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Iterative heterogeneous 
graph learning for knowledge 
graph‑based recommendation
Liu Tieyuan 1,2, Shen Hongjie 2, Chang Liang 2, Li Long 2* & Li Jingjing 2,3*

Incorporating knowledge graphs into recommendation systems has attracted wide attention in 
various fields recently. A Knowledge graph contains abundant information with multi‑type relations 
among multi‑type nodes. The heterogeneous structure reveals not only the connectivity but also 
the complementarity between the nodes within a KG, which helps to capture the signal of potential 
interest of the user. However, existing research works have limited abilities in dealing with the 
heterogeneous nature of knowledge graphs, resulting in suboptimal recommendation results. In this 
paper, we propose a new recommendation method based on iterative heterogeneous graph learning 
on knowledge graphs (HGKR). By treating a knowledge graph as a heterogeneous graph, HGKR 
achieves more fine‑grained modeling of knowledge graphs for recommendation. Specifically, we 
incorporate the graph neural networks into the message passing and aggregating of entities within a 
knowledge graph both at the graph and the semantic level. Furthermore, we designed a knowledge–
perceiving item filter based on an attention mechanism to capture the user’s potential interest in their 
historical preferences for the enhancement of recommendation. Extensive experiments conducted on 
two datasets in the context of two recommendations reveal the excellence of our proposed method, 
which outperforms other benchmark models.

List of symbols
U  The set of users
V  The set of items
Y   The user-item interaction matrix
G  The knowledge graph
E  The set of entities of a knowledge graph
R  The set of relations of a knowledge graph
Bi  The bipartite graph of a relation
GH  The knowledge heterogeneous graph
ŷuv  The likely score of a user u to item v
f (·)  The prediction function
�ez  The embedding of a node z
AGGBi (·)  The message aggregator function
N (z)  The neighbor information associated with node z
LeakyReLU(·)  The LeakyReLU activation
W

L,Bi  The trainable matrices assign weights to nodes
p ∼ H(u)  The set of u ’s history interactions
Pu  The set of u ’s historical preferences
βvk  The correlation coefficient of vectors v and k
�huv  The superposed result of user’s preferences items
CONCAT(·)  The concatenate operation
�ouv  The item-preferences relevance vector
φ(·)  The sigmoid function
L  The loss function
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The last decade has witnessed a rapid development of deep learning applied in the field of  recommendation1. 
However, traditional deep learning recommendation systems have the problem of cold start and fail to take 
advantage of the deep relationships between users and items. As a result, their recommendation results were 
disappointing when faced with massive, real-time, heterogeneous  data2. Some researchers seeking solutions with 
the intent to alleviate these problems have tried to combine deep learning with some new technologies. In recent 
years, some excellent knowledge graphs (e.g., DBPedia, wikidata, satori) have attracted increasing attention. 
These methods of incorporating knowledge graphs into recommendation have gradually entered the vision of 
researchers in various fields.

A knowledge graph represents domain knowledge in a special network structure, storing data in the clear and 
concise form of triples for entities and their  interlinks3 as shown in Fig. 1a. A knowledge graph is an essentially 
heterogeneous graph that contains abundant information about different types of nodes and relations. Due to its 
special structure, the knowledge graph has a great advantage in storing sparse and heterogeneous data, making 
it able to describe semantic details of entities within a knowledge graph. Focusing on the recommendation task, 
a lot of research and experiments demonstrate that knowledge graphs can not only help the recommendation 
algorithms solve the challenge of cold start, but also improve the interpretability and efficiency of recommenda-
tion  results4.

Existing knowledge graph embedding (KGE) methods such as TransE, TransR, and TransD etc.5–7, represent 
the entities and their relations by regularizing them into a vector space and training their embeddings through 
a unified formula. Although widely used in the field of recommendation, we argue that these methods do not 
consider the multi-semantic and indirect connections between nodes within a knowledge  graph8, resulting in 
limited effectiveness in searching for the potential interest of users.

