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Resting‑state oscillations reveal 
disturbed excitation–inhibition 
ratio in Alzheimer’s disease 
patients
Anne M. van Nifterick 1,2,4,5*, Danique Mulder 1,2, Denise J. Duineveld 1,2, 
Marina Diachenko 3,5, Philip Scheltens 1,4, Cornelis J. Stam 2,5, Ronald E. van Kesteren 4,6, 
Klaus Linkenkaer‑Hansen 3,5, Arjan Hillebrand 2,5 & Alida A. Gouw 1,2,4

An early disruption of neuronal excitation–inhibition (E–I) balance in preclinical animal models of 
Alzheimer’s disease (AD) has been frequently reported, but is difficult to measure directly and non‑
invasively in humans. Here, we examined known and novel neurophysiological measures sensitive 
to E–I in patients across the AD continuum. Resting‑state magnetoencephalography (MEG) data 
of 86 amyloid‑biomarker‑confirmed subjects across the AD continuum (17 patients diagnosed with 
subjective cognitive decline, 18 with mild cognitive impairment (MCI) and 51 with dementia due to 
probable AD (AD dementia)), 46 healthy elderly and 20 young control subjects were reconstructed to 
source‑space. E–I balance was investigated by detrended fluctuation analysis (DFA), a functional E/I 
(fE/I) algorithm, and the aperiodic exponent of the power spectrum. We found a disrupted E–I ratio in 
AD dementia patients specifically, by a lower DFA, and a shift towards higher excitation, by a higher 
fE/I and a lower aperiodic exponent. Healthy subjects showed lower fE/I ratios (< 1.0) than reported in 
previous literature, not explained by age or choice of an arbitrary threshold parameter, which warrants 
caution in interpretation of fE/I results. Correlation analyses showed that a lower DFA (E–I imbalance) 
and a lower aperiodic exponent (more excitation) was associated with a worse cognitive score in AD 
dementia patients. In contrast, a higher DFA in the hippocampi of MCI patients was associated with 
a worse cognitive score. This MEG‑study showed E–I imbalance, likely due to increased excitation, in 
AD dementia, but not in early stage AD patients. To accurately determine the direction of shift in E–I 
balance, validations of the currently used markers and additional in vivo markers of E–I are required.

While previous studies have frequently reported cortical and hippocampal neuronal hyperactivity in preclini-
cal animal models of Alzheimer’s disease (AD)1–3, hypoactive and silent neurons have been found in late stage 
models of Alzheimer’s disease (AD) with profound amyloid plaque  formations2,4. In addition, tau pathology 
has been predominantly related to neuronal silencing and inhibition of the neuronal  network5,6. These findings 
show a disruption in the balance between excitation and inhibition (E–I) as the disease progresses, that can lead 
to brain network dysfunction and cognitive  impairment7,8. If, when and how such a shift occurs in human AD 
patients has been difficult to investigate, because obtaining direct evidence of E–I ratio changes in living human 
subjects is challenging. Noninvasive electromagnetic recordings directly capture the activity of larger populations 
of pyramidal neurons and inhibitory interneurons and, thus, offers a way to study shifts in E–I ratio.

Electroencephalography (EEG) and magnetoencephalography (MEG) studies have already showed signs 
of neuronal hyperexcitability in AD patients, by a higher risk of  seizures9–12 and subclinical epileptiform 
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 discharges13,14. AD patients with epileptiform activity also presented a faster decline in cognitive  function13,14, 
highlighting the relevance to identify such abnormalities at an early stage. Although (subclinical) epileptiform 
abnormalities are the most overt sign of neuronal hyperexcitability, which in turn is a result of E–I ratio changes, 
they occur infrequently, locally and predominantly during  sleep13–15, and, therefore, challenges a correct detec-
tion. In addition, the vast number of automatic spike detection algorithms developed for neurophysiological 
data are not widely used in the clinic, yet, because their accuracy needs  improvement16–18. Novel, quantitative 
surrogate markers of E–I balance are, thus, required.

Short resting-state electromagnetic recordings are more widely available and quantitative measures have been 
associated with neuronal activity in AD  patients19–21, including spectral  power22 and functional  connectivity19,23, 
among  others24–26. Computational modeling studies have provided additional evidence that macroscale record-
ings provide information about E–I balance in  AD27–29. Such metrics may thus provide a translational link 
between the E–I balance at a single neuron or local circuit scale, as frequently studied in preclinical AD animal 
models, and the macroscale cortical network dynamics, as measured in human AD  patients30. Two metrics 
are of special interest because they do not only show an imbalance, but also inform us about the direction of 
change in E–I. The aperiodic, 1/f-like, exponent of the power  spectrum31,32, in the gamma frequency range in 
particular, can track shifts in E–I ratio at many spatial  scales33. Higher excitatory activity was related to a lower 
aperiodic exponent, reflecting a flattened  slope33. In addition, a novel algorithm has been proposed that com-
putes a functional E–I ratio (fE/I) from the spectro-temporal properties of neuronal network  oscillations34. The 
fE/I was ~ 1 in the EEG of a healthy adult population and abnormal after pharmacological intervention and in a 
clinical population. The fE/I thus detects shifts in E_I ratios, such that more excited or inhibited networks show 
an fE/I > 1 or < 1,  respectively34.

In this study, we determined both the aperiodic (1/f-like) exponent of the power spectrum and the fE/I of 
resting-state MEG data to investigate whether patients across different stages of AD have an opposite change in 
E–I ratio, e.g. an early increase and late decrease, as suggested by preclinical data. We also performed detrended 
fluctuation analyses (DFA) to quantify long-range temporal correlations, because it is sensitive to changes in E–I 
 ratio35, previously reported to be altered in early-stage  AD36, and because it is a component of the fE/I analyses. 
It is hypothesized that the healthy brain operates near a critical point, characterized by maximal DFA, which is 
essential for optimal information  processing37. A diseased brain, that operates further from the critical point, 
due to an excess of inhibition or excitation, is expected to show sub- or supercritical dynamics, respectively, 
which is shown as lower DFA  values37–39. Unlike the aperiodic exponent and the fE/I measure, DFA indicates 
whether the network is out of balance, but, thus, does not inform about the direction in which E–I has changed. 
We examined three indicators of E–I balance in parallel, so that the indices can reinforce each other and provide 
a validation of the novel markers. We also studied MEG data of healthy young (HY) and elderly (HE) subjects 
as reference groups, for whom we expected to find a balanced network. Detecting AD patients with excessively 
activated or inactivated network has important implications as potential predictor of the rate of cognitive decline 
and the selection of patients whom are eligible for participation in future clinical trials that restore E–I balance.

