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Enabling personalized 
perioperative risk prediction 
by using a machine‑learning model 
based on preoperative data
Martin Graeßner 1,2, Bettina Jungwirth 1,2, Elke Frank 2,3, Stefan Josef Schaller 1,4, 
Eberhard Kochs 1, Kurt Ulm 5, Manfred Blobner 1,2, Bernhard Ulm 1,2, 
Armin Horst Podtschaske 1 & Simone Maria Kagerbauer 1,2*

Preoperative risk assessment is essential for shared decision-making and adequate perioperative 
care. Common scores provide limited predictive quality and lack personalized information. The aim 
of this study was to create an interpretable machine-learning-based model to assess the patient’s 
individual risk of postoperative mortality based on preoperative data to allow analysis of personal 
risk factors. After ethical approval, a model for prediction of postoperative in-hospital mortality 
based on preoperative data of 66,846 patients undergoing elective non-cardiac surgery between 
June 2014 and March 2020 was created with extreme gradient boosting. Model performance and the 
most relevant parameters were shown using receiver operating characteristic (ROC−) and precision-
recall (PR-) curves and importance plots. Individual risks of index patients were presented in waterfall 
diagrams. The model included 201 features and showed good predictive abilities with an area under 
receiver operating characteristic (AUROC) curve of 0.95 and an area under precision-recall curve 
(AUPRC) of 0.109. The feature with the highest information gain was the preoperative order for 
red packed cell concentrates followed by age and c-reactive protein. Individual risk factors could be 
identified on patient level. We created a highly accurate and interpretable machine learning model 
to preoperatively predict the risk of postoperative in-hospital mortality. The algorithm can be used 
to identify factors susceptible to preoperative optimization measures and to identify risk factors 
influencing individual patient risk.

Postoperative all-cause mortality is approximately 0.5% for elective procedures; however, this percentage varies 
by procedure and urgency status1. Accurate knowledge of individual patient risk is essential to raise awareness 
for early recognition of postoperative complications and adequate planning of intraoperative management and 
postoperative care. Furthermore, from an ethical and legal point of view, the patient has the right to know his 
or her risk of the planned procedure to enable shared decision making with physician and patient as equal 
partners2,3. To meet these needs, current guidelines recommend the application of numerous scores for risk 
assessment. One of the oldest ones is the American Society of Anaesthesiologists Physical Status (ASA-PS), in use 
since 1941 and revised several times in the past4. More recent scores, for example the surgical Apgar score or the 
POSSUM (Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity) require 
intraoperative variables for calculation and are therefore not suitable for preoperative risk evaluation5. In 2016, 
Le Manach and co-workers developed the POSPOM (PreOperative Score to predict PostOperative Mortality) 
consisting of preoperative factors like age, comorbidities and type of surgery6. All these scores predicting overall 
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mortality risk may perform well on a population level, but they allow only limited personalized statements about 
the individual patient which, however, is necessary to achieve shared decision-making.

Recently, the Covid-19 pandemic gave a boost to the development of machine learning algorithms for pre-
diction and triage of ICU patients7. More and more, such algorithms are also being developed in the field of 
perioperative medicine, showing promising results8,9. Due to the increasing use and efficiency of big data analyses 
and artificial intelligence in healthcare, machine learning algorithms have turned out to be superior to traditional 
scores in prediction accuracy8.

Machine learning models are complex mathematical constructs that often cannot even be fully understood 
by the person who has programmed them, they form so-called “black boxes”. Medical ethicists therefore call for 
transparent models whose decision a physician can also understand10. However, these are not so easy to imple-
ment, since it is postulated that a model loses its predictive accuracy with increasing explicability11. Nevertheless, 
with careful model design there is hope that transparent, interpretable algorithms can not only help to identify 
patients at risk, but also may reveal factors which can be optimized preoperatively.