Previous works have shown great superiority in introducing knowledge graphs into recommendation 
 systems9, most of them either utilizeknowledge graphs for embedding representation  learning10–13, or feature 
mining using the graph’s unique data  structure14–16. For example,  MKR10 designed a multi-task training frame-
work for embedding learning and recommendation tasks,  RippleNet17 explores users’ potential interests through 
exploiting the neighborhood of a user’s preferences with an attention mechanism. However, MKR is unreliable 
in capturing the high-order correlation between entities since the method is partly based on a knowledge graph 
embedding learning which ignores the path and adjacent information. While RippleNet relies too much on the 
proportionality of relationships and ignores the integrity of the knowledge graph. Other works relying on KGE, 
use methods that map users into the knowledge  graph11,14,18 as nodes, enhancing the efficiency and interpret-
ability of recommendation. Although all these methods have excellent recommendation performance, they still 
uniformly train the models that have limitations in representing the graphs of multiply nodes and relations. 
We argue that, in passing messages from different relations, it is insufficient by only differing embeddings. We 
believe that considering the heterogeneity of the knowledge graph, the information propagation behavior may 
be different between different nodes of different semantics and different relationships, and how to mode the 
knowledge graph in a more fine-grained way is an optimization direction.

To address the shortcomings of prior studies, an iterative heterogeneous graph learning recommendation 
method based on the knowledge graph is proposed in this paper(HGKR). In HGKR, we incorporate the advan-
tages of previous works and adopt a new way of modeling feature learning. Firstly, we extract bipartite graphs 
from the knowledge graph. As shown in Fig. 1b, all semantic information in a knowledge graph can be repre-
sented by four bipartite graphs, each of which records the relationship between two types of entities. Next, we 
apply graph neural networks to characterize the embedding representation of each node in the bipartite graph 
at the graph level. Furthermore, we iterate through all the graphs and iteratively propagate messages from one 
graph to another at the semantic level, which updates the embedding of nodes to retain the semantic informa-
tion. Besides, we designed a knowledge-perceive filter that utilizes attention mechanism utilized to explore 

Figure 1.  (a) describes a knowledge graph constructed on movies and (b) shows the bipartite graphs extracted 
from the knowledge graph of (a). Each bipartite graph corresponds to a type of relation in the knowledge graph.
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users’ potential interest in their historical preferences. Our HGKR has two advantages over existing methods: 
(1) Through achieving more fine-grained modeling of the knowledge graph, HGKR can adopt more appropriate 
message-passing algorithms for different relationships to effectively characterizes a KG’s rich semantic infor-
mation. (2) The attention weights are calculated on the user’s interaction history, which in turn captures the 
high-order relatedness of the item, which discovers the collaborative signal for a reasonable recommendation.

The main contributions of this work can be summarized as follows:

• For the recommendation task, we construct knowledge graphs aided by external knowledge base to obtain 
rich relationships and the attributes of each item. Then we extract bipartite graphs at the semantic level by 
classifying the triplelt data from the knowledge graph.

• We propose HGKR, an end-to-end framework for recommendation assisted by a knowledge graph. HGKR 
applies graph neural networks to hierarchical modeling of the knowledge graph, realizing a more fine-grained 
modeling method.

• Furthermore, we designed a knowledge–perceiving filter to capture the potential interests of users by 
leveraging the attention mechanism in HGKR.

• We have evaluated the proposed model on two open datasets. Experimental results showed that our proposed 
method performs better than several state-of-the-art baselines.

The following sections are organized as follows: “Related Work” Section introduces the related work. 
“Methodology” Section describes the main task description and methodology. “Experiments” Section then 
introduces the experimental setup, comparative baselines and experimental results. Lastly, “Conclusion and 
Future Work” Section briefly summarizes the work and gives an outlook.

Related work
Knowledge graph embedding. Knowledge graph embedding techniques are wildly applied to guide the 
representation learning of entities and relations, mapping them into a continuous dimensional vector  space19.

Bordes et al. proposed  TransE5 in 2013, which introduced a classical idea based on “translation”, using triplet 
head entities and relations in a knowledge graph to deduce tail entities based on a translation formula. However, 
TransE insufficiently dealt with the representation of entities under reflexive and one-to-many relationships 
in the knowledge graph. To handle these problems, Wang et al. extended the TransE and proposed  TransH20, 
constructing a hyperplane corresponding to each relation. Head and tail entities in TransH are mapped to 
hyperplanes for “translation” learning. Following this idea,  TransR6,  TransD7, and  TransG21 were put forward in 
succession. Translation models are simple in training and efficient in representing.