Results
Subject characteristics. A summary of the participant characteristics per group is given in Table 1. Groups 
were similar in sex distribution (X2(4) = 4.69, p = 0.321) but differed in mean age (F(4,146) = 115.92, p < 0.001), 
education level (F(4,146) = 6.63, p < 0.001) and mini-mental state examination (MMSE) score (F(3,126) = 36.24, 
p < 0.001). Pairwise comparisons showed that the HY group was (by construction) significantly younger com-
pared to all other groups (p < 0.001) and HE was significantly younger than the group with mild cognitive 
impairment (MCI) (p = 0.001) and dementia due to AD (AD) (p < 0.001). HY had a significantly higher educa-
tion level compared to HE (p = 0.009) and AD (p < 0.001). AD had, as expected, a significantly lower MMSE score 
than HE, SCD, MCI and AD (all p < 0.001).

AD patients show oscillatory slowing. An overview of the MEG data preprocessing and analyses steps, 
as well as the hypothesized outcomes are provided in Fig. 1. We first evaluated spectral power across a range of 
frequencies (1–48 Hz). The mean power of each frequency bin for each group (HY, SCD, MCI, AD) was com-
pared to HE (FDR corrected) (Fig. 2). In the parieto-occipital cortex, AD patients showed significantly higher 
power in the lower frequencies (~ 3.1–7.2 Hz) and significantly lower power at higher frequencies (~ 9.7–11.3 Hz 

Table 1.  Subject characteristics. Values are presented as mean ± standard deviation (SD). Statistical analyses 
were performed using the chi square test (sex) and one-way ANOVA (others). HY healthy young controls, HE 
healthy elderly controls, SCD subjective cognitive decline, MCI mild cognitive impairment, AD dementia due 
to Alzheimer’s disease, m/f male/female, y years, Education Verhage score (range 1–7), MMSE mini-mental 
state examination (range 0–30), n.a. not applicable. *Available for n = 16, #available for n = 50.

HY HE SCD MCI AD p-value

N 20 45 17 18 51

Sex (m/f) 10/10 28/18 9/8 11/0 23/28 0.321

Age (years) 25 ± 3.1 57 ± 8.4 60 ± 8.0 65 ± 5.9 64 ± 7.6  < 0.001

Education 6.5 ± 0.6 5.4 ± 1.4 5.5 ± 1.0 5.4 ± 1.1 5.1 ± 1.1  < 0.001

MMSE n.a 28 ± 1.8 27 ± 3.3* 26 ± 2.1 20 ± 5.3#  < 0.001
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Figure 1.  Schematic of MEG data preprocessing and analyses. (A–D) Standardized resting-state MEG data 
preprocessing procedures. (E) Visual selection and removal of time segments with remaining artefacts (red 
box), drowsiness or eyes-open. (F) Subsequent analyses of clean source-space MEG time series were restricted 
to the parieto-occipital cortex (Supplementary Table S1) and the left and right hippocampi. (G) Power spectra 
(1–48 Hz) were obtained by means of a Fast Fourier Transform. (H) Long-range temporal correlations in 
the extended alpha band (6–13 Hz) were estimated using the DFA algorithm. To obtain the DFA exponent, 
the algorithm fits a slope, α, to the mean fluctuations of the signal profile (y-axis) across log-spaced time 
windows (x-axis). (I) The fE/I algorithm correlates the average amplitude alpha band oscillations (x-axis) to 
the amplitude-normalized fluctuation functions (nF(t), y-axis) calculated in 5-s windows. (J) The aperiodic 
exponent of the power spectrum in the gamma frequencies (30–48 Hz) was obtained using the FOOOF 
algorithm. (K) Hypotheses for E–I (im)balance in AD patients. (L–N) Hypothesized DFA exponents, fE/I 
values and aperiodic exponents in healthy (black), excitation-dominated (red) and inhibition-dominated (blue) 
states. MEG Magnetoencephalography, MRI magnetic resonance imaging, tSSS temporal extension of signal 
space separation, ROIs regions of interest, AAL-atlas automated anatomical labeling atlas, L + R left and right 
hemisphere, DFA detrended fluctuation analyses, fE/I functional excitation/inhibition, HE healthy elderly 
controls, SCD subjective cognitive decline, MCI mild cognitive impairment, AD dementia due to Alzheimer’s 
disease.
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and ~ 14.0–32.2 Hz). Similar power differences between HE and AD, but across a smaller frequency range, were 
found in the hippocampi. No differences were found between SCD or MCI compared to HE. HY had signifi-
cantly higher power in the low delta frequencies (~ 1.1–2.2 Hz) in (only) the parieto-occipital cortex compared 
to HE.

AD patients have decreased long‑range temporal correlations. We next investigated whether 
long-range temporal (auto)correlations in the MEG signal were different in patients across the AD continuum 
compared to healthy controls (Fig. 1H,L). To do so, the average alpha-band (6–13 Hz) DFA in the parieto-occip-
ital cortex and hippocampi for each subject was calculated (Fig. 3A,E). No outliers were detected in any of the 
groups. DFA exponents of the parieto-occipital cortex were significantly different between groups (H(4) = 24.51, 
p < 0.001). Pairwise analyses revealed a lower DFA exponent in AD patients (mean rank 57.57) compared to HE 
(mean rank 93.44) (p < 0.001), indicating weaker autocorrelations in the parieto-occipital signal in AD. Interest-
ingly, HY (mean rank 56.75) also had significantly lower DFA exponents than HE (p = 0.007). DFA exponents of 
the hippocampi also differed between groups (H(4) = 26.19, p < 0.001), and similar group differences were found 
in DFA exponents of the hippocampus: lower DFA in AD patients (mean rank 62.19) and HY (mean rank 46.83) 
than in HE (mean rank 88.93) (p = 0.011 and p = 0.002, respectively).