Consequently, the aim of our study was to create a machine learning algorithm to accurately predict postop-
erative in-hospital mortality based on preoperative factors. A further objective was to make the model compre-
hensible for the physician. Interpretability shall be reached by creating personalized risk profiles and carrying 
out thought experiments on changing identified risk factors in the model to determine their influence on patient 
outcome.

Methods
The study was designed in accordance with the TRIPOD statement concerning multivariable prediction models 
for individual diagnosis12.

Participants.  After approval (253/19 S-SR of 11-Jun-2019) by the Ethics Committee of the Medical Faculty 
of the Technical University of Munich (Ethikkommission der Technischen Universität München, https://​www.​
ek-​med-​muenc​hen.​de/) and registration in ClinicalTrials.gov (NCT04092933), the study was conducted at the 
university hospital of the Technical University of Munich. Informed consent was waived from all subjects or 
their legal guardians according to German regulations due to retrospective analysis of routine data. The study 
was performed in accordance with ethical guidelines, recommendations of the German Ethics Council and 
legal regulations. In accordance with legal data protection requirements, all identifying information had been 
removed from the patient records used. Retrospective analysis included data of adult patients during each elec-
tive first non-cardiac surgery within a hospital stay between June 2014 and March 2020. Follow-up surgery in 
patients who underwent multiple surgical procedures as well as patients being admitted to ICU prior to the first 
surgery were excluded. Outpatient surgeries and minor cases like patients undergoing diagnostic procedures or 
electroconvulsive therapy were also excluded (Fig. 1). In case that a patient was admitted to hospital more than 
once during the 6-year observation period, these cases were considered separately if they were assigned different 
case numbers in the hospital information system.

Source of data.  All data were derived from three different sources: the hospital information system, the 
laboratory information system, and the patient data management system. The hospital information system and 
the patient data management system work largely independently of each other and are only equipped with inter-
faces for exchanging the core data such as case number and patient ID. Therefore, these data sources had to be 
queried separately. All data of the laboratory information system is fully integrated into the clinic information 
system via a technical interface.

Outcome.  Primary endpoint was in-hospital mortality which is a commonly used quality parameter in 
many countries. The general definition of this endpoint is “death in hospital during the index admission”13. 
Parameters with the greatest overall contribution to the predictive power of the model were identified. Further-
more, the model was used to compute individual risk profiles of exemplary patients and to visualize alterations 
in risk as parameters change.

Features, pre‑processing, and missing data.  Our model included all preoperatively available data 
derived from the various digital documentation systems of the hospital. Laboratory values, blood orders, surgi-
cal procedure (OPS) codes, and in-hospital movements were already in tabular and structured form.

The patients’ medical history was given in free text. To extract relevant information, we first searched for 
medical terms excluding stop words and phrases. The resulting list contained the medical terms with the highest 
frequency. In the next step we searched for these terms and in addition looked for negations. We created each 
medical term as a feature with the categories "yes", "no" and "not available".

Current patient medication was also given as free text including spelling and typing errors. Therefore, we 
developed a workflow which extracted the drug names, conducted a spellcheck, and assigned the drug to its 
Anatomical Therapeutic Chemical (ATC) Code. The first four digits of the ATC code were used to group the 
drugs into substance classes, which were then used in the model.

For the laboratory tests included, a time window of two weeks before the respective surgery was determined. 
From this period, the laboratory value closest to the surgery date was selected.

Missing values were not imputed. A dichotomous feature of each variable included information about its 
availability. Distribution and missingness of the most important features in each cohort are shown in Table A1 
of the appendix.

https://www.ek-med-muenchen.de/
https://www.ek-med-muenchen.de/
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Sample size.  The dataset which was obtained between June 2014 until August 2019 was used as training and 
test cohort by a stratified 4:1 split. The test cohort was used to tune the hyperparameters and to avoid overfitting. 
After completing the training and testing, additional data collected between September 2019 and March 2020 
was used to allow validation of the model, i.e., to see how well the model performs on unseen data. This resulted 
in a training cohort of 47,205, a testing cohort of 11,801 and a validation cohort of 7,840 hospital stays.