However, the methods above only consider a single triplet, they ignore implicit information such as relational 
paths and the structure of a knowledge graph. Lin et al.22 proposed a path-based model PtransE, utilizing a 
path-constraint resource allocation algorithm to measure the confidence of a relational path and enhance the 
knowledge reasoning ability.  PathCon23 considers not only the information of the adjacent edges of entities 
but also the multiple paths connected with the head and tail entities to acquire information brought by the 
intermediate entities.  InterERP24 employs the inception network to increase the interactions between entities 
and relations to enhance knowledge reasoning ability.

The development of KGE and the increasing demand for knowledge cognition promotes the development 
of knowledge reasoning and knowledge graph  completion25. As the underlying part of knowledge graph 
construction, KGE also plays an important role in the fields that apply knowledge graphs.

Recommendation system based on knowledge graph. Due to the impressive performance of KGE 
in knowledge reasoning and completion, more and more research applies KGE in recommendation.  MKR10 
designed a unique feature interaction unit that connects the recommendation task and KGE, realizing joint 
training between two modules. Inspired by MKR,  CAKR26 optimizes the feature interaction unit by employing 
an attention mechanism to enhance reasonable embedding.  KTUP11 also adopted the method of jointly training 
recommendation tasks and knowledge graph completion to take users as nodes of knowledge graph for repre-
sentation learning. Meanwhile, a new KGE method was proposed in KTUP to capture the relationship between 
users and items by using implicit preferences. Chen et al.12 designed a knowledge aware collaborative learning 
framework, which utilized TransR to learn embedding representations of users and items. Finally, top-k recom-
mendation was made to target users based on calculations using the items’ representation.

Some research mines information between entities focusing on the data structure and connected paths 
within a knowledge graph for improving the recommenders.  RippleNet17 is a state-of-the-art work that naturally 
incorporated a knowledge graph into the recommender system. RippleNet stimulated the propagation of users’ 
preferred items over the set of linked entities, offering the user’s potential interest. In order to figure out the 
basic rationale of a user-item interaction,  KPRN14 conducted knowledge reasoning on paths by leveraging the 
sequential dependencies within paths connected to users and items and designed a weighted operation for 
path distribution. Zhang et al.15 used graph neural networks for feature extraction of nodes in the graph, for 
the purpose of preserving higher-order neighborhood information and achieving node-level and graph-level 
representation of the knowledge graph. Besides,  KGCN16 and KGAT 27 focused on the graph structure and 
employed the attention mechanism in neighbors to mine associated attributes of each node. KGCN sampled 
from nodes’ neighbors as a receptive field, which models proximity information for each node. While KGAT 
recursively learns nodes’ embeddings by propagating messages from neighbors.
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Graph neural network. Previous works show that graph neural networks (GNN) are widely applied in 
recommenders based on knowledge graphs. To model graph structural  data28, graph neural networks use mes-
sage passing to aggregate or spread neighborhood features from nodes to nodes.  GCN29 grafts convolution neu-
ral networks to graph structures, implements convolution operations on graph structure data, and aggregates 
neighbor features for each node in the graph. Instead of using a full size of neighbor set,  GraphSAGE30 samples 
a fixed-sized neighbor, and conducts on three different aggregators for the neighbors’ message. GAT 31 leverages 
the attention mechanism into a message aggregating step, by computing the hidden states of each node while 
attending to its  neighbors32. For heterogeneous graph learning,  HAN33 designed a novel heterogeneous graph 
neural network based on hierarchical attention, including node-level and semantic-level attention.

Our proposed recommender model is used to unify the application of graph neural networks in heterogeneous 
graph learning and recommendation tasks since the graph neural networks are powerful in mining the high-order 
proximity information between entities in a graph that helps HGKR make better recommendations.

Methodology
Background and definition. In the traditional recommendation scenario, the set of M users is defined 
as U = {u1, u2, . . . , uM} and the set of N items is defined as V = {v1, v2, . . . , vN } . The user-item interaction 
matrix Y ∈ R

M×N describes the historical interactions according to the user’s implicit feedback, where yuv = 1 
indicates that u has a positive engagement with item v (e.g. clicking, watching or browsing), otherwise yuv = 0.

A knowledge graph is defined as G = {(h, r, t)|h, t ∈ E , r ∈ R} . Here h , r and t  compose the knowledge graph 
and represent the head, relation, and tail of a knowledge triple respectively. In addition, E denotes the set of 
entities and R denotes the set of relations.

