suitability for various aneu-
rysm configurations), we apply now the DRL framework to a second patient-specific model of untreated, unrup-

Figure 5.  Post-operative, normalized TAWSS of aneurysm A. (a, c) Proximal and distal views after treatment 
with a homogeneous stent made of 24 wires. (b, d) Same as (a, c) after treatment with the optimal, non-
homogeneous stent provided by our DRL framework, made of 34 non-uniformly braided wires (see Fig. 6d). 
Values are normalized based on the maximum TAWSS encountered in the pre-operative configuration (see 
Fig. 3).
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tured intracranial aneurysm (labelled B) whose vascular information is provided in Fig. 1. It is a saccular, mul-
tilobulated aneurysm located on the ICA, at the junction with the ophthalmic artery (OA). The latter is thus 
retained in the model (as it cannot be cleanly removed), yet not occluded numerically, as we voluntarily let 
blood flow from the ICA into the OA across the stent to explore the model ability to handle more complex intra-
aneurysmal flow conditions.

Following the same steps as for the previous case, the pre-operative hemodynamics of this patient has been 
analyzed from numerical simulations customized to his/her physiology (both in terms of vascular geometry 
and inflow pulse) carried out over two cardiac cycles (representing 1.8 s of physical time). The peak-systolic 
streamlines shown in Fig. 7a show that the case has many similarities to that of patient A, as the flow quickly 
becomes helical, and most of the blood enters the aneurysm at the proximal part of the neck in the form of a 
high-speed jet (0.72 m/s in velocity magnitude), that traverses the entirety of the primary bulge, impinges on its 
distal wall, rolls up into complex vortical structures and finally swirls out to the outflow segments (including the 
OA). As illustrated in Fig. 8a, c, this again yields a strongly heterogeneous WSS pattern, with high WSS values 
up to ∼ 146 dyne/cm2  in the vicinity of the neck and in most of the distal part of the dome, but low WSS in the 
daughter sac, that turns to be barely exposed to the blood flow environment.

Figure 6.  Stent optimization along with deep reinforcement learning for aneurysm A. The fine line represents 
the evolution per episode of the instant reward, while the thick line is the moving average reward computed 
over the 100 latest values. The right vertical axis presents the relative variations of MWSS with respect to 
the setpoint of half the pre-operative value. Representative stents generated over the course of optimization 
are superimposed, with the stent generated at episodes 15, 25 and 35 shown in (a–c) and the optimal stent 
predominantly generated after episode 55 shown in (d). The P/D labels indicate the proximal and distal end 
sections of the stent, whose upper half is displayed from below (longitudinal cut) to single out the region 
covering the aneurysm neck (shown by the red patch in (d)).

Figure 7.  Velocity streamlines of aneurysm B without and with DRL-optimized stent. (a) Pre-operative state. 
(b) Post-operative flow after insertion of the optimal stent (see Fig. 9d).
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The DRL optimization has then been run in similar fashion over a total of 58 episodes (464 simulations) 
using a setpoint of 36.3 dyne/cm2   (MWSS0 for this patient is 72.6 dyne/cm2 ,) and evaluated after convergence 
(accounted for when the agent outputs a majority of one specific design over several episodes). The reward con-
vergence history in . 9 evidences good convergence after 45 episodes (representing 360 simulations, hence 360 
out of the 2500 possible designs). The DRL agent then starts to sample the specific stent shown in Fig. 9d, whose 
red patch singles out the region of interest located in front of the aneurysm neck. The latter earns a MWSS value 
is 37.2 dyne/cm2 , which differs from the intended setpoint by 3%. It is made of 30 wires (15 in each braiding 
direction, distributed into four groups of 5, 3, 4 and 3 wires, respectively) braided with winding factor 25. This 
yields in a nominal average porosity of 61%, with pore densities (in deployed state) ranging between 4.1 and 11.2/
mm2 in the neck region facing the aneurysm. We note that the convergence is slightly less good than for patient 
A, which may be because the neck of aneurysm B is larger, but the same ranges of design parameters have been 
used for both patients. This offers more leeway by allowing more threads to fit into the region of interest of patient 
B, which, combined to the fact that only a small number of discrete winding factors are evaluated, increases the 
sharpness of the reward, known to be detrimental to the conservative policy updates of the PPO  algorithm48.