Model development.  Prediction models were developed using extreme gradient boosting (XGBoost)14 
with the tuning parameters “learning rate”, “minimum loss reduction”, “maximum depth of each tree”, “fraction 
of features”, “fraction of training samples”, “scale of positive weights”, and “minimum sum of instance weight” 
(for details see Chen and co-workers15). The results of the XGBoost models are highly depending on these 
parameters. Parameter optimization is both time and computationally intensive. We used Bayesian hyperpa-
rameter search for tuning parameters for maximum area under the precision recall curve (AUPRC) and used 
threefold cross validation on the training set due to the size of the data set16. Hyperparameter settings were as 
follows: eta (learning rate) = 0.0549; gamma (minimum loss reduction) = 1.69; max_depth (maximum depth of 
each tree) = 2; min_child_weight (minimum sum of instance weight) = 6; subsample (fraction of training sam-
ples) = 0.801; colsample_bytree (fraction of features) = 0.918; scale_pos_weight (scale of positive weights) = 4.07. 
The hyperparameter “scale of positive weights” is necessary in this case to correct for a highly imbalanced data-
set, as mortality is about 0.5% in our patient cohort.

The starting point for model development was over 12,000 parameters, including more than 9300 OPS codes. 
Due to their infrequent occurrence, a large number of them was not included in the final model, leaving 201 
parameters, a list of which is provided in the appendix (Table A2).

No surgical intervention n=22,604
• Biopsies n= 5,178
• Diagnostic endoscopies n= 3,054
• Electroconvulsive therapy n= 188
• CT / PET / MRT/ angiography n= 11,694
• others n= 2,490

Ambulatory stays n=10,620

ICU before surgery n= 2,580

Secondary surgeries n=34,864

All anaesthetic cases between 2014-06-1 and 2020-03-31 n = 175,559

1st Surgeries n=66,846

Not elective surgeries n=38,283

Age <18 n= 2,283

2014-06-01 to 2019-08-31 n=59,006 2019-09-01 to 2020-03-31 n=7,840

Training cohort n=47,205 Testing cohort n=11,801 Validation cohort n=7,840        

Figure 1.   STROBE diagram. CT computed tomography, PET positron emission tomography, MRT magnetic 
resonance tomography, ICU intensive care unit.
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The model was calibrated using isotonic regression. Calibration metrics and plots are shown in Table A3 and 
Fig. A4 of the appendix.

Statistical analysis and model interpretation.  Analysis was performed using R (version 4.1.2, R 
Foundation for Statistical Computing; Vienna, Austria). Predictive quality of the model is demonstrated by its 
area under receiver operating characteristic (AUROC) and area under precision-recall curve (AUPRC) [95% 
confidence interval]. The receiver operating characteristic (ROC) plot shows the trade-off between specificity 
and sensitivity, and the AUROC is the most widely used measure to evaluate a classifier’s performance. Addition-
ally, we show precision-recall-curves (PRC) to depict the fraction of true positives among the whole number of 
positives with a baseline that depends on class distribution17. We calculated AUROC as well as AUPRC on the 
validation set. 95% confidence intervals of ROC and PR curve were calculated by means of the ci.auc function 
using 2000 stratified bootstrap samples.

The variables that contribute most to the prediction are visualized in an importance plot. These plots depict 
the gain, which shows the relative contribution of each feature to the model by calculating the share for every 
single tree using the leave-one-covariate-out method18.

Partial dependence plots show the change in risk with increasing or decreasing variable values.
Individual risk profiles of exemplary patients are presented by means of waterfall plots, which show the impact 

of the individual variables on the overall prediction of the respective patient. The effect of changing a factor, all 
other things being unaffected, was determined and graphically represented by means of ceteris-paribus-plots. 
These plots were created by gradually changing a specific parameter and calculating the resulting risk. The value 
of the parameter was plotted on the x-axis, and the respective risk was then plotted on the y-axis. Consequently, 
these plots show us how the prediction would change if we modify just one risk factor leaving the others equal.

