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Correcting bias in cardiac 
geometries derived 
from multimodal images using 
spatiotemporal mapping
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Timothy M. Sutton 3, Boris S. Lowe 4, Malcolm E. Legget 5, Peter N. Ruygrok 4,5, 
Robert N. Doughty 4,5, João Pedrosa 6, Jan D’hooge 7, Alistair A. Young 2,8 & Martyn P. Nash 1,9

Cardiovascular imaging studies provide a multitude of structural and functional data to better 
understand disease mechanisms. While pooling data across studies enables more powerful and 
broader applications, performing quantitative comparisons across datasets with varying acquisition 
or analysis methods is problematic due to inherent measurement biases specific to each protocol. We 
show how dynamic time warping and partial least squares regression can be applied to effectively map 
between left ventricular geometries derived from different imaging modalities and analysis protocols 
to account for such differences. To demonstrate this method, paired real-time 3D echocardiography 
(3DE) and cardiac magnetic resonance (CMR) sequences from 138 subjects were used to construct a 
mapping function between the two modalities to correct for biases in left ventricular clinical cardiac 
indices, as well as regional shape. Leave-one-out cross-validation revealed a significant reduction 
in mean bias, narrower limits of agreement, and higher intraclass correlation coefficients for all 
functional indices between CMR and 3DE geometries after spatiotemporal mapping. Meanwhile, 
average root mean squared errors between surface coordinates of 3DE and CMR geometries across 
the cardiac cycle decreased from 7 ± 1 to 4 ± 1 mm for the total study population. Our generalised 
method for mapping between time-varying cardiac geometries obtained using different acquisition 
and analysis protocols enables the pooling of data between modalities and the potential for smaller 
studies to leverage large population databases for quantitative comparisons.

Abbreviations
3DE  3D echocardiography
AHA  American Heart Association
BEAS  B-spline Explicit Active Surfaces
CMR  Cardiac magnetic resonance
DTW  Dynamic time warping
ED  End-diastole
EDV  End-diastolic volume
EF  Ejection fraction
ES  End-systole
ESV  End-systolic volume
FOV  Field of view
GLS  Global longitudinal strain
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HR  Heart rate
ICC  Intraclass correlation coefficient
LV  Left ventricle
LVM  Left ventricular mass
NIPALS  Nonlinear iterative partial least squares (algorithm)
PER  Peak ejection rate
PFRA  Active peak filling rate
PFRE  Early peak filling rate
PLS  Partial least squares
PSR  Peak strain rate
RMSE  Root mean squared error
RV  Right ventricle

Functional cardiac indices, such as chamber volume fluctuations and strain, can provide important information 
for the characterisation of pathophysiological mechanisms in cardiac disease. These indices are typically derived 
from representations of cardiac geometry, obtained from the analysis of images acquired from non-invasive 
modalities such as 2D or 3D echocardiography (3DE), or cardiac magnetic resonance (CMR) imaging. Technical 
advancements in imaging have enabled the development of more complex analyses such as cardiac biomechan-
ics for precision  medicine1–4, and statistical shape  modelling5,6, which rely on the extraction of accurate cardiac 
geometries. Furthermore, compared with the analysis of static geometries alone, time-varying geometric models 
can provide more comprehensive information on changes in cardiac structure and function which enables the 
analysis of  haemodynamics7, or to determine myocardial strain  rate8. Similarly, motion atlases, comprising spa-
tiotemporal information, have been applied to effectively detect dilated  cardiomyopathy9, as well as to predict 
responses to cardiac resynchronisation  therapy10,11.

Distinct imaging modalities (such as CMR and 3DE) produce systematic measurement biases which can be 
regionally variable and further influenced by a particular analysis tool or  observer12, due to differences in the 
final image appearance as a result of modality-specific acquisition and image formation processes. Therefore, to 
enable comparisons across datasets with varying protocols, a posteriori corrections are often applied to account 
for method-specific biases. One approach is to directly account for bias in the specific measurement of inter-
est, such as the use of linear regression to determine a correction factor between outputs from the analysis of a 
common  dataset13. Disadvantages of this approach are that bias correction may need to be performed several 
times (i.e., independently for each measurement of interest), and that it is unable to correct for biases in regional 
geometry. Other successful bias correction methods have been applied at the image intensity level, typically 
using clustering  techniques14, or shape prior level sets to account for intensity heterogeneities in CMR  images15. 
However, low-level image corrections cannot easily be applied to images obtained using different modalities, 
nor used to account for observer- or method-specific biases.