Finally, the efficiency of this design (in fact different from the optimal determined for patient A) has been 
assessed by comparison of the pre- and post-operative hemodynamics computed after treatment with the optimal 
stent. The peak-systolic streamlines in Fig. 7b show that the blood flow is adequately diverted away from the neck 
and into the parent vessel. The blood velocity is reduced at the entry (0.38 m/s in magnitude) but also at the exit 
of the aneurysm (0.23 m/s, to be compared to 0.43 m/s without stent), while swirling is essentially suppressed, 
as the inflow jet now merely slides along the distal wall. This considerably reduces the high distal values of WSS, 
as the maximum local, instantaneous WSS is now about 80 dyne/cm2  (again a reduction by about 45% with 
respect to the unstented case). We also note an almost homogeneous WSS pattern is restored in Fig.  8b, d, save 
for the low WSS region in the daughter sac, meaning that the latter could still grow on its own via inflammatory 
and apoptotic remodelling.

Figure 8.  Normalized TAWSS of aneurysm B without and with DRL-optimized stent. (a, c) Proximal and distal 
views in the pre-operative state. (b, d) Same as (a, c) after treatment with the optimal, non-homogeneous stent 
provided by our DRL framework, made of 30 non-uniformly braided wires (see Fig. 9d). Values are normalized 
based on the maximum TAWSS encountered in the pre-operative configuration (see Fig. 3).
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Discussion
Optimal stents feature a gradient of porosity.  Reported results highlight the potential of DRL shape 
optimization for endovascular stenting of intracranial aneurysms. It should be emphasized the optimal designed 
generated by our DRL agent, all relative to the chosen reward functions, feature varying porosities in the region 
of interest (ROI) facing the aneurysm neck. This, by itself, could represent a breakthrough in the stent manufac-
turing industry, where such designs do not yet exist (to date, variable porosity can be achieved locally only by 
superposition of several flow-diverters, which increases the risk and the cost of the surgery). More importantly, 
the optimal porosity gradient differs for both aneurysms, which paves the way for developing novel devices tai-
lored to the patient specific aneurysm, including (but not limited to) its geometry and pulse.

The results show that the optimal stents successfully cut down the blood velocity at the entry and the exit of 
the aneurysm while also altering the swirling flow inside the aneurysm, either by subtly modifying the swirling 
direction (patient A), or by suppressing swirling altogether (patient B). Nonetheless, the complexity of the cor-
relation between local porosity distribution, flow deviation and hemodynamics makes it difficult to unravel the 
exact physical mechanism behind the efficiency of this or that design, although it is common knowledge that the 
stent must allow blood in and out to avoid the occurrence of too-low WSS values, while sufficiently impeding the 
blood flow associated with the highest values of WSS in the aneurysm. From this perspective, the DRL approach 
is beneficial in two important respects: first, it is efficient, even though the parameter spaces are large and it may 
be costly to identify optimal designs from simple parametric searches. Second, and more significantly, it suc-
ceeds in discovering optimal designs from unforeseen parameter combinations, without any priori knowledge 
or assumptions about hemodynamics concepts.