We also evaluated parieto-occipital DFA exponents across a broader range of frequencies (range 1–44 Hz with 
steps of 1 Hz) (Supplementary Fig. S2A). DFA exponents were generally highest in the (extended) alpha band 
in all groups, although a peak in the beta frequency band (13 – ~ 25 Hz) was also observed. Except for the beta 
band, group differences were generally smaller in size and of similar direction as found for the alpha band (lower 
DFA in AD and HY compared to HE) (Supplementary Fig. S2B). Of note, average DFA exponents in gamma 
frequencies (> 30 Hz) were generally < 0.55, thus, showing no long-range temporal correlations.

AD patients have relatively higher excitation–inhibition balance. To test whether patients across 
the AD continuum have an early increase and late decrease in E–I balance, we assessed the fE/I (Fig. 3B,F). 
Although no outliers were detected, for n = 2 HY subjects and n = 1 SCD patient no hippocampal fE/I values 
were calculated, because both ROIs had DFA exponents < 0.55 (see methods). In contrast to an average whole-
brain fE/I value of ~ 1 in healthy adults as previously observed in EEG  data34, both the HE and HY subjects 
showed a median fE/I < 1.0 in both the parieto-occipital cortex (median(Q1–Q3): HY, 0.86 (0.79–0.94); HE, 
0.88 (0.72–0.95)) and hippocampi (median(Q1–Q3): HY (n = 18), 0.85 (0.69–0.89); HE, 0.79 (0.69–0.91)). An 
fE/I < 1.0 has been previously related to pathological network imbalance, and an inhibition-dominated regime 
 specifically34,40. fE/I values were not calculated for ROIs with a DFA < 0.5534. The number of ROIs with DFA < 0.55 
in the parieto-occipital cortex differed significantly between groups (H(4) 26.23, p < 0.001) (Fig. 3C,G). Pairwise 
analyses showed that this number was, compared to HE, higher in AD patients (mean rank 94.98) than in HE 
(mean rank 54.31) and HY (mean rank 90.93), consistent with the DFA findings reported above. The number of 
ROIs with DFA < 0.55 in the hippocampi was not significantly different between groups (H(4) = 7.830, p = 0.098), 
but pairwise tests revealed a higher number of excluded ROIs in HY (mean rank 90.20) compared to HE (mean 
rank 69.58).

Groups did not significantly differ in fE/I in the parieto-occipital cortex (H(4) = 9.365, p = 0.053), but pairwise 
analyses showed that AD patients had a significantly higher fE/I (mean rank 91.16) compared to HE (mean 
rank 67.62) in the parieto-occipital cortex (p = 0.034). A significant group difference in fE/I was found in the 

Figure 2.  Oscillatory slowing in AD patients, but not in MCI or SCD patients. The mean power spectrum 
(1–48 Hz) in the parieto-occipital cortex (A) and in the hippocampi (B). The power per frequency bin was 
compared between each group (HY, SCD, MCI, AD) and HE, respectively. Shaded area around each curve 
shows standard error of the mean. Statistical analyses were performed using multiple Mann–Whitney U-tests 
and FDR corrected. Dark red bars on the x-axis present significant differences. HY healthy young controls, HE 
healthy elderly controls, SCD subjective cognitive decline, MCI mild cognitive impairment, AD dementia due to 
Alzheimer’s disease.
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hippocampus (H(4) = 14.59, p = 0.006) and pairwise analyses revealed a higher fE/I in the hippocampi (mean 
rank 68.56) in AD patients compared to HE (62.20) (p = 0.003) (Fig. 3B,F). While their fE/I values were closer to 
1, suggesting more balanced E–I than HE, the relatively increased fE/I values also suggest that AD patients have 
more excitation than HE. Although the excluded number of ROIs was higher when using a more conservative 
DFA threshold of 0.6, group differences were similar (Supplementary Fig. S1).

We also examined fE/I across a broader range of frequencies (range 1–44 Hz with steps of 1 Hz) (Supple-
mentary Fig. S2C). For all groups, fE/I values were closer to 1.0 for delta-theta (~ 1–6 Hz) and gamma frequen-
cies (~ 30–40 Hz). However, the number of ROIs for which fE/I could not be obtained was high (> 50%) due to 
DFA < 0.55 in the gamma frequencies especially (Fig. 1E). Group differences between AD patients and HE were 
largest and of similar direction in alpha and beta frequencies (not statistically tested, Supplementary Fig. S2D). 
Differences between MCI and HE seemed largest in the high alpha and beta frequencies (~ 12–10 Hz), a fre-
quency range not captured in the extended alpha band (6–13 Hz).

AD patients have a lower aperiodic gamma exponent. An alternative method to determine a differ-
ence in E–I balance is the aperiodic exponent of the power spectrum in the gamma frequency range (30–48 Hz) 
(Fig. 3D,H). One outlier was detected in the parieto-occipital aperiodic exponent in the HE group and removed 
before analysis. In addition, aperiodic exponents of the parieto-occipital cortex in n = 2 AD patients and ape-
riodic exponents of the hippocampi in n = 2 HE, n = 1 SCD and n = 6 AD subjects were excluded due to a bad 
fit (R2 < 0.8). The aperiodic exponent was significantly different across groups in the parieto-occipital cortex 
(H(4) = 26.16, p < 0.001), and pairwise tests showed that the exponent was lower in AD patients (mean rank 
49.37) compared to HE (mean rank 83.75) (p < 0.001). The aperiodic gamma exponent was also different across 
groups in the hippocampus (H(4) = 9.863, p = 0.043). AD patients showed lower exponents (mean rank 58.91) 
than HE (mean rank 76.07), but this difference was not statistically significant (p = 0.202). A lower exponent in 
the gamma frequency range of the parieto-occipital cortex suggest a higher E–I ratio in AD patients.