Extending upon previous work on correction of regional shape bias between different CMR acquisition 
 protocols16, we sought to address previously quantified differences between geometries of the left ventricle (LV) 
derived from 3DE and  CMR12. Using an existing database of paired multimodal cardiac images, we apply a 
method for spatiotemporal mapping between time-varying LV geometries over a full cardiac cycle using dynamic 
time warping (DTW) and partial least squares (PLS) regression, to transform geometric models derived from 
3DE to best match those from CMR as the clinical gold-standard for chamber quantification. This generalised 
framework corrects for bias in clinical cardiac indices that can be derived from geometries reconstructed using 
different protocols, and thus enables study-specific cohort datasets to be indexed against larger population 
databases, such as the Multi-Ethnic Study of  Atherosclerosis17 and UK  Biobank18, regardless of bias arising from 
different observers, analysis tools, or imaging modalities.

Methods
Data acquisition. Non-invasive 3DE and CMR scans were performed consecutively within two hours in 138 
participants (84 healthy controls and 54 patients with acquired, non-ischaemic cardiac disease). Ethical approval 
for this study was granted by the Health and Disability Ethics Committee of New Zealand (17/CEN/226), and all 
research was performed in accordance with relevant guidelines and regulations. Written informed consent was 
obtained from each participant.

Multi-planar cine CMR imaging was performed on a Siemens Magnetom 1.5 T Avanto Fit (n = 80) or 3 T 
Skyra (n = 58) scanner (Siemens Healthcare, Erlangen, Germany), using a balanced steady-state free precession 
sequence with retrospective gating. Three long-axis slices (standard two-, three-, and four-chamber views) and 
a short-axis stack of 6–10 slices (spanning the length of the LV from mitral valve to apex) were acquired under 
breath-holds. The following imaging parameters were typical: TR = 3.7 ms, TE = 1.6 ms, flip angle = 45°, field of 
view (FOV) = 360 mm × 360 mm, in-plane resolution = 1.4 mm × 1.4 mm, and slice thickness = 6 mm. Using these 
settings, an average of 29 (range 20–44) image frames were obtained per cardiac cycle across the study population.

Transthoracic 3DE image volumes were acquired using a Siemens ACUSON SC2000 Ultrasound System with 
a 4Z1c transducer (Siemens Medical Solutions, Mountain View, CA, USA) from the apical window in a steep left 
lateral decubitus position. Imaging parameters (such as FOV, focal depth, gain, compression, and frequency) 
were optimised for each subject to obtain real-time (single cycle) targeted LV acquisitions during breath-holds, 
to maximise the sampling rate while maintaining adequate spatial resolution for analysis. This produced an 
average of 38 (range 15–70) image frames per cardiac cycle. The duration of each acquisition was automatically 
determined by the R–R interval from the corresponding electrocardiogram.
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Image analysis and geometric modelling. Time-varying geometric models of the LV over one cardiac 
cycle were constructed semi-automatically from CMR by guide-point  modelling19 using Cardiac Image Modeller 
(CIM, v8.1, University of Auckland, New Zealand). Briefly, analysis involved identifying anatomically homolo-
gous landmarks (i.e., base of the myocardium in the long-axis slices; apical centroid, basal centroid, and right 
ventricular insertion points along the LV epicardial border in the short-axis slices, where applicable), correct-
ing in-plane breath-hold mis-registrations, and interactively fitting contours to the endocardial and epicardial 
borders on long- and short-axis slices. The output from this analysis consists of a previously described geometric 
model of the LV consisting of 16 bicubic Hermite and linear  elements20, from which 145 unique surface points 
were sampled per surface (for the endocardium and epicardium) to produce 290 3D rectangular Cartesian coor-
dinates (x, y, z) representing the LV myocardium. All CMR analyses were conducted by a single experienced 
analyst.

Corresponding geometric models from 3DE were generated using a fully-automatic B-spline Explicit Active 
Surfaces (BEAS)  algorithm21, whereby an initial LV shape model is evolved towards a detected edge described by a 
low-level energy criterion based upon the expected intensities of the blood pool and the endocardium. To obtain 
a motion-coherent segmentation over the full cycle, a localised anatomical affine optical flow algorithm is applied 
to track the model between sequential frames, which is subsequently refined through recursive block  matching22.