Consent statement.  Informed consent was waived by the Ethics Committee of the Medical Faculty of 
the Technical University of Munich (Ethikkommission der Technischen Universität München, https://​www.​ek-​
med-​muenc​hen.​de/) due to the retrospective nature of the study (253/19 S-SR of 11-Jun-2019).

Results
Participants.  Excluding underage patients, secondary surgeries, ICU patients, diagnostic and emergency 
procedures, 66,846 surgeries from a total of 175,559 remained. Here, 59,006 interventions that took place 
between June 2014 and August 2019 served as the training and testing dataset, and interventions between Sep-
tember 2019 and March 2020 formed the dataset for external validation (Fig. 1).

Over all cohorts, median age was 58 years [interquartile range (IQR) 43–71] with most patients categorized 
in ASA class II (51.9%), 45% were female. Overall mortality was 0.5%. Surgical procedure codes (German OPS) 
and procedural data were available for all patients. Feature distributions of training, testing and validation cohort 
are given in the appendix (Table A1).

Model characteristics.  The model shows good predictive ability with an AUROC of 0.954 [IQR 0.935–
0.973] and a AUPRC of 0.109 [IQR 0.102–0.116] (Fig. 2) calculated on the validation set. The most important 
factors contributing to the model are the number of ordered red packed cells, age and c-reactive protein, number 
of preoperatively requested consults and ASA-PS (Fig. 3). The top twenty variables were all numerical. Informa-
tion derived from free text fields like medication or facts from the patient history contributed less to the model’s 
predictive ability. An overview of all features used in the model is given in the appendix (Table A2). Positive and 
negative predictive values, F1 scores and sensitivity depending on the probabilities calculated by the model are 
shown in Fig. A5 of the appendix.

Interpretability on model level.  Partial dependence plots show the change in risk with increasing or 
decreasing variable values. The mortality risk rises with increasing number of ordered packed red cells (PRC’s), 
age, c-reactive protein, number of preoperative consults, ASA score and Gamma-GT (Fig. 4).

Interpretation on patient level.  To illustrate personalised prediction, we used the model to calculate the 
risk of two exemplary patients and plotted the individual risk factors and their contribution to the single patient’s 
overall risk with waterfall plots. The two patients were selected because they cover prehabilitation and patient 
blood management, two important topics in preoperative evaluation. Furthermore, in a model calculation, it was 
shown how the patients’ risk would behave if defined factors were changed. The result is presented in so-called 
ceteris-paribus-plots.

Patient 1 is a 39-year-old male, ASA IV, with an overall risk for in-hospital mortality of 1.37%. Looking for 
potentially modifiable risk factors, we find preoperatively measured haemoglobin being as low as 9.6 mg/dl. If we 
now increased the haemoglobin value preoperatively through targeted anaemia therapy, we would have to face 
the difficulty that this will additionally change the haematocrit which also contributes to the model’s prediction 
as a factor. In order to do justice to this connection, we have assumed that the haematocrit is threefold times 
the haemoglobin value according to a common estimate19. The plot below then shows us that if we managed to 
increase the haemoglobin value by 0.5 points, the risk would be reduced from 1.37 to 0.6% (Fig. 5).

The second example patient is a 48-year-old woman, ASA III, with a baseline risk of 2.5%. Looking for 
potentially modifiable risk factors we find that the patient is underweight with a body-mass-index (BMI) of 14.8. 
Again, we have to take into account that in the model two interrelated factors exert an influence, BMI and weight. 
Since this is a linear relationship described by a known formula, it is possible here to calculate the influence of a 

https://www.ek-med-muenchen.de/
https://www.ek-med-muenchen.de/


5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:7128  | https://doi.org/10.1038/s41598-023-33981-8

www.nature.com/scientificreports/

AUROC: 0.954 [0.935 to 0.973]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1-Specificity

Se
ns

iti
vi

ty

AUPRC: 0.109 [0.102 to 0.116]