Knowledge graphs store heterogeneous data as different types of entities and together with their relations, ther 
are constructed as triplet data. We separate knowledge graph triples into multiple isomorphic bipartite graphs by 
classifying the relations between nodes. A bipartite graph records the interlinking of the semantic from one set 
of nodes to another. In addition, we term the bipartite graphs extracted from a knowledge graph as a knowledge 
heterogeneous graph (KHG).

Given a KG G with n entity types and r relation types, which we have already acquired during the construction 
of the knowledge graph, the entity set can be divided as E = {E1, E2, . . . , En} , as well as the relation set 
R = {R1,R2, ...,Rr} . Then we classify knowledge graph triples by the relation type where a type of relation Ri 
corresponds to a bipartite graph Bi that is composed of head–tail tuples:

where h ∈ Ep , t ∈ Eq , Ep and Ep are the subset of E , Ep ⊆ E , Eq ⊆ E . In this case, Ri describes the relationship 
between two types of entity sets.

Finally, a knowledge heterogeneous graph can be formulated as:

where GH ≈ G.
Given a user u and a target item v in a typicalrecommendation scenario, our task is to predict whether the 

user u has any potential interest in item v where u has never had any previous interaction with v. The prediction 
introduces a user-item interaction matrix Y  as well as a knowledge heterogeneous graph GH can be formulated as:

where f  is the prediction function, and � represents the parameters of the underlying model.

Model framework. The framework of HGKR is shown in Fig. 2 and its four main components are as follows: 
(1) Heterogeneous Graph Learning (component)—uses graph neural networks for message passing between 
nodes in graph level and bipartite graphs at the semantic level. (2) Embedding Module—the module includes a 
user embedding layer and an item embedding layer trained from heterogeneous graph learning and initializes 
vector embedding representations of users and items in every training epoch. (3) Knowledge Perceiving Filter—
utilizes an attention mechanism to perceive deep relevance between recommended items and users’ preferences, 
working as collaborative filtering for items. (4) Predicting Module—calculates the user’s final potential-liking 
score for the target item and the loss of results.

Heterogeneous graph learning. In order to mine information with richer and higher-order correlations 
between entities, we designed a multi-layer message passing module for information communication within a 
knowledge heterogeneous graph between all bipartite graphs. Technically, at the graph level we apply a graph 
neural network for nodes to propagate or aggregate features from their neighbors in a bipartite graph. At the 
semantic level, we run over all bipartite graphs and iteratively update their embeddings. Figure 3 shows the train-
ing process for heterogeneous graph learning.

We take the KHG as input into the message passing module where the message aggregator units apply 
graph neural networks correlation to the bipartite graphs. Assume that we have a KHG with I bipartite graphs 
GH = {B1, . . . ,BI } , ∀i ∈ {1, . . . , I} , a L layer message passing module ∀l ∈ {1, . . . , L} , as well as a set of trainable 
matrices WL,Bi that assigns weights to features of the node’s embedding as inputs for heterogeneous graph 
learning. In the learning segment, two GNNs, GAT 31 and  GraphSAGE30 are employed as the message aggregator 
units to conduct the message passing between different bipartite graphs and layers within the model.

(1)Bi = {(h, t)|(h, r, t) ∈ G, r ∈ Ri}

(2)GH = {Bi|Ri ∈ R}

(3)ŷuv = f�(u, v|�,Y ,GH ),
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Specifically, for a node z ∈ E , we initialize it randomly into vector space as �e0z , where �ez ∈ R
d is the embedding 

of the node z , and d represents the embedding dimension. We iterate over all bipartite graphs in each message-
passing layer to aggregate information from a node’s semantical neighbors. The representation in this process 
of node z can be expressed through:

where Bi denotes a bipartite graph we iterate through, and NBi (z) denotes the neighbor information associated 
with node z in Bi . Note that if node z is not engaged in the bipartite graph Bi , the expression of node z should be 
inherited as �el,Bi+1

z = �el,Bi
z  . AGGBi is a differentiable message aggregator function corresponding to a bipartite 

graph. Furthermore, a LeakyRuLU (with negative input slop α = 0.02 ) activation is applied to all nodes before 
we put their embeddings into the next layer of message passing.

In HGKR, we mainly apply two message passing graph neural networks for the message aggregating function 
at the graph level:  GraphSAGE30 and GAT 31 which means AGGBi ∈

{

AGGsage ,AGGgat

}

 . Sampling a specific 
node z in a bipartite graph, the aggregator algorithm with GNN details is as follows:

• GraphSAGE In the GraphSAGE aggregator, which is a mean operator, we simply aggregate the elementwise 
mean of the vectors in {�ek , ∀w ∈ N (z)} . The aggregator function AGGsage is formulated as:

where Wsage ∈ R
d′×2d is a linear transformation parameterized by a weight matrix and d′ is the hidden dimen-

sion of the model. CONCAT denotes the vector concatenation operation and σ is a non-linearity activation.