CFD modelling assumptions and limitations.  Computational blood flow modelling in intracranial 
aneurysms has tremendous potential, yet limited applicability in a clinical context because of the simplifying 
assumptions that are traditionally (and often implicitly)  made57,58. Chief among them is the fact that walls are 
almost always assumed rigid, while arteries are compliant vessels, i.e., they deform under the shear stress of 
blood flow, with possibly large displacements impacting the WSS estimates (the authors  in59 report 10-30 % WSS 
reductions compared to rigid wall simulations). A two-way coupled fluid-structure interaction (FSI) analysis is 
thus necessary to solve accurately the mechanical exchanges between the blood flow and the arterial tissue, while 
also encompassing the stent deformation occurring under load conditions (by the blood flow and/or the arterial 
tissue), another important factor that may alter the porosity at the neck and impair the long-term  efficiency60,61. 
One ongoing debate regarding the need to include the effects of compliance comes down to whether the uncer-
tainties or inaccuracies in the data needed to model its effects may mask any perceived benefit of doing so: on the 
one hand, it has been acknowledged that improved computational models should incorporate patient-specific, 
spatially varying wall thicknesses, as uniform wall properties and thicknesses based on literature values will fail 

Figure 9.  Stent optimization along deep reinforcement learning for aneurysm B. The fine line represents the 
evolution per episode of the instant reward, while the thick line is the moving average reward computed over the 
100 latest values. The right vertical axis presents the relative variations of MWSS with respect to the setpoint of 
half the pre-operative value. Representative stents generated over the course of optimization are superimposed, 
with the stent generated at episodes 15, 25 and 35 shown in (a–c) and the optimal stent predominantly 
generated after episode 45 shown in (d). P and D annotations indicate the proximal and distal end sections of 
the stent, respectively.
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to represent inter- and intra-individual  variations62,63. On the other hand, it is feasible to measure individual wall 
properties by imaging and inverse modelling techniques, but such non-linear analyses introduce substantial 
uncertainties, for instance imaging can distort wall thickness measurements in a way that can be difficult to 
detect or  correct64. In this regards, it is reasonable and expedient to use a rigid wall model for the present purpose 
of showcasing the use of DRL techniques for image-based CFD hemodynamics optimization (without any con-
sideration of being directly applicable real medical cases), while leaving to future research to more fully address 
this issue and close the methodological gap of providing high-fidelity hemodynamic data. Finally, achieving the 
fine deployment of the stent in the arterial vessel was not in the scope of this study. A realistic deployment, along 
with a more versatile stent parametrization would expand the possible configurations and surely lead to fascinat-
ing results, which could drastically impact the medical community.

DRL reward function.  There are two main aspects worth discussing regarding the DRL reward function 
used herein. First, the design of a feasible reward function is one of the challenges in reinforcement learning 
problems, but one that is barely discussed in the available literature. In the absence of best practice guidelines, 
it is essentially a trial-and-error exercise, with a human expert defining an initial reward function based on his/
her knowledge of the problem, observing how the agent performs, then tweaking the reward function to achieve 
greater performance. We use here a reward function aligned with the objective function, meaning that when the 
agent is learning to maximise this reward, it is also learning to minimize the distance between the post-stent 
maximum value of MWSS over a cardiac cycle and the setpoint of half the pre-stent value. This allows reducing 
WSS while preventing the occurrence of very low WSS values, which is consistent with the expected outcome 
of a stenting operation (in the absence of further quantitative information or reduction objectives). A more 
sophisticated approach to pursue in future work could be to force the WSS to remain in a physiological range 
(that could be defined from patient-specific data) at every point in the bulge, using for instance a local reward 
function defined as

Second, the reward uses MWSS as the sole predictor of aneurysm rupture, which implicitly assumes that a 
brief exposure to extended regions of high WSS is key towards predisposing the aneurysm wall to weakening 
and rupture. On the one hand, this suffices to lay the foundation for future research in this field, given the wide 
acceptance of WSS as a key factor in the physiological and pathological response of cerebral arteries. On the 
other hand, a gap of knowledge remains on this issue (for instance, both high or low WSS have been separately 
correlated to aneurysmal formation and  growth9,19,20,65,66), and enriched reward functions (encompassing the time 
and space-dependent influence of blood dragging at the aneurysm wall, both in magnitude and in direction) are 
likely needed to improve clinical relevance. In this regards, it is worth insisting that the presented framework is 
highly generalizable, in the sense that it can assess new concepts of flow-deviator stents with respect to any or 
any combination of the markers of disturbed blood flow that have surfaced in recent publications (WSS gradient, 
oscillatory shear index, relative residence time, to name a few), that reflect different assumptions being made 
about the hemodynamic conditions driving the progression of intracranial aneurysms toward  rupture53,67–70. This 
falls under the scope of multi-objective DRL for which there are two main approaches. The most common way 
is to use a linear function to transform the multi-objective problem into a standard single-objective problem. 
Another interesting (but very costly) strategy is to explicitly separate the individual components of the reward 
function, in order to better understand the policy trade-off (the related methods, based on the Pareto optimum, 
are not yet frequently applied to DRL problems).