Owing to variability in LV position within the image volume, all 3DE LV geometries were registered with 
the geometric descriptions obtained from the CMR analyses—such that the LV long-axis is oriented along the x
-axis, with the y-axis directed toward the centre of the right ventricle (RV), and the origin positioned at one-third 
of the distance from base to apex at end-diastole (ED). To achieve this, surfaces of the geometric model were 
fitted to the BEAS endocardial and epicardial points using least squares minimisation, after having established 
the x and y coordinate axes. While the x-axis could be directly computed as a vector between the apex and basal 
centroids, the y-axis was approximated as being 70° from the inferior RV insertion (automatically detected 
from the  images23), as the anterior RV wall is generally not well visualised in 3DE. This enabled a standardised 
description of LV geometry (i.e., 290 3D points within a common cardiac coordinate system) to be obtained 
from both CMR and 3DE.

Temporal normalisation and registration. Differences in temporal resolution between CMR and 3DE, 
as well as within the same modality (due to subject-specific imaging parameter optimisations) resulted in a 
variable number of frames per acquisition. Besides the variability in sampling rate, changes in heart rate (and 
hence R–R interval) for the same subject between modalities were also observed. As CMR and 3DE imaging 
were not simultaneous, subjects naturally exhibited physiological variation between acquisitions, governed by 
complex mechanisms that modulate the electromechanical coupling and cardiac  function24. Furthermore, dif-
ferent phases of the cardiac cycle, particularly those during diastole, do not scale uniformly with changes in the 
R–R  interval25, resulting in chamber volume fluctuations that are also subject-specific.

Previous works have addressed this non-uniformity by means of piecewise linear temporal scaling that 
decomposes the cardiac cycle into sub-phases, which are aligned  separately7,26. Rather than imposing these 
assumptions, within-subject temporal alignment was performed here by extending upon dynamic time warping 
(DTW)27,28 to minimise the discrepancy between volume traces derived from CMR and 3DE on a per-subject 
basis. A similar strategy has previously been applied to align cardiac sequences using an image-based surrogate 
for cardiac motion in the absence of chamber  volume29–31.

To perform DTW, LV volumes over one cardiac cycle derived from the same subject are represented as two 
independent time series, each linearly interpolated to n and m uniformly spaced samples for 3DE and CMR, 
respectively, and normalised between 0 and 1 in magnitude according to the minimum and maximum volume:

where T is the template signal consisting of uniformly sampled 3DE volume measurements of length n = 30 
(typical of the number of image frames per cycle obtained in cardiac imaging), to which S , a secondary signal 
of uniformly sampled CMR volume measurements of length m = 60 (such that S exhibits twice the sampling 
rate of T ), is temporally warped to match, while i and j represent sample indices in the time domain. A n-by-m 
discrepancy matrix is then formed, where the value of a given element, d

(
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)

 , is:

The following dynamic programming problem is used to construct a cost matrix, where each element, γ
(

i, j
)

 , 
is calculated using the minimum cumulative squared distance based on prior neighbouring elements:

To limit time expansions of the secondary signal (i.e., a step forward in i but not j despite the higher sam-
pling rate of S ), we introduce a penalty term, p , equal to the maximum difference at any given time step between 
normalised volume measurements in T and S . This yields an optimal warping path, W , such that the value of the 
last element, γ (n,m) , is minimised:
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where each wk corresponds to a pair of indices 
(

ik , jk
)

 such that W  is monotonic and continuous, with fixed 
endpoints (i.e., w1 = (1, 1) and wo = (n,m) ). Using W , it is then possible to determine a vector, J ′ , containing 
n time warped indices of S:

Each warped timepoint, j′i , is thus the mean of all jk for which ik = i , yielding a one-to-one mapping between 
3DE and CMR volumes. Finally, non-uniformly spaced samples of CMR geometries could be evaluated at each 
j
′

i , using linear interpolation, corresponding to each of the 30 uniformly spaced 3DE geometries (also obtained 
by linear interpolation). An illustration of DTW is shown in Fig. 1. No between-subject temporal alignment 
was performed.

Geometric mapping. Following temporal registration, PLS regression was used to calculate a geometric 
mapping between corresponding 3DE- and CMR-derived dynamic LV models. Having been widely adopted in 
chemometrics and related  fields32–34, PLS theory has been comprehensively described in previous  literature35,36, 
with a number of applications in cardiac modelling and  analysis37–40.