• Graph Attention Network The GAT aggregator employs the attention mechanism for aggregating neighbor-
hood information. For vectors in 

−→
{e k , ∀k ∈ N (z)} we compute the attention coefficient as:

where �aT denotes a single-layer feedforward neural network, parameterized by a weight vector �a , and ·T 
represents a transposition operation. Wgat ∈ R

d′ is a learnable linear transformation to transform features 
into higher-level features for getting sufficient expressive ability.

(4)

{

�e
l,Bi+1
z = AGGBi

(

�el,Bi
z ,NBi (z),WL,Bi

)

, if z engaged in Bi;

�e
l,Bi+1
z = �el,Bi

z , otherwise.

(5)�el+1
z = LeakyReLU

(

�e
l,BI+1
z

)

(6)�eN (z) = MEAN({�ek , ∀k ∈ N (z)})

(7)AGGsage = σ
(

Wsage · CONCAT(�ez , �eN (z))
)

(8)πzk = �aT
[

CONCAT
(

Wgat�ez ,Wgat�ek
)]

(9)αzk =
exp

(

LeakyReLU(πzk)
)

∑

w∈N (z) exp
(

LeakyReLU(πzw)
)

Figure 2.  HGKR’s (heterogeneous graph learning on knowledge graph for recommendation) overall framework 
and its four components. The framework takes user-item interactions and knowledge graph as input and outputs 
the predicted probability as the recommendation result.
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In addition, the aggregated features from neighborhood information are weighted and summed to obtain �ez . 
The aggregator function AGGgat can be expressed with a non-linearity σ:

Experimentally, in HGKR we apply the GAT aggregator only to the bipartite graphs tailed with 
recommendation item type of entities for message aggregation, while GraphSAGE aggregator is applied to the 
rest of the case.

Knowledge‑perceive filter and prediction. In order to find out whether a user is interested in a par-
ticular item, we search for the answer using the user’s past interactions. We regard a user’s past interactions as 
positive feedback for the user’s preferences. For a user u and their historical interactions H(u) , the user prefer-
ences set is expressed as:

Assume that we want to recommend an item v to a user u , we calculate the correlation coefficient by using 
the inner product between v and each item in Pu as:

Next, we weight and superpose preferences items and concatenate the result �huv onto the target item �ev . The 
item-preferences relevance vector �ouv can then be obtained by:

where Wo ∈ R
d×2d is a trainable linear transformation followed by a bias b , b ∈ R

d×d . Figure 4 shows the process 
of knowledge perceiving and predicting the final scores.

After capturing the relevance for item v in user preferences, we predict the user’s potential preferences by 
taking the cross product of the user embedding and the output of the knowledge perceiving item filter:

(10)AGGgat = σ





�

w∈N (z)

αzwWgat�ew





(11)Pu = {p ∼ H(u)|yup = 1}

(12)βvk = softmax
(

�eTv · �ek

)

=
exp

(

�eTv · �ek
)

∑

p∈Pu
exp

(

�eTv · �ep
)

(13)�huv = σ





�

p∈Pu

βvp�ep





(14)�ouv = Wo · CONCAT
(

�ev , �huv

)

+ b

Figure 3.  The left part describes the whole process of message passing for heterogeneous graph learning. The 
right part shows the details of messages aggregator where embeddings of entities are iteratively updated in this 
module.
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φ(·) represents the sigmoid function.

Learning algorithm. In HGKR, we treat the recommendation task as a binary classification problem, so we 
employ the binary cross-entropy loss between the ground truth of user-item interactions Y and the predicted 
value to indicate our training process. The complete loss function is as follows:

In the above function, E represents the embedding matrices for all entities in KHG. The second term LL2 is 
the L2-regularization of embeddings for preventing over-fitting. Then the third term LAGG is the regularization 
for GNNs in message aggregators. Finally, �1 and �2 are the regularization weights.

To alleviate the sparse gradient problem, we employ the Adam stochastic  optimization34 to optimize the loss 
L of our model iteratively. Next, we apply a training method of randomly sampling a mini batch of interactions 
from Y  , followed by a back-propagation on the sampled mini batch to update model parameters � in order to 
make the training process more effective and efficient.