DRL algorithm.  Future work should aim at further improving the flexibility of the proposed framework by 
allowing more realistic stent geometries (in terms of wire radius, number of wires), thus increasing the number 
of possible stent designs. Having a more continuous optimization space (by increasing the number of winding 
factors) will also undoubtedly improve the convergence of the PPO algorithm. From this standpoint, it should to 
be emphasized that this is a proof-of-concept study and that convergence and efficiency (i.e., the number of stent 
designs that need to be evaluated to reach convergence) could be accelerated by hyper-parameter tuning or using 
pre-trained deep learning models (as is done for instance in transfer learning). Generally, the rather simplistic 
PPO framework could be substituted by a more elaborated algorithm, for instance Policy-based Optimization 
(PBO)71, another single-step reinforcement algorithm that samples actions from full covariance matrices, and is 
theoretically better suited to represent higher order logic and to handle complex parameter interactions.

Future research directions.  The purpose of this study is to lay out the foundation for future research in 
this field. We anticipate that large-scale studies with long-term follow-up will allow developing more reliable 
risk-prediction models. As envisioned by Meng et al.19, we picture that intracranial aneurysms could be sorted 
into different categories associated with different predictors reflecting different growth and rupture mechanisms 
(say, high WSS and positive WSS gradient for narrow-necked aneurysms vs. low WSS and high fluctuations of 
WSS orientation for wide-necked aneurysms), at which point a high-fidelity DRL-CFD hemodynamics frame-
work accurately modelling the elastic deformation of the parent artery will be instrumental in providing clini-
cally relevant, patient-specific stent designs (except for the unpredictable delivery manipulations and variations 
of vessel geometry occurring during the intervention that still might impact the stent implantation). By then, it is 
reasonable to expect that further developments in the fast-moving field of deep reinforcement learning will allow 

(2)r =

�

S
rloc(x) ds with rloc(x) =






WSS(x)−WSSinf if WSS(x) < WSSinf ,
0 if WSSinf ≤ WSS(x) ≤ WSSsup,
WSSsup −WSS(x) if WSSsup < WSS(x) .
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for faster convergence and lesser execution load (using, e.g., auto-encoders and systematic state compression, 
or on-the-fly generation of surrogate models with uncertainty level prediction). This should set up a framework 
fast enough to inform design in a matter of hours rather than days, which in turn will reliably augment the 
current clinical diagnostics capabilities. Another reason to push DRL forward in this context is the ability of 
neural networks to transfer knowledge from previous experiences, to quickly adapt to different environments 
(i.e., different patient-speciffic numerical models of intracranial aneurysms, corresponding to new patients in 
practical applications) and effectively learn new tasks (i.e., different rewards, to achieve further refinement of 
risk prediction). We expect that this will be a key feature to reduce learning time and improved neural network 
performance, as progress are made towards realizing the clinical utility of CFD for assessment of intracranial 
aneurysm rupture.

Methods
Clinical and imaging data.  Images obtained from 3 Tesla MRI (magnetic resonance imaging) and 
3D-DSA (digital subtractiob angiography) to create the adequate geometry for the simulation and the pulse to 
impose the flow. All images have been acquired at the University Hospital - LMU Munich.