MEG based measures of E–I balance correlate with cognitive scores. To explore the relation-
ship between the E–I outcome measures and the clinical disease stage of patients across the AD continuum, we 
analyzed the correlation between each measure of E–I and global cognitive (MMSE) scores (Fig. 4, Table 2). A 

Figure 3.  Abnormal E–I balance in AD patients, but not in MCI or SCD patients. (A,E) Lower DFA exponents 
in the extended alpha band (6–13 Hz) in parieto-occipital cortex and hippocampi suggest E–I imbalance in AD 
patients and HY compared to HE. (B,F) fE/I values of ~ 1.0 indicate E–I balance, but many HE and HY subjects 
showed fE/I < 1.0, which suggest inhibition-dominated activity. Median fE/I was relatively higher in AD patients 
compared to HE, suggesting less inhibition, but more balanced networks. (C,G) The number of ROIs for which 
no fE/I value was calculated (because DFA < 0.55) was higher in AD and HY than HE. (D,H) The aperiodic 
exponent of the gamma frequency power spectra was lower in AD, suggesting relatively more excitation in the 
parieto-occipital cortex compared to HE. Each symbol shows the average of all ROIs within the parieto-occipital 
cortex or the hippocampi of a single subject. Bar graphs show the median and interquartile range per group. 
Outcome measures for each group (HY, SCD, MCI, AD) were compared to HE using the Kruskal–Wallis test. 
DFA detrended fluctuation analyses, fE/I functional excitation inhibition, ROIs region of interest, HY healthy 
young controls, HE healthy elderly controls, SCD subjective cognitive decline, MCI mild cognitive impairment, 
AD dementia due to Alzheimer’s disease; *p < 0.05; **p < 0.01, ***p < 0.001.
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Spearman’s rho correlation analyses showed that within all subjects with proven amyloid pathology, all three 
measures of E–I correlated significantly with MMSE scores in the parieto-occipital cortex as well as the hip-
pocampi. When stratifying for clinical diagnostic group, significant positive correlations were found between 
MMSE scores and DFA exponents and between MMSE scores and aperiodic gamma exponent in AD patients 
in the parieto-occipital cortex and hippocampi. In addition, MMSE scores negatively correlated to hippocampal 
DFA exponents in MCI and parieto-occipital fE/I values in SCD.

Figure 4.  E–I measures correlate to cognitive score in amyloid-positive subjects. E–I measures (DFA (first row), 
fE/I (second row) and aperiodic exponent (third row)) per group were plotted as function of global cognition 
as measured by the mini-mental state examination (MMSE) scores. If the Spearman’s rank correlation analyses 
showed a statistically significant correlation between the E–I measure and the MMSE score (Table 2), a linear 
regression line and the r- and p-values were presented. MMSE mini-mental state examination, DFA exponents 
detrended fluctuation analyses exponent, fE/I functional excitation/inhibition, HE healthy elderly controls, SCD 
subjective cognitive decline, MCI mild cognitive impairment, AD dementia due to Alzheimer’s disease, Par-Occ 
parieto-occipital cortex, Hipp hippocampi.

Table 2.  Spearman correlations between E–I measures and MMSE scores. DFA detrended fluctuation 
analyses, fE/I functional excitation/inhibition ratio, HE healthy elderly controls, SCD subjective cognitive 
decline, MCI mild cognitive impairment, AD dementia due to Alzheimer’s disease, A + all amyloid-biomarker-
positive patients, Par-Occ parieto-occipital cortex, Hipp hippocampi.

Parieto-occipital cortex Hippocampi

DFA fE/I Aperiodic exponent DFA fE/I Aperiodic exponent

HE

n 45 45 44 45 45 43

r 0.037 0.058 0.174 0.201 − 0.109 0.167

p-value 0.811 0.703 0.260 0.186 0.476 0.284

SCD

n 16 16 16 16 15 15

r − 0.114 − 0.534 0.379 0.126 − 0.325 0.103

p-value 0.674 0.033 0.148 0.641 0.237 0.715

MCI

n 18 18 18 18 18 18

r − 0.173 0.338 0.295 − 0.523 − 0.371 0.353

p-value 0.492 0.170 0.235 0.026 0.130 0.151

AD

n 50 50 48 50 50 45

r 0.438 − 0.046 0.518 0.458 − 0.176 0.328

p-value 0.001 0.753  < 0.001  < 0.001 0.220 0.028

A + 

n 84 84 82 84 83 78

r 0.433 − 0.245 0.602 0.410 − 0.353 0.447

p-value  < 0.001 0.024  < 0.001  < 0.001 0.001  < 0.001
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Discussion
Opposite to findings from preclinical research in AD animal models, this MEG study could not provide evidence 
for an abnormally high E–I ratio in early stage AD patients using three measures in parallel. Instead, all three 
measures consistently showed abnormal E–I ratio in AD dementia patients. Two of these E–I markers (fE/I and 
aperiodic exponent) that also indicate the direction of change, suggested relatively more excitation in AD patients 
compared to healthy elderly. Healthy elderly and young subjects however showed abnormally low fE/I values and 
AD dementia patients fE/I values more close to 1, which should indicate more balanced networks. These find-
ings, among other considerations explained below, warrant caution in the interpretation of fE/I as valid E–I ratio 
indicator in resting-state source-reconstructed MEG data and highlight the need to provide further validation 
of the used measures as well as additional non-invasive metrics of E–I (im)balance.