The overall forward algorithm of HGKR is shown in Algorithm 1.

(15)ŷuv = φ(�eu × �ouv)

(16)

L = Lbce + LL2 + LAGG

=
∑

(u,v)∈Y

(

−
(

yuv log(ŷuv)+
(

1− yuv
)

log(1− ŷuv)
))

+ �1

∑

e∈ε

� E �22 +�2

∑

r∈R

(� Wr �
2
2 + � br �

2
2)

Figure 4.  The process of knowledge perceiving and final predicting. The left part of knowledge perceiving filter 
calculates attention weight in users’ preferences. The right part simply conducts a cross-product to determine 
the final probability scores.
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Algorithm 1 Forward algorithm for HGKR
Input:

User embedding ; Interacted preferences ; Knowledge heterogeneous graph ; 
Num of message diffusion layers ; Item embedding  for recommendation. 

Output:
Predicting score ; Loss function ℒ.

Method: 
1. For ∈ do
2.   For ∈ do
3.     For ∈ ℬ do
4. Get the neighbor set ℬ

( ).
5.       ℬ +1←AGGℬ ℬ

, ℬ ( ), ℬ .
6.     End for
7.   End for
8. Use leakyReLU activation for all nodes’ embedding.
9.   +1 ℬ +1 .
10. End for
11. For ∈ do
12. Calculate the attention coefficient .
13. End for
14. Get the weighted sum of user preferences’ embedding.
15. ℎ ← ∑ ∈ .
16. Concat ℎ with item .
17. ← ∙ ,ℎ + b.
18. Predicting by × .
19. Calculate BCE loss, L2-regularization for embeddings and GNNs.
20.
21. Return ,

Experiments
In this section, we evaluate the performance of our proposed model HGKR on two real recommendation 
scenarios: movies and MOOC.

Dataset description. The datasets we consider in our experiments are MovieLens Latest and MOOCCube.
MovieLens Latest A widely used benchmark dataset in the field of movie recommendations which consists of 

approximately ten hundred thousand explicit ratings ranging from 1 to 5. In our model, a binary-classification 
task, we consider the ratings above 3 as positive interactions between users and movies and the ratings of 3 or 
below as negative.

MOOCCube A Chinese massive open online courses dataset that contains about 2 million user-course 
participation records. In this experiment we set the feedback as positive if a user has had an interaction with a 
course and negative otherwise.

To construct KG and KHG for ml-latest, we obtain auxiliary information on movies using Wikidata and 
group the data into triples. MOOCCube already contains abundant descriptions about a course (e.g. concept, 
lecturer,school, etc.) so we do not need to use an additional data source in this case. Some statistical details are 
shown in Table 1.

For each dataset, we split and randomly select 75%, 15% and 15% of user history interaction data as the train, 
validate and test set respectively.

Baselines. We compare our proposed method with five state-of-art methods. Details are listed as follows:

• NFM35 is a state-of-the-art factorization model in CTR scenarios. We extract sparse features of items from 
the knowledge graph and model the second-order feature interactions using NFM.

• CKE13 combines various entities’ embeddings from different backgrounds for a unified recommendation 
framework. We implement CKE with a structural knowledge embedding learning  TransR6 in this paper.

• MKR10 is a generalized framework over several representative methods of knowledge graph embedding task 
and recommendation task via cross and compress units which share high-order interactions between two 
tasks.
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• KGCN16 captures and aggregates items’ associated attributes by sampling from their neighbors as their recep-
tive field to determine inter-item relatedness. It takes advantage of GNNs and factorization methods for 
recommendation.

• RippleNet17 is an end-to-end framework that stimulates the propagation of user preferences knowledge 
entities in the knowledge graph by combining path-based methods and an attention mechanism.

• KGAT 27 exploits high-order connectivity between items by extracting paths or implicitly modeling them with 
regularization. KGAT employs the GNNs and the attention mechanism to discriminate the importance of 
the neighbors of nodes in a KG.

Evaluation metrics. We conduct HGKR in two typical recommendation scenarios: (1) In click-through 
rate (CTR) prediction, we employ AUC  and Recall to evaluate the overall performance of our proposed model. 
(2) In top-K recommendation, we employ Precision@K and nDCG@K to measure the relative order within the 

Table 1.  Statistics of ml-latest and MOOCCube.