Briefly, PLS regression comprises an initial dimension reduction step, followed by regression in this latent 
space to yield an optimal mapping between feature ( X ) and target ( Y ) variables. The initial decomposition 
problem can be presented as:

(6)j
′

i =
1

∑o
k=1 δ(ik , i)

(

o
∑

k=1

δ(ik , i) · jk

)

, δ(ik , i) =

{

0, ik �= i
1, ik = i

(7)X = TP⊺

Figure 1.  Dynamic time warping method for temporal alignment of left ventricular geometric models using 
volume traces over one cardiac cycle (horizontal axis) derived from 3D echocardiography (3DE) and cardiac 
magnetic resonance (CMR) imaging. (a) Volume traces from image analysis after temporal normalisation. (b) 
Volume normalisation producing traces with no dimensions (n.d.). (c) Warping paths between normalised 
volumes traces. (d) One-to-one mapping between volume traces. (e) Aligned volume traces.
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For the present application, X and Y are matrices of time-varying LV geometry data (which are mean-centred 
and z-normalised) derived from 3DE and CMR, respectively, and each matrix consists of 138 observations (rows), 
and 26,100 (290 surface points × 3 spatial dimensions × 30 time frames) variables (columns). Accordingly, T and 
U contain the eigenvalues corresponding to the orthogonal eigenvectors in P and Q , for X and Y , respectively. 
Here, X and Y are simultaneously decomposed in an iterative process to maximise the covariance of features and 
targets (i.e., such that the scores in T exhibit the highest correlation with the corresponding scores in U ). Linear 
regression is then performed between T and U to yield a matrix of coefficients, β:

from which estimates of CMR geometries, Ŷ , can be computed as a function of measured 3DE geometries, X:

In this work, the PLS regression step was implemented using the scikit-learn  library41 with the nonlinear 
iterative partial least squares (NIPALS)  algorithm42 in Python. The optimal number of PLS components was 
determined using five-fold cross-validation on the entire dataset, based on the smallest mean squared error 
between variables in Ŷ and Y.

Validation and mapping performance. Results were evaluated using leave-one-out cross-validation to 
provide an approximately unbiased estimate of mapping performance across the entire study population. Aver-
age root mean squared errors (RMSE) were computed between each set of 3D surface coordinates over all time 
frames to measure the similarity between spatiotemporally aligned 3DE and CMR geometries. To assess the 
similarity of regional LV geometry, average RMSE values were also calculated for discrete segments defined by 
the American Heart Association (AHA) 17-segment  model43.

The utility of the mapping function for bias correction was also assessed by comparing routine clinical LV 
indices including end-diastolic volume (EDV), end-systolic volume (ESV), LV mass (LVM), ejection fraction 
(EF), and peak systolic global longitudinal strain (GLS) (calculated using endocardial arc  lengths44) derived from 
3DE and CMR, before and after spatiotemporal mapping was applied. Furthermore, indices calculated from 
the rates of change of volume and GLS (including peak ejection rate (PER), peak early filling rate  (PFRE), peak 
active filling rate  (PFRA), and peak systolic strain rate (PSR)) were used to assess the accuracy of time-dependent 
indices. All CMR measurements were calculated from the unaligned image-derived 3D geometric models.

Demographic variables between control and disease groups were compared using a two-sample independent 
t-test for continuous variables, and the χ2 test for sex. Paired-sample t-tests were used to identify statistically 
significant differences between the means of cardiac indices derived from each imaging modality, complemented 
with Bland–Altman analyses to illustrate the agreement between paired variables. All statistical tests were deemed 
significant if the two-tailed p-value was < 0.01. To determine the reliability of 3DE with respect to CMR before and 
after mapping, an intraclass correlation coefficient (ICC) based on a two-way, mixed effects model for absolute 
 agreement45, was calculated for each index.

Results
Participant demographics. Demographics (including age, sex, and body surface area) and changes in 
heart rate between 3DE and CMR acquisitions are presented in Table  1. To represent a diverse range of LV 
geometries, the dataset included 84 healthy subjects and 54 participants with a variety of cardiac diseases (i.e., 
15 patients with LV hypertrophy, 11 patients with cardiac amyloidosis, 10 patients with aortic regurgitation, 
8 patients with hypertrophic cardiomyopathy, 6 patients with dilated cardiomyopathy, and 4 heart transplant 
recipients).