0.00 0.25 0.50 0.75 1.00

Recall

Pr
ec

is
io

n

0.00

0.25

0.50

0.75

1.00

0.00

0.005
0.000

Figure 2.   Receiver-operating characteristic (ROC) and precision-recall (PR) curves. ROC curves as depicted 
for our model on the upper side look the same for different classifiers, regardless of the basic probability, and 
are often used to assess the predictive quality of a model. An area under the curve of 1.0 would mean a perfect, 
an area under the curve of 0.5 a random classifier. In the PRC as shown below, the baseline is determined by 
the proportion of positives and negatives. As overall mortality is 0.5% in our patient cohort, the baseline in our 
model is quite low (0.005). This is depicted by the red dashed line which corresponds to the performance of a 
random classifier. The area under the curve here shows us how to evaluate a positive result of the classifier given 
the basic probability17. The shaded area represents the 95% confidence interval.
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Figure 3.   Importance plot. This figure shows the twenty most important factors and their contribution to 
model prediction. RPCs red packed cells, CRP c-reactive protein, ASA American Society of Anaesthesiologists 
Physical Score, Gamma GT gamma-glutamyl-transferase, GFPs fresh frozen plasma, BMI body-mass index, GFR 
glomerular filtration rate, MCHC mean corpuscular haemoglobin.
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change in weight with a consecutive change in BMI as an example. The resulting plot shows that we would need 
to raise the weight of this patient by about eight kilograms preoperatively to reduce mortality by 1% (Fig. 6).

Discussion
Using extreme gradient boosting, a machine learning technique, we created a model which was able to predict 
postoperative in-hospital mortality for an individual patient with high accuracy. The most important variables 
were number of preoperatively ordered red packed cells, c-reactive protein and age. Tabular data contributed 
most to the models’ predictive value whereas unstructured data like free-text had less impact on model perfor-
mance. Individual risk factors and the influence of changes in individual factors were calculated and displayed 
graphically making the model interpretable. In clinical routine, the model could be useful for physicians and 
patients to support informed decision-making.

Regarding the most important variables in our model, the number of red packed cells provided depends 
primarily on the type of procedure. Pre-existing conditions of the patient may also play a role. Most hospitals 
have standards that determine how many units of blood are provided prior to surgery and are based on valid 
guidelines and internal hospital transfusion benchmarks. Therefore, this factor does not reflect the purely sub-
jective assessment of the physician.

Figure 4.   Partial dependence plots. This figure shows the top six factors and their influence on patient risk. 
The y-axis represents mortality risk in a logit-scale. Factors with discrete values (ordered RPC’s, number of 
preop consults, ASA score) are depicted by boxplots with median and interquartile range representing estimated 
patient risk. Regarding age in yearly intervals and the concentrations of CRP and Gamma GT as continuous 
values, mortality risk rises with increasing parameter values. RPCs red packed cells, CRP c-reactive protein, ASA 
American Society of Anaesthesiologists Physical Score, Gamma GT gamma-glutamyl-transferase.
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The relationship between age and mortality risk is undisputed. Age is included as a factor in many con-
ventional scores, including the POSPOM and Charlson Comorbidity Index mentioned earlier6,20. High values 
of c-reactive protein may indicate infection and are associated with a poor level of cardiorespiratory fitness. 
Higher pre-operative c-reactive protein concentrations have been shown to be associated with postoperative 
complications21. Thus, these factors appear relevant to postoperative outcome, supporting the plausibility of 
our model.