Stent model.  Virtual stenting relies on a naive stent generator inspired  by72, in which 2n wires are wrapped 
around the toroidal envelope parametrized by

where r and R are the minor and major radii of the torus, and l is its centerline length. The wire centerlines follow 
hhelical curves generated from a circular basis, that in turn provides the scaffold for the struts. Circular profiles 
are then extruded along the splines to generate the final wires with diameter d = 60µm . Nominal heterogeneous 
functional parameters (yet homogeneous within a given group of wires) functional parameters, e.g., braiding 
angle, porosity (the percentage ratio of the wire-free surface area) and pore density (the number of pores per unit 
surface area) are obtained by braiding two by two parallel wires from nj initial positions uniformly distributed in 
each quadrant of the proximal end section (labelled counter-clockwise, adjusting the origin of azimuthal angle 
for the first quadrant of the cylinder to be mapped into the upper outer quadrant of the torus). In practice, all 
wire paths are actually computed under a slowly varying envelope approximation using

to fit the weak variations in the minor radius caused by the irregular patient-specific vascular geometry. This is 
because the variations for the cases documented herein (by about 11% relative to the average value) have been 
found to be well modelled by affine transformations, but more complex analytical functions can be specified as 
well. Examples of generated stents are given on Fig. 10.

Computational domain and mesh.  The medical imaging data of both patients is segmented using the 
3D Slicer software. The entire proximal portion of the parent artery visible in the images is reconstructed, for 
which 3D Slicer outputs point coordinates and connectivity of the centerline, together with the corresponding 
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Figure 10.  Stent generation examples. Homogeneous (a) and heterogeneous (b) braided structures computed 
under a slowly varying envelope approximation for aneurysm A.
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vessel radius (as defined by the minimal distance from the centerline to the vessel boundary) and curvature. A 
non-shrinking  filter73 is used as an additional step of shape regularization to obtain smooth surface triangula-
tion of the aneurysm lumen and connected vessel walls (which helps mitigate the effect of inner surface rough-
ness). All vessels are truncated at some distance from the aneurysm bulge and extended with straight cylindrical 
pipes closed perpendicularly to their axis, to allow for flow development and ease the subsequent application of 
inflow/outflow boundary conditions.

For each patient, three-dimensional unstructured isotropic meshes of the vascular domain and stent devices 
are generated with the Gmsh  software74, after which the vascular grid is finely and anisotropically refined with 
the method described  in75. This allows evaluating any stent design sampled by DRL on the same vascular mesh, 
and thus yields considerable saving in the overall computational time. For the stent devices, 4 mesh points are 
allocated across any wire diameter, which is a reasonable compromise to assess feasibility while producing qualita-
tive results to build on, as it yields a number of mesh elements that stands well below the few ten million elements 
reported in previous  studies54,55. This in turn keeps the computational cost affordable, which is mandatory given 
that optimization requires evaluating the performance of hundreds of stent designs.

Computational hemodynamics framework.  The blood flow is mathematically modelled after the 
three-dimensional incompressible Navier–Stokes equations

where u is the velocity field, p is the pressure, ε(u) is the rate-of-deformation tensor, ρ = 1050 kg/m3 is the 
constant blood density, and µ is the non-Newtonian blood viscosity evaluated from the Carreau–Yasuda law 
using zero-shear rate viscosity µ0 = 0.0456 Pa.s, infinite-shear rate viscosity µ∞ = 0.00320 Pa.s, relaxation time 
τ = 10.03 s, power law index n = 0.344 and transition parameter a = 1.25 (all values for a hematocrit of 40 % 
and a temperature of 37 ◦C). The instantaneous wall shear stress whose peak value over a cardiac cycle is used 
for reward evaluation is computed as

where γ̇ = (2ε(u) :ε(u))1/2 is the wall shear rate defined as the second invariant of the rate-of-deformation ten-
sor, δsac is a boolean representation of the aneurysm surface (obtained by embedding a portion of the adapted 
body-fitted grid truncated to remove the extra-aneurysmal domain), and the prefactor is the Weissenberg–Rabi-
nowitsch correction for shear-thinning  effects76. Since the elastic motion of the arterial wall is overlooked as a 
first approximation, simple open flow conditions are used, that consist of no-slip conditions at the solid nodes, 
zero-stress outflow conditions, and pulsatile, parabolic inflow condition

where ||x|| and n are respectively the distance to the centerline and the normal vector in the inlet section of the 
parent artery, and Q is the time-dependent, volumetric flow rate adjusted at each time step to 2D-PCMRI meas-
urements of the patients cross-sectionally averaged blood velocity (using linear regression from the two closest 
data points whenever the simulation and acquisition times do not coincide).