Previous studies have shown that oscillatory slowing of MEG signals, a robust electromagnetic signature 
of  AD41,42, starts already in amyloid-biomarker positive subjects diagnosed with  MCI43,44 or, even earlier, in 
SCD  patients43,45. In the current study, AD patients showed clear oscillatory slowing (i.e., reduced alpha/beta 
power and increased delta/theta power) in both the parieto-occipital cortex and the hippocampi, but no spectral 
abnormalities were detected in SCD or MCI. In addition, HY subjects showed significantly higher power in the 
delta frequencies of the parieto-occipital cortex, which is likely an age-related maturation  effect46–48. A potential 
explanation for the lack of spectral power changes in the MCI and SCD patients is that we limited the study to 
the parieto-occipital cortex and hippocampi, while temporal ROIs and the whole-brain are known to show early 
signs of  slowing42,45,49. In addition, we have a relatively small number of subjects in the SCD and MCI groups, 
which limits the probability to detect effects. Although spectral slowing, as observed in AD patients here, is 
intuitively associated with reduced E–I balance, a number of computational modeling studies showed a relation 
to increased excitatory neuronal activity  instead27,28,50. This hypothesis requires verification in experimental 
studies, but, if true, the results fit with the observed increase in fE/I and reduction of aperiodic exponent, both 
suggesting higher levels of excitation in AD patients.

DFA results showed a lower temporal correlation in the amplitude fluctuations of the parieto-occipital cortex 
and the hippocampi in both AD patients and HY subjects compared to healthy elderly. In line with a lack of dif-
ference in spectral power, DFA values did not differ between SCD or MCI patients compared to healthy elderly. 
Lower DFA exponents have been reported before in AD patients and likely indicate that the underlying network 
is operating away from the critical point (where there is a balance between excitation and inhibition)37. More 
specifically, Montez and colleagues found a lower DFA exponent of the temporo-parietal alpha band oscillations 
in  MEG36, and Stam and colleagues reported a disruption of the fluctuations in the level of synchronization of 
resting-state EEG in AD  patients51. In another (preprinted) MEG study, a significantly lower DFA widespread 
across the cortex was found in larger groups of SCD and MCI patients (without amyloid-biomarker confirma-
tion) compared to controls The relatively small sample size of SCD and MCI patients in the current study may 
explain these contradictory findings. Interestingly, the effects were found across a similar frequency range as 
in AD patients here (in alpha, but also beta frequencies) and suggest a gradual decrease of DFA values across 
disease stages. The remarkably low DFA values found in healthy young subjects in the current study probably 
indicates the importance of taking structural connectivity differences between groups into account. The white 
matter volume of the brain increases up to the fourth or fifth decade of  life52,53 and is especially disrupted in 
neurodegenerative disorders such as  AD54. Future studies should, ideally, incorporate differences in structural 
brain abnormalities across subjects when interpreting measures of E–I, especially in neurodegenerative disor-
ders. Overall, the DFA results of the current study are in line with previous reports in AD patients and suggest 
late-stage E–I imbalance.

Despite a lack of between-group difference, hippocampal DFA exponents in MCI patients showed a significant 
negative correlation to global cognition. MCI patients with worse cognitive scores, thus, had higher hippocampal 
DFA exponents. In contrast, correlation analyses showed that lower DFA exponents were associated with worse 
cognitive scores in AD patients. The opposite correlations between DFA exponents and global cognition in AD 
and MCI patients could be an indication for the biphasic  hypothesis50,55. In particular, higher DFA values have 
been correlated to a shorter distance from seizure onset zones in human epilepsy patients, in temporal lobe 
intra-cortical EEG as well as in MEG of the parietal  cortex56,57. This suggests that DFA exponents may provide 
information about the direction of E–I ratio change, such that higher DFA exponents reflect higher E–I ratios. 
However, how this exactly translates to between-subject differences in DFA values remains unknown. In addition, 
no negative correlations between cognition and other E–I measures were found in MCI patients. Future studies 
should find support for a plausible sub-critical (somewhat inhibited state) in healthy subjects, and, then, elucidate 
whether (relatively) increased DFA values reflect excitation-dominated, rather than more balanced, networks 
instead.fE/I values were higher in AD patients in the parieto-occipital cortex and the hippocampi, which suggest 
more excitation-dominated networks compared to healthy elderly. The significant negative correlation between 
hippocampal fE/I and global cognitive scores in patients with AD underscores these findings: worse cognitive 
performance was related to higher E–I ratios in the hippocampi. However, group level fE/I of both groups was < 1, 
which indicate inhibition-dominated networks, in contrast to what was expected for healthy controls based on 
previous  work34. Another (preprinted) MEG study of fE/I ratios showed similarly low fE/I values in group of 
healthy elderly controls (mean age 70.21 years). The MCI patients showed similarly increased fE/I values, across 
similar (alpha and beta)  frequencies58, as the AD patients in the current study. Two potential explanations for 
the low fE/I values in the healthy elderly of the current study is their age and subjective cognitive complaints. 
However, fE/I analyses in HY subjects (age range 20–30 years) without cognitive complaints showed similarly low 
fE/I values. Alternatively, healthy brains can never function exactly at the critical  point59, but more likely operates 
somewhat below that point, in an inhibited or quasi-critical  state60, which may have resulted here in an fE/I < 1. 
This is however ongoing research and cannot explain the normal fE/I values (close to 1) in sensor-space EEG 
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analyses in healthy  subjects34. Taken together, the unexpectedly low fE/I values in healthy subjects, the relatively 
normal fE/I values in AD patients, the large variance of fE/I values within groups, but also the higher number 
of excluded regions for fE/I analyses in AD patients, encourages nuance in the interpretation of the fE/I results.

Although the interpretation of the DFA and fE/I results across a broader range of frequencies (range 1–44 Hz 
with steps of 1 Hz) is not straightforward (see methods section), the group differences were, by visual inspection, 
largely consistent with the main (extended alpha band) findings. In addition, the beta frequencies presented the 
largest mean group differences between MCI patients and healthy elderly (although the number of ROIs with a 
DFA < 0.55 was generally higher compared to that of the alpha frequencies) and may guide future studies. Impor-
tantly, fE/I values are more close to 1 across gamma frequencies for all groups, as was also found in a previous 
(preprinted) MEG  study58, but the large number of excluded ROIs (> 50%), probably due to the low SNR, and the 
lack of between-group differences makes this frequency range far from ideal to reliably capture fE/I ratio changes.