Correction of global and regional geometry. Average population RMSE between surface coordinates 
of 3DE and CMR over the cardiac cycle decreased from 7 ± 1 mm to 4 ± 1 mm with respect to global geometry 
after spatiotemporal mapping, and from 6 ± 1 mm to 4 ± 1 mm, and 8 ± 1 mm to 4 ± 1 mm, for control and disease 

(8)Y = UQ⊺

(9)U = Tβ

(10)Ŷ = TβQ⊺
= XPβQ⊺

Table 1.  Participant demographics (mean ± standard deviations, and [ranges]) for control and disease 
groups including age, sex, body surface area (BSA), and body mass index (BMI). The change in heart rate 
(HR) between CMR and 3DE acquisitions (calculated as  HR3DE −  HRCMR) is provided as an indication of 
HR variability across the study population. Asterisks (*) denote statistically significant differences (p < 0.01). 
† Calculated using the Mosteller  formula46.

Total N = 138 Control (n = 84) Disease (n = 54) P value

Age (years) 37 ± 16 [18–74] 61 ± 15 [18–84] < 0.001*

Male sex (frequency (%)) 45 (54%) 39 (72%) 0.028

†BSA  (m2) 1.84 ± 0.23 [1.39–2.55] 2.02 ± 0.24 [1.46–2.72] < 0.001*

BMI (kg/m2) 24.4 ± 4.2 [16.9–44.4] 28.7 ± 5.5 [16.7–48.9] < 0.001*

HR change (bpm) − 1 ± 6 [− 18 to 15] − 1 ± 6 [− 13 to 11] 0.608
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groups, respectively. Figure 2 illustrates original and mapped 3DE-derived ED and end-systole (ES) geometries 
for two subjects, demonstrating the greater similarity of the mapped models compared with the corresponding 
CMR geometries, including the effect of lengthening the foreshortened 3DE models (Fig. 2A), and adjusting for 
base-plane angle differences observed in certain pathologies captured by CMR (Fig. 2B). Animations for these 
two subjects, showing the effect of spatiotemporal mapping on the endocardial and epicardial surface points 
over the full cardiac cycle are shown in the Supplementary Material (Videos 1–4).

Surface distances between 3DE and CMR were quantified on a regional basis (Fig. 3), using 16 endocardial 
segments (excluding the apical cap) and 17 epicardial segments, as defined by the AHA model of the LV. Before 
mapping, the RMSE values between corresponding surfaces tended to be greater towards the basal and antero-
lateral aspects of the LV, whereas after mapping, the RMSE magnitudes were more homogeneously distributed 
across the endocardial and epicardial surfaces.

Agreement in cardiac indices. A comparison of LV cardiac indices derived from CMR and 3DE is pre-
sented in Table 2, where each 3DE measurement was re-evaluated after spatiotemporal mapping with leave-one-
out cross validation. Paired sample t-tests revealed statistically significant differences in the means of EDV, ESV, 
LVM, EF, and GLS (p < 0.001), between CMR and unmapped 3DE geometries produced by the BEAS algorithm. 
Spatiotemporal mapping resulted in substantially smaller biases, such that no statistically significant differences 

Figure 2.  Long- and short-axis mesh overlays of left ventricular geometries derived from 3D echocardiography 
(red) and cardiac magnetic resonance imaging (black wireframe) acquired from two subjects before and after 
spatiotemporal mapping. Comparisons are shown at end-diastole (ED) and end-systole (ES). (A) Healthy 
control (39-year-old female). (B) Patient with transthyretin amyloidosis (84-year-old male).



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8118  | https://doi.org/10.1038/s41598-023-33968-5

www.nature.com/scientificreports/

were observed between CMR and mapped 3DE geometries. In all instances, this was accompanied by higher 
ICC values.

To investigate mapping performance with respect to pathological status, the above statistical analyses were 
repeated for control (Table 3) and disease (Table 4) sub-populations independently. As with the mapping per-
formance on the total population in Table 2, lower magnitudes of 3DE bias were observed across all volumetric 
and functional indices after mapping was applied, aside from LVM in the control group which exhibited a small 
increase in the magnitude bias from − 1 to 4 g (although this did not produce a statistically significant difference 
with respect to CMR). Similarly, higher ICC values were generally observed across all cardiac indices for both 
groups, with the exception of EDV (but not indexed EDV) in the disease group.

Bland–Altman plots with measurement samples stratified by group are shown in Fig. 4. For the mapped 3DE 
geometries, the analyses revealed lower mean bias compared to the unmapped geometries, and narrower 95% 
limits of agreement for all cardiac indices with respect to the total study population.