Variational multiscale modeling.  A stabilized weak form of Eq. (5) is solved with a finite element vari-
ational multiscale method  (VMS77–79). Such an approach consists in splitting the solution into coarse and fine-
scale components, each corresponding to a different level of resolution. Only the large scales are fully repre-
sented and resolved at the discrete level. The fine scales are approximated in a way such that their effect into 
the large-scale equations is modelled after consistently derived source terms proportional to the residual of the 
resolved scale solution. Exhaustive details  in80 regarding the derivation of the stabilized formulations lead to the 
following weak form for the large scale

where ( , ) is the L2 inner product on the computational domain, ( , )K is the inner product on element K, w and 
q are relevant test functions for velocity and pressure, RC,M are the governing equations residuals

and τC,M are ad-hoc mesh-dependent stabilization parameters (comparable to local coefficients of proportional-
ity) defined  in81,82.

We solve Eq. (8) with an in-house VMS solver whose accuracy and reliability is assessed in a series of previ-
ous papers,  see82,83 for a detailed mathematical formulation of the IVM in the context of finite element VMS 
methods,  and84,85 for applications to non-Newtonian flows in complex geometry. Equal order, linear interpolation 
is used for spatial discretization of the velocity and pressure variables (as the inf-sup condition does not need 
to be satisfied due to the additional stabilization terms). Time-stepping is first-order accurate and combines 
explicit (for the VMS stabilization parameters), implicit (for the viscous, pressure and divergence terms), and 

(5)∇ · u = 0 , ρ(∂tu+ u · ∇u) = ∇ · (−pI+ 2µε(u)) ,

(6)WSS =
3n+ 1

4n
µγ̇ δsac ,

(7)u =
2Q(t)

πr2

(
1−

||x||2

r2

)
n,

(8)

(ρ(∂tu+ u · ∇u) , w)+ (2µε(u) , ε(w))− (p , ∇ · w)+ (∇ · u , q)
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]
,

(9)−RC = ∇ · u , −RM = ρ(∂tu+ u · ∇u)+∇p
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semi-implicit integration schemes (for the time derivatives, convection terms and VMS source terms, using back-
ward differentiation formula and Newton–Gregory backward polynomial). The time-step is set to 0.02 s, which 
allows distributing 40 and 46 points per cardiac cycle for aneurysm A and B, respectively. All linear systems are 
preconditioned with a block Jacobi method supplemented by an incomplete LU factorization, and solved with 
the GMRES algorithm, with tolerance threshold set to 10−6.

Computational hemodynamics framework with deep reinforcement learning.  The stent design 
is optimized solving a decision-making problem with reinforcement learning (RL), a process by which an agent 
learns to earn rewards through trial-and-error interaction with its environment. At each turn, the agent observes 
the state st of the environment and takes an action at , that prompts both the transition to the next state st+1 and 
the reward received rt . This repeats until the agent has learnt the succession of actions maximizing its cumulative 
reward over an episode (i.e., the reference unit for agent update, best understood as one instance of the sce-
nario in which it takes actions). In the present context, the environment is a patient-specific CFD simulation of 
aneurysm hemodynamics after implantation of flow-diverting stent, that uses the computational hemodynamics 
framework described above. The agent is a policy represented by a deep neural network (a collection of artifi-
cial neurons that learns to represent a non-linear relation between input and output spaces, hence deep RL or 
DRL) trained with a RL algorithm, as reviewed in the next sections. The environment and the agent are coupled 
two-way, as illustrated in Fig. 11 : on the one hand, the actions sampled by the DRL agent (a set of five variables 
corresponding to four number of wires and a winding factor ) are used to generate the stent meshes immersed in 
the CFD simulation. On the other hand, the reward function needed by the agent to learn (here, the maximum 
value of MWSS) is obtained by post-processing of the CFD data.