Preoperative risk assessment is essential to identify patients with an increased risk of morbidity and mor-
tality and to develop perioperative strategies to minimize those risks2. In addition, knowing the risk helps to 
adequately inform and involve the patient in decisions concerning the planned surgery. Therefore, current 
guidelines recommend to assess the patient’s risk for perioperative complications by using various scores2. The 
most common one, ASA-PS, however, showed only poor predictive abilities for postoperative mortality with a 
recently reported AUROC of about 0.6322 and therefore seemed not suitable for reliable mortality prediction. 
Recently, more complex scores are preferred, for example the POSPOM or CCI (Charlson Comorbidity Index)6,20. 
However, predictive ability of these scores does not really exceed that of the ASA-PS, as AUROCs are reported of 
0.64 for the CCI and 0.65 for the modified frailty index23. Although the original report of the POSPOM score by 
LeManach et al. seemed to be able to keep up with the ASA showing an AUROC of 0.944, it has to be taken into 
account that a validation of the POSPOM in the respective country including a matching of surgical codes has to 
be performed. The German validation of the POSPOM reported by Layer et al. shows only an AUROC of 0.77124.

The potential of applying machine learning methods in perioperative medicine was confirmed by a recent 
systematic review in which it was noted that many models were able to reach an AUROC of more than 0.9 and 
therefore outperform most conventional scores25. The review further confirmed that random forests and gradi-
ent boosting were most frequently used and showed best model performance8. The results of our study were 
consistent with these results as, using XGBoost, we achieve an AUROC of 0.95 and an acceptable precision-recall 
trade-off26.

However, to effectively improve patient outcome and adapt the perioperative approach to the patient, more 
than just knowledge of the risk is necessary. Simplified conventional scores only provide population-level 
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Figure 5.   Example patient 1. Waterfall plots depict explanations for individual predictions. Their input is a 
vector of variables which account for the prediction of a single patient. The bottom of a waterfall plot starts at 
the baseline risk of our overall cohort (here: 0.5%). Red bars represent variables that increase risk, blue bars 
represent those that decrease risk. The patient’s mortality risk is shown on the y-axis. The baseline changes 
with the contribution of each value to overall risk and ends at the individual risk estimation of the respective 
patient. The waterfall plot in this figure depicts the risk profile of a 39-year-old man with an overall in-hospital 
mortality risk of 1.37%. Numerical variables contribute most to model prediction. Most laboratory values may 
serve as surrogate parameters for organ dysfunction. A low haemoglobin value of 9.6 is conspicuous, which can 
possibly be optimized by adequate preoperative therapy. The plot below depicts the change of the risk profile by 
manipulating the haemoglobin value. In these so-called ceteris paribus plots, it is assumed that only one variable 
is changed and all others remain the same. Of course, the haematocrit also changes with the haemoglobin. 
In this simulation, haematocrit was estimated to be three times the value of the haemoglobin and adjusted 
accordingly.
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predictions. Our machine-learning model however opens the gates to personalized medicine in the field of 
anaesthesia as it allows to identify modifiable risk factors in every single patient.

To make such a complex model interpretable to clinicians, we can calculate the impact of every single param-
eter on the predictive power of the model. Furthermore, we can calculate the change of risk when modifying a 
single factor under the condition that all others remain the same. This is, however, a very theoretical approach, as 
many factors interact with each other, and we don’t always know which factors are interconnected in which way. 
Similar to conventional retrospective analyses, we have to acknowledge the effect of unidentified confounders 
and multicollinearity. While not critical for the goodness of the model’s fit, multicollinearity most likely dilutes 
the impact of the critical factors27. Nevertheless, in selected cases, the model can be quite useful to illustrate 
the effect of preoperatively initiated optimization measures. To do this, however, it is necessary to know the 
dependent factors and to be able to model their interrelationships mathematically. We here give an example by 
illustrating two cases that concern two current topics: patient blood management and prehabilitation, the attempt 
to preoperatively improve the functional capacity of a patient.

In the first example, we see a significant reduction in perioperative mortality risk with rising haemoglobin 
levels. Current guidelines recommend preoperative anaemia assessment and therapy with a threshold that lies 
at a haemoglobin level < 13 g/dL in males and < 12 g/dL in menstruating females28. What is remarkable in our 
exemplary patient is that, after having reached a minimum, mortality risk rises again with increasing Hb, but 
the optimum lies within the threshold defined by the World Health Organization (WHO).