As already briefly mentioned, an important methodological issue of fE/I analyses that needs to be considered 
is the variability in number of ROIs per brain region for which one can calculate fE/I. Especially ROIs with more 
severely disrupted E–I balance will have time series without strong long-range temporal correlations (e.g., DFA 
exponents below 0.6), yet these ROIs were excluded from fE/I analysis. To reduce this bias, we chose an DFA 
exponent threshold of 0.55, which significantly increased the number of ROIs in the final fE/I analysis, while 
the main findings remained similar. Despite this approach, the number of excluded ROIs per brain region was 
significantly higher in AD patients, suggesting a larger number of ROIs with (severe) E–I imbalance. The higher 
fE/I in AD patients predominantly reflect the ROIs that have not (yet) been severely affected and that, perhaps, 
are in a relatively more excited state compared to elderly controls. Although this an interesting thought, the 
issue of fE/I dependence on DFA exponents is fundamental and requires optimization and additional analyses 
for future use in source-reconstructed MEG data.

Compared to controls, AD patients showed lower aperiodic exponents for the gamma frequency spectrum 
in the parieto-occipital cortex, indicating increased excitation. No differences were observed in SCD and MCI 
patients. Although the AD patients also showed non-significantly lower aperiodic gamma frequency exponents 
in the hippocampi, correlation analyses in both parieto-occipital and hippocampal regions showed that a lower 
aperiodic exponent was associated with a worse cognitive score. In a combined EEG/MEG and computational 
modeling (preprinted) study, that used the FOOOF-determined aperiodic exponent of the 1–40 Hz power 
spectrum and the model to estimate actual E–I ratios, a bidirectional change of the aperiodic exponent of the 
EEG power spectrum was found in AD patients, with decreased slopes (and higher E–I ratios) frontally, and 
increased slopes (and decreased E–I ratios) in temporal  regions61. In MEG of MCI patients (without amyloid-
biomarker confirmation) they found a unidirectional increase in E–I ratio (by a (not-significantly) reduced slope), 
across multiple regions, instead. Future studies should provide additional guidelines on the (aperiodic) range of 
frequencies that are most sensitive to E–I ratio changes and ROIs that are earliest affected in the course of AD.

The effect of ageing on the aperiodic exponent has been studied across several frequency ranges (2–25 Hz, 
2–40 Hz, 20–150 Hz), and older ages were generally linked to lower aperiodic exponents in both EEG and 
 MEG62–64. Although a direct comparison to these studies is difficult considering the differences in studied fre-
quency ranges, ROIs and experimental task condition, we did not replicate these findings in the 30–48 Hz range: 
the HY subjects did not differ in aperiodic exponents compared to the elderly controls. One other (preprinted) 
study did also not find an association between age and resting-state EEG-based aperiodic exponent across the 
2–30 Hz frequency range, but their age range (50–80 y) was smaller than those in the other  studies65. Interest-
ingly, their findings support the hypothesis that the aperiodic component is positively correlated to cognitive 
performance in healthy adults, as was also shown before in a large group of younger adults (18–40 y)66. Here, we 
found no correlation between aperiodic gamma exponent and cognitive score in healthy elderly, but a positive 
correlation in AD patients specifically, suggesting that this association was not merely an ageing effect.

The findings of this study should be interpreted with the following strengths and limitations in mind. We 
studied elderly subjects and patients that were well-characterized and had amyloid-biomarker confirmation. 
These groups and the addition of young controls give a full indication of the behavior of each metric across 
different ages and disease stages. A thorough cleaning procedure was adapted to remove artefacts, and E–I 
analyses was restricted to the parieto-occipital cortex, with high SNR in the alpha band oscillations, to increase 
the reliability of the DFA and fE/I metrics specifically. Because we used source-reconstructed MEG, we were able 
to also analyze the hippocampi which has great relevance in AD. The gamma frequency range of the aperiodic 
exponent was analyzed because this range showed substantial sensitivity to E–I ratio on multiple  scales33. How-
ever, fE/I estimates are biased due to the dependence on DFA exponents. In addition, the aperiodic exponent of 
the gamma band may be influenced by environmental noise, even after the rigorous data cleaning. Furthermore, 
the absolute value of the aperiodic exponent can only be interpreted when compared to a reference group, which 
would complicate future clinical implementation. Groups significantly differed in age and education, but we 
have not replicated analyses while correcting for these nuance variables. A lack of significant results in the SCD 
and MCI group may have been a result of the low number of subjects and thus a lack of statistical power. The 
computation of each E–I outcome measure comes with several relatively arbitrary choices (e.g., think of fitting 
ranges in DFA exponents and aperiodic exponents) that likely influence results. Although others made a start 
in providing recommendations on how to more robustly estimate DFA67 and fit aperiodic  exponents68, there is 
a need for additional guidelines to obtain consistent outcomes across different measures, modalities and scales 
(e.g., source- and sensor-space, or small- and large-scale networks). Finally, we did not identify ictal or interictal 
epileptiform activity as gold standard for increased E–I ratio in our  population21,69.
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Methods:
Participants. This retrospective study included a total of 86 patients across the AD continuum from the 
Amsterdam Dementia Cohort (ADC) (Van der Flier and Scheltens, 2018) of the Alzheimer Center Amsterdam 
at Amsterdam UMC, location VUmc, who underwent a magnetoencephalography (MEG) recording and had 
a known positive amyloid biomarker status through CSF and/or amyloid-PET imaging. All patients under-
went extensive diagnostic screening, including neurological and neuropsychological examinations, magnetic 
resonance imaging (MRI), MEG, standard laboratory tests and a lumbar puncture (or amyloid Positron Emis-
sion Tomography (PET) scan). A multidisciplinary team established a clinical diagnosis according to the 2011 
National Institute of Aging Alzheimer’s Association (NIA-AA criteria). Exclusion criteria were a medical history 
of significant neurological (i.e., other than dementia) or psychiatric disorders, proven early onset autosomal 
dominant AD, and use of acetylcholine-esterase inhibitors, antipsychotics, anti-epileptics, lithium or neuro-
pathic pain medication at the time of MEG-measurement. This study involved 17 patients with subjective cog-
nitive decline (SCD), 18 subjects with mild cognitive impairment (MCI) and 51 subjects with dementia due to 
probable Alzheimer’s disease (AD). Subjects included in the ADC with self-reported cognitive complaints but 
without objectively confirmed cognitive dysfunction and with negative amyloid biomarkers were considered 
healthy elderly controls (HE, n = 45).