Classification ml-latest MOOCCube

User-item interactions

 # users 610 5044

 # items 9742 705

 # interactions 100,836 368,484

Knowledge graph

 # entities 51,601 3,526

 # relations 6 6

 # triples 180,353 16,874

Knowledge heterogeneous graph

 # entity types 7 5

 # relation types 6 6

 # bipartite graphs 6 6

Figure 5.  Precision@K and nDCG@K curves on MOOCCube.

Figure 6.  Precision@K and nDCG@K curves on ml-latest.
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highest top-K of the predicted items list, where K takes values from 1 to 15. In order to eliminate possible errors 
in the experiment, each experiment is conducted 16 times with the same number of 100 training epochs and we 
take the average scores as the final results.

Experiments Setting. To facilitate the comparison of experiments, we set the same number of training 
epochs as 100 for all models optimized with Adaptive Moment Estimation (Adam), and the same batch size 
range within {512,1024}, as well as the same learning rate of 0.01. For loss calculation, we set regularization 
weight �1, �2 as  10−7,  10−4 respectively. Specifically, for MKR, CKE, KGCN and KGAT, the recommendation 
embedding dimensions of users and items of ml-latest and MOOCCube are 16, 12, as well as the entities and 
relations in KGE. The interval of the KGE task in MKR is 3. For RippleNet, the dimension of relations is the 
square of entities and the number of hops is 4. The sample sizes of neighbors in KGCN and users’ preferences in 
RippleNet are both set to 32. For NFM, the channels and the number of hidden linears are set to 32 and 3 respec-
tively. For KGAT, the knowledge graph batch size is set as 2024, and the aggregation type is set as bi-interaction 
as default. In our proposed model HGKR, we set the dimension of entities the same as that of formal experi-
ments where the channels and number of hidden linears are set as 24 and 2, respectively. The size of sampling 
in users’ preferences K is set to 32 as well. Other hyper-parameters are tuned based on their performance on the 
validation set.

Performance comparison. In this section, Table  1 shows the baseline performance on two datasets in 
CTR prediction while Figs. 5 and 6 show nDCG@K and precision@K curves in top-K recommendation. From 
our experiments our findings are as follows:

• NFM gives the worst performance among all compared experiments since NFM is the only KG-free model 
and fails to fully explore the connectivity between entities or users and items.

• CKE simply introduces a KG representation learning to achieving better performance than NFM. Compared 
with CKE, cross and compress units of MKR make further use of the KG representation learning, making 
MKR perform better.

• RippleNet performs very well because of its special mechanism of users’ preferences aggregating actual 
benefits to the recommendation. However, RippleNet shows more instability on ml-latest in top-K 
recommendation, probably because it relies heavily on the proportionality of relations between entities that 
are sparser in ml-latest.

• KGCN gives the top performance in all of the baseline experiments. Note that both KGCN and RippleNet 
mine information on multi-hop neighbors, consistently demonstrating the importance of capturing proximity 
features at the graph level of a KG for the enhancement of recommendation.

• KGAT performs only slightly second to KGCN. A possible reason is that the embedding aggregation strategy 
of KGAT is too complicated and brings some noise compared with KGCN under our datasets. The results also 
demonstrate the advantage of GNNs in modeling the graph structure data in the field of recommendation.

HGKR takes advantage of aggregating neighbors’ information and getting attention of users’ preferences, 
which comes from the priorities of previous approaches. In addition, the employment of heterogeneous graph 
representation learning helps HGKR to explore the further connectivity between entities at the semantic level.

As clearly seen from the statistics in Table 2, HGKR outperforms the best in baselines by 0.92% on AUC  and 
0.37% on Recall in ml-latest, and by 2.21% on AUC  and 2.06% on Recall in MOOCube data. Then as illustrated 
in the top-K curves in Figs. 5 and 6, HGKR shows superior performance compared to all baselines. From our 
experiments and analysis we have the following observations:

• HGKR performs more enhancements in MOOCCube than on ml-latest, demonstrating that HGKR can be 
more powerful in data-dense recommendation scenarios since the semantic information of ml-latest is much 
sparser than MOOCube.