Volume and strain traces. The volume and strain traces derived from the mapped 3DE geometries exhib-
ited a greater degree of similarity to those obtained using CMR than those derived from the original 3DE geom-
etries, with an example shown in Fig. 5. The degree of similarity between 3DE and CMR was quantified using 
the cumulative DTW distance over one cardiac cycle (consisting of 30 uniform samples), which decreased from 

Figure 3.  Population regional root mean squared error (RMSE) in mm between endocardial and epicardial 
surfaces derived from 3D echocardiography and cardiac magnetic resonance imaging at end-diastole (ED) and 
end-systole (ES), before and after spatiotemporal mapping. Numbers denote segments of the American Heart 
Association (AHA) 17-segment  model43.

Table 2.  Population cardiac magnetic resonance (CMR) imaging summary and relative 3D echocardiography 
(3DE) biases (mean ± standard deviation), with intraclass correlation coefficients (ICC) for left ventricular 
end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), ejection fraction (EF), and global 
longitudinal strain (GLS), before and after spatiotemporal mapping. Indexed values are also provided in 
squared brackets, where applicable. Asterisks (*) denote statistically significant differences compared to CMR-
derived indices (p < 0.01).

N = 138 EDV (ml [ml/m2]) ESV (ml [ml/m2]) LVM (g [g/m2]) EF (%) GLS (%)

CMR 149 ± 38 [77 ± 15] 59 ± 23 [31 ± 11] 135 ± 48 [69 ± 20] 61 ± 8 − 19 ± 4

3DE bias (before) *− 16 ± 20 [*− 9 ± 10] *13 ± 19 [*6 ± 9] *− 11 ± 32 [*− 6 ± 17] *− 14 ± 8 *5 ± 4

3DE bias (after) − 4 ± 19 [− 2 ± 10] 0 ± 15 [0 ± 7] − 1 ± 23 [2 ± 12] − 1 ± 6 0 ± 3

ICC (before) 0.890 [0.803] 0.802 [0.742] 0.839 [0.732] 0.355 0.458

ICC (after) 0.915 [0.855] 0.856 [0.809] 0.931 [0.878] 0.645 0.658
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360 ± 244 to 224 ± 192 ml for volume, and 55 ± 38% to 29 ± 15% for strain (for the total population), after map-
ping was applied.

A comparison of indices derived from these traces (i.e., PER,  PFRE,  PFRA, and PSR) calculated from 3DE 
geometries before and after mapping, to those from corresponding CMR acquisitions, are presented in Table 5. 
Smaller magnitudes of bias after mapping were observed for PER and PSR, but not for  PFRE (where there was 
a larger magnitude of bias) and  PFRA (where the direction of bias was reversed, but the magnitude of bias was 
similar). However, mapping resulted in all indices exhibiting smaller standard deviations of differences (inter-
preted as narrower limits of agreement) between CMR and 3DE, as well as higher ICC values, suggesting the 
improved reliability of measurements after spatiotemporal mapping of geometries was applied.

Discussion
Spatiotemporal mapping of LV geometries using DTW and PLS regression is an effective method for bias cor-
rection of cardiac indices derived from different cardiac imaging modalities. By mapping cardiac geometry 
directly, this approach corrects for potential biases in geometry-derived measurements (such as functional 
cardiac indices), which do not have to be specified a priori. As protocol-dependent biases can be both global 
and regional in nature (see Fig. 3), acting on local geometric information enables region-specific bias correc-
tion for applications such as the comparison and quantification of regional wall motion, or to capture subtle 
morphological changes in LV shape.

The use of DTW for the temporal alignment of cardiac sequences confers several advantages. Firstly, DTW 
is automated, does not require a temporal cardiac template, and is consequently robust to cases of abnormal 
systolic or diastolic function, which may produce atypical volume  traces47,48. Similarly, relationships between 
cardiac output and mechanisms that regulate stroke volume and heart rate are, in general, non-trivial, and dif-
ficult to predict per subject. For instances in which recordings are non-synchronous, heart rate variability is 
expected, particularly in healthy  subjects49. Furthermore, the scaling of the various segments of the cardiac cycle 
with respect to R–R interval exhibits high inter-subject variability and subsequently has not been universally 
modelled with  success50,51. By performing temporal warping on a subject-specific basis, this method does not 
rely on assumptions regarding changes in the volume curve arising from beat-to-beat variation. An alternative 
subject-specific approach to address the challenge associated with non-synchronous cardiac cycles is to exploit 
homologous temporal landmarks based on distinct mechanical and electrical  events52,53. While this method 
ensures physiological constraints, it relies on the correct identification of timings associated with valve opening 
and closing, which can be hindered by poor image quality. Likewise, the detection of certain electrocardiogram 
features (e.g., P-wave) is not always feasible in the presence of rhythm irregularities such as atrial fibrillation. 
While in this work temporal registration was achieved by aligning LV cavity volume, DTW in theory can be 