Although prior EEG data analyses in a group of 176 healthy subjects in the age range 19–56 years (mean 
24.4 years, SD 7 years) validated the fE/I measure by reporting an whole-brain average fE/I of ± 0.9934,40, fE/I 
analyses have not been applied to MEG data or elderly subjects. Therefore, we also included a group of healthy 
young subjects (HY, n = 20) without (subjective) cognitive complaints of the MANTA study cohort of the Alz-
heimer Center Amsterdam (2018.070). These subjects underwent similar MEG and MRI as the elderly, and 
additional information about demographics and medication use was available. The local Medical Ethics Com-
mittee of the Amsterdam UMC location VUmc has approved a general protocol for biobanking and use of the 
clinical data for research purposes (2016.061; 2017.315). This study has been performed in accordance with the 
Declaration of Helsinki and relevant guidelines and regulations. All subjects gave written informed consent for 
use of their data for research purposes.

MEG recordings. At least 5 min of eyes-closed resting-state MEG recordings were obtained in a magneti-
cally shielded room using a 306-channel whole-head Vectorview MEG system (Elekta Neuromag Oy, Helsinki, 
Finland) at a sampling rate of 1250 Hz as part of the diagnostic  setting70 or MANTA research protocol. Partici-
pants, who were in supine position, were instructed to relax but stay awake and reduce movements during the 
recording. An experienced technician continuously monitored the recording as well as the electro-oculogram to 
alert the patient by signs of drowsiness. When signs of drowsiness appeared, the subject was alerted through an 
acoustic signal or was instructed to shortly open the eyes. Electrocardiogram was also recorded. A 3D-digitizer 
(Fastrak, Polhemus, Colchester, VT, USA) digitized the position of five head localization coils, which were used 
to continuously determine the head position relative to the MEG sensors, as well as the scalp outline by approxi-
mately 500 points. The scalp surface was used for co-registration with a structural (MRI) template that produced 
the best  fit70.

MEG source‑reconstruction. The temporal extension of Signal Space Separation (tSSS) implemented in 
the MaxFilter software (Elektra Neuromag. Oy, version 2.2.10) was applied to the raw sensor-space data to 
remove environmental artifacts. Before estimation of the SSS coefficients, bad channels (line noise, jump-arte-
facts, or flat signals) were visually identified and discarded (Fig. 1B). Source reconstruction was performed after 
applying a band-pass filter (0.5–100 Hz) to the tSSS-filtered data using an atlas-based centroid beamforming 
 approach71,72 (Fig. 1C,D). The MEG signals were projected to 78 cortical and 2 hippocampal regions of interest 
(ROIs) according to the automated anatomical labeling (AAL)  atlas73 (Supplementary Table S1). We determined 
the sphere that best fitted the scalp surface obtained from the co-registered MRI using surface matching (based 
on the Iterated Closest  Point74 technique in combination with in-house developed software) and this sphere was 
used as a volume conductor model. The volume conductor model, an equivalent current dipole with optimum 
 orientation75, and the MEG data covariance matrix (on average 300 s, range 227—343 s) were used to compute 
the broad-band (0.5–100 Hz) beamformer weights using a scalar beamformer as implemented in Elekta beam-
former software (version 2.1.28). Singular value truncation was used when inverting the data covariance matrix 
to deal with the rank deficiency of the data after SSS, using a truncation limit of  1e-6 times the largest singular 
value. By projecting sensor-level MEG data through the normalized beamformer  weights76, time series of neu-
ronal activity were obtained for each ROI’s centroid. The source-reconstructed time series were converted to 
ASCII format for further analyses.

MEG data analyses. After a visual inspection of the source-reconstructed data, time segments with remain-
ing artefacts (not discarded by tSSS), such as eye blinks or muscle movements, eyes open or drowsy segments, 
were removed and the adjacent time series were concatenated (Fig. 1E,F). The final length of the time series 
differed per subject (137–277 s), but was always > 120 s. All subsequent analyses were performed in ROIs in the 
parieto-occipital cortex (10 parietal, 12 occipital and 2 posterior cingulate ROIs) and hippocampus (left and 
right hippocampal ROIs) of the AAL atlas (Supplementary Table S1). The parieto-occipital ROIs were selected 
not only because of the important contribution to the dominant alpha rhythm of the brain in the resting-state, 
but also because of the functional relevance in brain networks and relation with cognitive decline in  AD77–79. 
The left and right hippocampi were included too as it is functionally affected early in the course of AD and its 
dysfunction contributes to cognitive  impairment2,22,44,80.
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After down sampling the fully preprocessed and artefact-free data by a factor 4, the first 10 epochs of 13.12 s 
each (4096 samples per epoch) of each subject were selected for spectral power analyses. For each epoch and for 
each ROI in the parieto-occipital cortex and hippocampi, a broad-band power spectrum was computed via a 
discrete fast Fourier transform (1–48 Hz with steps of 0.076 Hz) using the in-house developed software Brainwave 
(version 0.9.163.26, available from home.kpn.nl/stam7883/brainwave.html). The power spectra were averaged 
across epochs and ROIs within the parieto-occipital cortex and the hippocampi to obtain one power spectrum 
per brain region, per subject. Power spectra noise reduction was performed by constructing the average of 20 
consecutive samples of the spectrum, which span a frequency range of ~ 1.5 Hz, for each data point (movmean.m 
in MATLAB (version R2018b)).

Using the artefact-free but not down sampled MEG data (1250 Hz), we computed the detrended fluctuation 
analyses (DFA) and the functional excitation–inhibition (fE/I) over the extended alpha frequency band (6–13 Hz) 
for each ROI in the parieto-occipital cortex and the hippocampi. Specifically, the alpha band was analyzed because 
of its relatively high signal-to-noise ratio (SNR), required for reliable DFA and thus fE/I  estimation35,81. In addi-
tion, the fE/I algorithm has been established using simulated alpha oscillations and validated using empirical 
EEG data filtered in the alpha band. Furthermore, we used the extended version of the alpha frequency band 
because AD patients typically show progressive oscillatory slowing of the EEG/MEG41 and individual alpha peak 
frequencies have previously been identified in frequencies as low as ~ 6 Hz in  AD82,83.