DRL agent.  A fully connected neural network is used, whose neurons are stacked in layers, each of which 
maps the biased weighted sum of their inputs through an activation function to produce their outputs and 
propagate the information forward from the input to the output layer via “hidden” layers (we use here 2 such 
hidden layers, each with 4 neurons feeding hyperbolic tangent activation functions). The network is trained with 
the single-step PPO algorithm, that learns a five-dimensional (four numbers of wires plus a winding factor) 
multivariate normal distribution whose mean and variance depend on the network weights and biases. Single-
step PPO is a variation of the proximal policy optimization algorithm  (PPO25) intended for situations where the 
optimal policy is independent of state, whose relevance for open-loop flow control is assessed  in48. Just like PPO, 
it uses gradient ascent to maximize the surrogate loss

where πθ (a) is the policy, i.e., a probability distribution of actions πθ (a) parameterized by a set of free parameters 
θ (here the weight and biases of the deep neural network) that determines the agent behaviour, Âπθ is a biased 
estimator of the advantage function Aπθ measuring the gain of taking action a over the average value (here its 
normalization to zero mean and unit variance), and ǫ is a clipping range defining how far away the new policy 
is allowed to go from the old. A positive (resp. negative) advantage increases (resp. decreases) the probability 
of taking action a, but always by a proportion smaller than ǫ , otherwise the min kicks in (10) and its argument 
hits a ceiling of 1+ ǫ (resp. a floor of 1− ǫ ). This conservatism inherited from the parent algorithm ensures that 
the current and new policies behave similarly (which prevents the agent from falling off a cliff and restarting 
with a locally bad policy, in which case the performance may collapse drastically and never recover). Another 
trait shared by the two algorithms is the lack of necessity for assumptions regarding the optimization problem 
to be solved and for fine-tuning of the network hyper-parameters (i.e., those parameters not learnt from data).

Where the two methods differ is that PPO seeks the optimal set of actions a⋆ earning the largest possible 
reward, while single-step PPO seeks the optimal state-action mapping fθ⋆ such that a⋆ = fθ⋆ (s0) , where s0 denotes 
some input state consistently fed to the agent for the optimal policy to eventually embody the transformation 
from s0 to a⋆ . Starting from a random mapping fθ0 from s0 to the policy determined by the free parameters ini-
tialization, the agent gets one attempt per episode at finding the optimal (i.e., it interacts with the environment 
only once per episode) before updating the policy. Another subtle difference is that PPO is actor-critic, i.e., it 
features an actor network that learns the policy, and a critic network that learns to estimate the advantage. Single-
step PPO works without knowledge of the critic evaluations (and is thus not actor-critic) because the trajectory 

(10)Ea∼πθ

[
min

(
πθ (a)

πθ old(a)
, 1+ ǫ sgn

(
Âπθ (a)

))
Âπθ (a)

]
,

Figure 11.  Sketch of the present DRL-CFD action-loop. The CFD hemodynamics environment and the DRL 
agent are coupled two-way through actions and rewards.
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of state and actions consists of a single pair. The discount factor adjusting the trade-off between immediate and 
future rewards can thus be set to γ = 1 , in which case the advantage reduces to the whitened  reward48.