Table 2.  performance of AUC  and Recall in CTR prediction.

ml-latest MOOCCube

AUC Recall AUC Recall

NFM 0.7075 0.8538 0.8541 0.6612

CKE 0.7269 0.8576 0.8649 0.6723

MKR 0.7631 0.8617 0.8758 0.6857

KGCN 0.7692 0.8596 0.8912 0.7227

RippleNet 0.7314 0.8484 0.8655 0.6810

KGAT 0.7683 0.8527 0.8882 0.7202

HGKR 0.7763 0.8649 0.9109 0.7376

%Improvement 0.92% 0.37% 2.21% 2.06%
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• The curve of HGKR in precision@K of HGKR shows some fluctuations in two datasets. These fluctuations 
illustrate that HGKR may not the best choice in top2 or 3 recommendation, but is much more capable in top 
6 and 7 recommendation. Furthermore the nDCG@K curves verify the excellent capacity of HGKR in most 
cases.

Ablation study. In this section we compare the influence of different message aggregators on HGKR. Below 
we use  HGKRSage to denote the model with GraphSAGE for all the message aggregators. Similarly,  HGKRGAT  
denotes the model with all GAT,  HGKRGCN denotes the model with all GCN. HGKR employs GAT for message 
aggregation of item sort of entities and GraphSAGE in the other cases.

Results in Table 3 verify the superior nature of the mixture of GraphSAGE and GAT aggregators. This result 
can be explained clearly since when aggregating items’ neighbor information we should focus on the highly 
relevant neighbor entities. Then when dealing with other entities, neighbors should be treated equally to reduce 
prejudice and noise.  In all cases, GCN performs worse experiments as an information aggregation algorithm 
than GraphSAGE, probably because GraphSAGE focuses on modeling how information propagates, while GCN 
simply adds feature vectors. 

To study the parameter sensitivity of HGKR, we focus on the layers’ num L of message passing and the 
sampling size of users’ preferences as shown by the AUC  scores in Tables 4 and 5 below. Our findings are as 
follows:

• The structure of too many layers of message passing module may lead to overfitting. As we can see in Table 3 
the scores drop rapidly as L increases, while the L of 2 is the most suitable for HGKR.

• Table 4 indicates that the best sampling size K  for HGKR is located between 24 and 32. This is probably 
because on the one hand too small of a K cannot capture enough attention and relatedness between entities, 
while on the other hand too large of a K brings significant noise. In the sparser dataset scenario, appropriately 
reducing K can have an effect of making HGKR perform better.

Conclusion and future work
In this paper, we propose a new framework HGKR that achieves a more fine-grained modeling of knowledge 
graphs for recommendation. In consideration of the heterogeneity, we extract bipartite graphs from the knowl-
edge graphs and then utilize graph neural networks to iteratively propagate information between nodes at the 
graph level, and between bipartite graphs at the semantic level. In addition, we designed a knowledge perceiving 
filter based on an attention mechanism to explore the user’s potential interest and then provide recommendations. 

Table 3.  Comparison results of ablation experiments.

ml-latest MOOCCube

AUC nDCG@10 AUC nDCG@10

HGKRSAGE 0.7592 0.7353 0.8847 0.8428

HGKRGAT 0.7701 0.7473 0.9056 0.8491

HGKRGCN 0.7526 0.7219 0.8811 0.8407

HGKR 0.7763 0.7477 0.9109 0.8628

Table 4.  AUC  scores with layers’ num of message passing module.

Layer num L 1 2 3 4 5

ml-latest 0.7668 0.7689 0.7641 0.7613 0.7608

MOOCCube 0.9007 0.9108 0.8912 0.8815 0.8811

Table 5.  AUC  scores with sampling size of users’ preferences.

Sampling size K 8 16 24 32 40 48

ml-latest 0.7605 0.7705 0.7763 0.7682 0.7573 0.7594

MOOCCube 0.8810 0.8901 0.8940 0.9105 0.9027 0.8809
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The experimental results conducted on two datasets of two scenarios have shown the great effectiveness of our 
model.

In the future, we will extend our work beyond two limitations. (1) In this work we manually matched graph 
neural networks with bipartite graphs. Making the process of matching automatic and formulaic is a promising 
direction. (2) Experiments show the instability of our model when facing the challenge of the sparser dataset. It 
is worth verifying whether introducing outstanding KG reasoning and completing techniques into our method 
will be helpful in improving the recommendation.

Data availability
The datasets generated and analysed during the current study are available in the mooccube repository, http:// 
moocd ata. cn/ data/ MOOCC ube, and movielens repository, https:// group lens. org/ datas ets/ movie lens/.
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