Although there are good reasons to analyze the data in the (extended) alpha band (6–13 Hz), estimating 
the DFA and f/EI in an a priori selected frequency band might bias the results. Inspired by previous  work40, we 
also explored the DFA and fE/I measures across a broader frequency range (1–44 Hz with steps of 1 Hz) in the 
parieto-occipital cortex. In theory, one could find a simultaneously in- and decrease or lack of difference in DFA 
and fE/I across different frequencies and it remains uninvestigated what this would mean in terms of underlying 
changes in E–I balance. Therefore, we here present these exploratory results in the supplementary material S1 
and limit the main analyses to the alpha band filtered data.

All DFA and fE/I results were averaged across ROIs within each brain region to obtain one DFA and fE/I 
value per brain region per subject. DFA and fE/I computations were performed in MATLAB (version R2018b) 
using previously developed  scripts40 available at https:// figsh are. com/ autho rs/ Simon_J_ Houtm an/ 11781 767.

Detrended fluctuation analyses. Long-range temporal correlations are accurately estimated with the 
DFA84, robustly observed in occipital alpha oscillations in  humans81,85,86, and known sensitive to E–I. DFA expo-
nents of 0.5 are characteristic of a noisy, uncorrelated, signal, whereas exponents higher or lower than 0.5 indi-
cate positive and negative autocorrelations, respectively. Using a computational network model that generates 
alpha oscillations, it has been shown that long-range temporal correlations are maximal when there is a balance 
between excitatory and inhibitory  signaling87 and that deviations from this balance lead to a decrease in DFA 
exponents. Based on this finding, it is hypothesized that a decrease in DFA exponent indicate E–I imbalance, 
however, it does not provide information about the direction of the change in E–I ratio. For a detailed descrip-
tion of DFA computation, we refer to the Supplementary Material S1 as well  as35,85.

Functional excitation/inhibition. The fE/I algorithm combines signal amplitude envelope and a short 
time-scale equivalent of the DFA exponent to identify functional network E/I ratio. This method was first 
described  by34 and we refer to this study and the Supplementary Material S1 for a comprehensive description of 
the algorithm. Whereas fE/I ~ 1 represents neuronal dynamics of a network that is in balance, fE/I < 1 indicates 
an inhibition-dominated regime, and fE/I > 1 an excitation-dominated regime. For time series without substan-
tial long-range temporal correlations (i.e. DFA < 0.6) amplitude and the fluctuation function do not correlate, 
and, therefore, the fE/I cannot be reliably  calculated34. To avoid spurious fE/I values of ~ 1, a DFA threshold 
was applied which lead to a number of ROIs for which no fE/I can be calculated. To find a balance between the 
number of ROIs that are included and a reliable fE/I, we used a DFA threshold of 0.55. However, analyses were 
repeated using the more conservative threshold of 0.6 (Supplementary Fig. S1).

Aperiodic exponent. We also applied the FOOOF  algorithm32 which computes the aperiodic (1/f-like) 
exponent of the power spectrum as an index of E–I  balance33. In short, the FOOOF algorithm identifies peaks 
in the power spectrum and separates the aperiodic component from the periodic oscillations to enable a precise 
estimation of the spectral exponent. More details about the method are provided in the Supplementary Material 
S1 and can be found  in32. Although a substantial number of studies have investigated the aperiodic slope of the 
power  spectrum32,33,40,62, there is no agreement on which frequency range of the power spectrum should be used 
to fit slopes and whether or not to use a ‘knee’ in the fitted slope in order to obtain the best indicators of E–I bal-
ance. However, Gao et al.33 related an increase in E–I ratio to a flatter slope of the spectrum, in the gamma range 
specifically, in a computational model and validated this in experimental data from two species. Based on this 
study, we fit the FOOOF to the gamma frequency range (30–48 Hz). The FOOOF algorithm is freely available on 
GitHub (https:// github. com/ FOOOF- tools/ FOOOF; python 3.7).

Statistical analyses. Statistical analyses to compare groups were performed in SPSS (IBSM SPSS Statistics, 
version 28) or GraphPad Prism (version 9.3.1). The data were inspected for outliers (i.e., those values that are 
3 times the interquartile range above the third or below the first quartile) to exclude from final analyses. Sub-
jects with a bad fit for the aperiodic exponent (R2 < 0.8) were excluded from the aperiodic exponent analyses. 
Assumptions for normality and homogeneity of regression slopes were visually evaluated when appropriate. 
Demographic group differences were analyzed using chi-square or one-way ANOVA tests. Mean differences in 
power for each frequency between each group and HE were tested with multiple Mann–Whitney U tests and 

https://figshare.com/authors/Simon_J_Houtman/11781767
https://github.com/FOOOF-tools/FOOOF
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controlled for the False Discovery Rate (FDR) by means of a two-stage step-up method of Benjamini, Krieger 
and  Yekutieli88 and using a desired FDR of 1.0%. Because after visual inspection of the data at least one clinical 
group showed non-normal distributions per E–I outcome measure (DFA, fE/I and aperiodic exponent), overall 
group differences were tested with nonparametric Kruskal–Wallis tests and pairwise differences between each 
group and HE were tested with multiple Mann–Whitney U tests. The associations between measures of E–I 
and MMSE per (elderly) group and in a combined group with all amyloid-positive subjects were investigated 
by means of Spearman’s rank correlation analyses, and p values of 0.05 were considered statistically significant.

Data availability
Due to privacy regulations of human subjects, we can only provide the MEG files of the subjects included in our 
study upon reasonable request and formal data sharing agreement. The DFA and fE/I algorithms are publicly 
available at https:// github. com/ annev annift erick/ fEI_ in_ AD.
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