Table 3.  Control group cardiac magnetic resonance (CMR) imaging summary and relative 3D 
echocardiography (3DE) biases (mean ± standard deviation), with intraclass correlation coefficients (ICC) 
for left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), ejection fraction 
(EF), and global longitudinal strain (GLS), before and after spatiotemporal mapping. Indexed values are 
also provided in squared brackets, where applicable. Asterisks (*) denote statistically significant differences 
compared to CMR-derived indices (p < 0.01).

n = 84 EDV (ml [ml/m2]) ESV (ml [ml/m2]) LVM (g [g/m2]) EF (%) GLS (%)

CMR 141 ± 33 [76 ± 13] 54 ± 16 [29 ± 7] 113 ± 31 [61 ± 12] 62 ± 5 − 21 ± 3

3DE bias (before) *− 19 ± 17 [*− 11 ± 9] *9 ± 14 [*5 ± 8] − 1 ± 22 [− 1 ± 12] *− 13 ± 7 *5 ± 4

3DE bias (after) *− 5 ± 17 [− 3 ± 9] − 1 ± 10 [0 ± 6] 4 ± 18 [3 ± 10] − 1 ± 4 1 ± 3

ICC (before) 0.850 [0.722] 0.797 [0.675] 0.867 [0.744] 0.278 0.301

ICC (after) 0.911 [0.827] 0.871 [0.782] 0.907 [0.783] 0.621 0.520

Table 4.  Disease group cardiac magnetic resonance (CMR) imaging summary and relative 3D 
echocardiography (3DE) biases (mean ± standard deviation), with intraclass correlation coefficients (ICC) 
for left ventricular end-diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), ejection fraction 
(EF), and global longitudinal strain (GLS), before and after spatiotemporal mapping. Indexed values are 
also provided in squared brackets, where applicable. Asterisks (*) denote statistically significant differences 
compared to CMR-derived indices (p < 0.01).

n = 54 EDV (ml [ml/m2]) ESV (ml [ml/m2]) LVM (g [g/m2]) EF (%) GLS (%)

CMR 160 ± 41 [79 ± 18] 68 ± 29 [34 ± 14] 168 ± 50 [83 ± 23] 59 ± 10 − 17 ± 4

3DE bias (before) *− 11 ± 22 [− 6 ± 11] *19 ± 23 [9 ± 11] *− 26 ± 39 [− 13 ± 20] *− 16 ± 10 *5 ± 5

3DE bias (after) − 3 ± 23 [− 1 ± 11] 0 ± 20 [0 ± 10] − 9 ± 28 [− 5 ± 14] − 1 ± 8 − 1 ± 4

ICC (before) 0.911 [0.873] 0.765 [0.741] 0.754 [0.642] 0.355 0.310

ICC (after) 0.905 [0.875] 0.815 [0.802] 0.906 [0.862] 0.590 0.565
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Figure 4.  Bland–Altman plots showing biases and 95% limits of agreement (LOA), with vertical axes 
representing differences between 3D echocardiography (3DE) and cardiac magnetic resonance (CMR) imaging, 
plotted against horizontal axes representing the mean of measures obtained from 3DE and CMR. Left and right 
columns show comparisons before and after spatiotemporal mapping of 3DE geometries for left ventricular end-
diastolic volume (EDV), end-systolic volume (ESV), mass (LVM), ejection fraction (EF), and global longitudinal 
strain (GLS).
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applied to any time-varying geometries exhibiting cyclic behaviour (and from which a cyclical signal can be 
derived if temporal alignment is required).