Our second example fits the increasingly important issue of prehabilitation especially in older and frail 
patients to build up their decreased reserves. Recently, a meta-analysis showed that preoperative optimization 
measures can reduce postoperative morbidity. Unfortunately, uniform protocols and procedures do not yet exist, 
and the influence of prehabilitation measures on postoperative outcomes is not yet known. Mostly multimodal 
concepts are pursued, as it is not yet clear which patient benefits from which preoperative intervention29,30. Here, 
we demonstrate the effect of weight gain in a cachectic patient, from which one might conclude that this patient 
would benefit from preoperative nutritional therapy. However, with an overall rather low mortality risk, the effect 
of weight gain is not too pronounced.

In addition to the aforementioned implications of multicollinearity, we have to face some more challenges 
and limitations: we here provide only a single centre study, however with a considerable number of patients. One 
national speciality in our study are surgical procedures classified by OPS (German: “Operationen und Prozedu-
renschlüssel”, operations and procedure codes). The German OPS describes surgical procedures at a very fine 
granular level. The majority of these codes did not appear in the model due to low frequencies. However, since 
this classification is primarily used for billing purposes, grouping is not possible without loss of information 
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which is why we refrained from aggregating the codes. In addition, we deliberately left some duplicates of 
variables, for example glomerular filtration rate (GFR) calculated according to two different formulas, as these 
give different values in different patient groups. Another limitation of our model is the lack of intraoperative 
information, which can still decisively change the mortality risk compared to the preoperative setting. It is obvi-
ous that information such as the duration of surgery and intraoperative blood loss or the occurrence of adverse 
events can have critical influence on the postoperative course31. However, for assessing and counselling a patient 
during the pre-anaesthesia visit before an elective surgical procedure, our model provides reliable information.

Clinical documentation is often incomplete, which leads us to have missing data on individual variables. We 
accounted for this problem by adding for each variable an additional dichotomous feature including information 
about its availability. Interestingly, in the final model, only two of these dichotomous features remained, namely 
“bilirubin available” and “main diagnosis available” (see Table A2 of the appendix).

Another crucial factor is that the quality of preoperative data collected on a routine basis is often insufficient. 
This fact is reflected in our model, as numerical and tabular data contribute most to the prediction. Data derived 
from free text was not represented among the top 200 variables. Therefore, many of the factors that appear in 
the model, especially the laboratory values, are simply surrogate parameters for organic diseases that are better 
described in findings or physicians’ reports. However, important information about the patient’s preoperative 
condition is usually still collected as free text in clinical routine. This unstructured information can only be 
inadequately processed by such a complex model. There are now two ways to remedy this fact. On the one hand, 
natural language processing methods could be refined and integrated into the model. There is evidence that 
the inclusion of such algorithms in models improves prediction quality32. However, a very heterogeneous set of 
algorithms is available, some of which have not yet been externally validated33. Another option is to avoid the 
extensive use of free text and to force the user to structured and complete inputs by the user interface. This would 
entail a major redesign of most clinical documentation tools. In times when interoperability between different 
medical documentation systems is becoming increasingly important, structured information capture in a uniform 
document architecture will become an important prerequisite. There is hope that uniform nomenclatures and 
syntactic and semantic standards will make scientific evaluation as well as the use of the data or the creation of 
prediction models much easier in the future.

In conclusion, our study demonstrates that it is feasible to create a machine-learning model to predict the 
risk of postoperative in-hospital mortality with good accuracy outperforming traditional scores. The model can 
be used to determine risk factors on a personalized level and therefore presents a suitable basis for informed 
consent in high-risk patients. Further, we made the model interpretable by calculating the impact of a change in 
modifiable risk factors for selected cases. Thus, our model is suitable to identify personalized risk of mortality 
and to evaluate the effect of modifying risk factors in future studies.

Data availability
Due to legal requirements, we are not allowed to store data, although it is de-identified, in a publicly accessible 
repository. To gain access, proposals should be directed to the corresponding author. Requestors will need to 
sign a data access agreement.
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