Our single step PPO method is based on the default open-source implementation of Stable Baselines (https://
github.com/openai/baselines/tree/master/baselines/ppo2), for which a custom OpenAI environment has been 
designed with the Gym  library86. We have updated and connected the original code with our CFD library for 
simple reading and writing of the results (the code is shared publicly using the following link : https://github.
com/jviquerat/pbo). The convergence properties are illustrated in Fig. 12 for a minimization test problem of 
two- and five-dimensional Rosenbrock functions, whose global minimum is notoriously difficult to catch for 
optimization algorithms and two-dimensional Branin function, that has two identical global minima. For this 
case, the single-step PPO-1 algorithm is benchmarked against classical ( µ-�)-ES and CMA-ES evolutionary 
methods, all implemented in in-house production codes. To ensure a fair comparison, the initial parameters 
and starting points are identical for all methods. All runs are afforded the same budget, namely 500 evaluations 
(20 episodes with 5 parallel environments in PPO-1, 20 generations with 5 individuals per generation in evo-
lutionary algorithms) for Rosenbrock and 50 evaluations for Branin (10 episodes/generations with 5 parallel 
environments/individuals per generation). A large initial standard deviation is used by default, to ensure a good 
exploration of the optimization domain. Finally, in order to emphasize flexibility and generalizability, all PPO 
runs are tackled without fine-tuning of the algorithm, i.e., all runs use the same meta-parameters as in Table 1. 
Performances are averaged over 10 runs, with standard deviations shown as the light shade around. As could have 
been expected, the search efficiency of CMA-ES yields the best overall performance, which reflects the benefit 
of efficiently elongating the research area with respect to the local shape of the cost function. Among isotropic 
exploration methods, PPO-1 achieves final cost levels similar to ( µ-�)-ES, with faster convergence and better 
performance at intermediate stages (the final performance level ultimately saturates for the Rosenbrock function 
because the minimum is in a long, narrow valley, and PPO-1/(µ-�)-ES use isotropically sampled approxima-
tions of the descent direction). The general picture to be drawn is that (1) PPO-1 exhibits strong performance 
compared to methods relying on similar isotropic search distributions, and (2) anisotropic search distributions 
are mandatory to outperform more advanced methods on a consistent basis, an issue that is being addressed in 
current research efforts by the  authors87.

Parallel data collection.  In practice, actions are distributed to several environments running in paral-
lel, each of which executes a self-contained MPI-parallel CFD simulation and feeds data to the DRL algorithm 
(hence, two levels of parallelism related to the environment and the computing architecture). All simulations are 
performed on a workstation of AMD EPYC 7502 processors. The algorithm waits for the simulations running 
in all parallel environments to complete, then shuffles and splits the rewards data set collected from all envi-
ronments into several buffers (or mini-batches) used sequentially to compute the loss and perform a network 
update. This repeats for several epochs, i.e., several full passes of the training algorithm over the entire data set 
(which ultimately makes the algorithm slightly off-policy, since the policy network ends up being trained on 
samples generated by older policies). This simple parallelization technique is key to using DRL in the context of 
flow control applications, as estimating accurately the policy gradient requires assessing a sufficient number of 
actions drawn from the current policy, hence a large computational burden associated to reward computations 
for high-dimensional fluid dynamics problems (typically, the cost of a single call to the CFD solver times the 

Figure 12.  Benchmark minimization problems for the (a) two- and (b) five-dimensional Rosenbrock functions, 
and (c) the two-dimensional Branin function, using the present PPO-1 algorithm and reference ( µ-�)-ES and 
CMA-ES evolutionary algorithms.

Table 1.  PPO hyper parameters.

32 Nb. epochs

8 Nb. environments

2 Size of mini-batches

5× 10
−3 Learning rate

0.3 Clipping range
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number of evaluations required). In the same vein, it should be noted that the common practice in DRL studies 
to gain insight into the performances of the selected algorithm by averaging results over multiple independent 
training runs with different random seeds is not tractable, as it would trigger a prohibitively large CPU cost. The 
same random seeds have thus been deliberately used over the whole course of the study to ensure a minimal level 
of performance comparison between the two cases.

Data availability
The datasets generated and analysed during the current study are not publicly available due the fact that they con-
stitute an excerpt of research in progress but are available from the corresponding author on reasonable request.
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