Using paired CMR and 3DE data from 138 unique subjects, we demonstrate that PLS regression can effectively 
correct for biases in cardiac indices, despite these measurements not being explicitly included in the generation of 
the mapping function. Comparisons of routine cardiac indices from both healthy controls and a heterogeneous 
disease group showed a significant reduction in mean bias, narrower limits of agreement, and improved meas-
urement reliability (with only minor exceptions from this trend) after spatiotemporal mapping was applied to 
the 3DE-derived geometries. This approach for bias correction enables targeted studies to perform quantitative 
comparisons against larger databases to obtain population-based outcomes, as well as the pooling and re-use of 
smaller datasets. The use of PLS regression for constructing predictive models has been shown to be particularly 
effective when variables are highly collinear, or when the number of response variables greatly exceeds the num-
ber of  observations54. This is the case for the present application, where features in X are intrinsically associated 
with adjacent geometric coordinates in the predefined pointset (as well as across time frames), while there are a 
limited number of training samples, i.e., 138 subjects, compared with 26,100 target variables in Y . In the domain 
of medical image analysis, PLS regression is particularly well suited, since the challenge of limited samples is 
often encountered, owing to the high costs associated with data acquisition.

Once computed, the resultant mapping function can be applied to geometric datasets wherein the target imag-
ing modality is unavailable, such as to adjust 3DE geometries in the absence of CMR. From a clinical perspective, 
spatiotemporal mapping may also enable reference ranges established for one modality to be applicable to another 
modality. For example, this approach enables the transfer of normative values derived from large population 
databases of  CMR18 for application to 3DE imaging, where accepted reference values have yet to be established 
for some indices. This is possible without incurring costs associated with undertaking further population stud-
ies to establish modality-specific normative ranges (on the basis that a database of images acquired using the 
modalities of interest for the same subjects is available to derive the mapping function). Likewise, bias correction 
may improve measurement accuracy for serial patient follow-up performed across different imaging modalities, 
as well as account for changes in institutional imaging protocols.

Figure 5.  Comparison of volume and strain traces derived from cardiac magnetic resonance (CMR) imaging 
(dashed lines) and 3D echocardiography (3DE) (solid lines) before and after spatiotemporal mapping over one 
cardiac cycle from a healthy control subject (38-year-old female).

Table 5.  Population cardiac magnetic resonance (CMR) summary and relative 3D echocardiography (3DE) 
biases (mean ± standard deviation), with intraclass correlation coefficients (ICC) for left ventricular peak 
ejection rate (PER), peak early filling rate  (PFRE), peak active filling rate  (PFRA), and peak systolic strain 
rate (PSR), before and after spatiotemporal mapping. Asterisks (*) denote statistically significant differences 
(p < 0.01).

N = 138 PER (ml  s−1) PFRE (ml  s−1) PFRA (g  s−1) PSR  (s−1)

CMR − 409 ± 108 341 ± 103 181 ± 84 − 0.87 ± 0.18

3DE bias (before) *60 ± 93 2 ± 128 20 ± 103 *0.13 ± 0.22

3DE bias (after) 12 ± 86 *− 38 ± 89 *− 20 ± 68 0.01 ± 0.19

ICC (before) 0.724 0.641 0.532 0.467

ICC (after) 0.775 0.651 0.684 0.504
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Future work. While we have demonstrated the correction of biases in routine cardiac indices, this method 
could benefit from further validation to assess the agreement for more complex analyses, such as in estimated 
tissue properties using biomechanics workflows, or in resultant pressure-volume loops for haemodynamic 
assessment, after spatiotemporal mapping is applied.

For generalisability, PLS regression is performed directly on Cartesian coordinates resulting from the image 
analysis of 3DE and CMR. However, other forms of geometric parameters may be more effective (and potentially 
more appropriate) for certain applications or anatomical structures. Further experiments using other forms of 
geometry, such as mapping of parameters belonging to 3D anatomical  scaffolds55, or of alternate coordinate 
systems, such as prolate spheroidal coordinates commonly used to describe LV  geometry56–58, may be benefi-
cial. In the present example, both X and Y have the same number of variables (though this does not have to be 
the case for PLS regression in general), and feature selection may help to reduce variable redundancy. Where 
larger datasets are concerned, PLS regression may be preceded by a dimension reduction step, such as principal 
component analysis, in order to reduce computation time.

Conclusions
Differences in acquisition and analysis protocols often result in measurement biases, which can manifest as 
statistically significant differences in clinical indices of interest, even where the analysis of an identical cohort is 
concerned. We present a generalised method for spatiotemporal mapping between full-cycle cardiac sequences 
derived from multiple imaging modalities. By mapping the cardiac geometry directly, the proposed bias cor-
rection scheme is consequently agnostic to the specific indices or anatomical region of interest, and is equally 
applicable regardless of pathological status.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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