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The impact of surgical volume 
on hospital ranking using 
the standardized infection ratio
Shangyuan Ye 1,2, Daniel Li 3, Tingting Yu 1, Daniel A. Caroff 4, Jeffrey Guy 5, Russell E. Poland 1,5, 
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The Centers for Medicare and Medicaid Services require hospitals to report on quality metrics which 
are used to financially penalize those that perform in the lowest quartile. Surgical site infections 
(SSIs) are a critical component of the quality metrics that target healthcare-associated infections. 
However, the accuracy of such hospital profiling is highly affected by small surgical volumes which 
lead to a large amount of uncertainty in estimating standardized hospital-specific infection rates. 
Currently, hospitals with less than one expected SSI are excluded from rankings, but the effectiveness 
of this exclusion criterion is unknown. Tools that can quantify the classification accuracy and can 
determine the minimal surgical volume required for a desired level of accuracy are lacking. We 
investigate the effect of surgical volume on the accuracy of identifying poorly performing hospitals 
based on the standardized infection ratio and develop simulation-based algorithms for quantifying 
the classification accuracy. We apply our proposed method to data from HCA Healthcare (2014–2016) 
on SSIs in colon surgery patients. We estimate that for a procedure like colon surgery with an overall 
SSI rate of 3%, to rank hospitals in the HCA colon SSI dataset, hospitals that perform less than 200 
procedures have a greater than 10% chance of being incorrectly assigned to the worst performing 
quartile. Minimum surgical volumes and predicted events criteria are required to make evaluating 
hospitals reliable, and these criteria vary by overall prevalence and between-hospital variability.

The Centers for Medicare and Medicaid Services (CMS) Hospital-Acquired Condition Reduction Program 
(HACRP) is a pay-for-performance program that links Medicare payments to inpatient healthcare quality. This 
program requires the Secretary of Health and Human Services to impose a 1% payment reduction to the hospitals 
ranked in the worst performing quartile with respect to six quality  measures1. One quality measure is the CMS 
recalibrated patient safety indicator 90, and the other five are Centers for Disease Control and Prevention (CDC) 
National Healthcare Safety Network healthcare-associated infection (HAI)  measures2. These HAI measures are 
for central-line associated bloodstream infection, catheter-associated urinary tract infection, colon and hyster-
ectomy surgical site infection (SSI), methicillin-resistant Staphylococcus aureus bacteremia, and clostridioides 
difficile infection.

All five of the HAI measures in the HACRP are evaluated using the CDC standardized infection ratio (SIR). 
The SIR is the primary summary measure used by the CDC National Healthcare Safety Network to track HAIs 
at a national, state, and local level over time, and is calculated by dividing the observed number of events by the 
predicted number of  events3. The SIR adjusts for facility and patient-level factors, and is similar to the standard-
ized mortality ratio (SMR), which is widely used by CMS and others in public health to analyze mortality  data4,5.

Accurate hospital ranking is crucial for the success of HACRP. However, small surgical volumes and low event 
rates present methodological and statistical challenges that can impact the accuracy of these  rankings6. Previous 
research has focused on the inverse association between surgical volume and surgical or mortality outcomes. 
Ross et al.7 found that acute myocardial infarction, pneumonia, and heart failure mortality rates were higher in 
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lower-volume hospitals. Similar findings were reported in patients with  sepsis8, acute  pancreatitis9, and various 
gastrointestinal, cardiac, and vascular surgical  procedures10–12. Concerns have been raised that accurate hospi-
tal ranking with the SIR may not be possible if surgical volumes are too  small13–15. It also has been noted that 
the CMS SMR is more likely to flag hospitals with larger volumes as performing “worse than the US national 
rate”16. Caroff et al.13 found that the agreement between predicted SSI rates based on risk-adjustment models 
and observed SSI rates was moderate, with low procedure volumes and the small number of predicted events in 
individual hospitals being major limiting factors.

The accuracy of hospital rankings is affected not only by surgical volume, but also by the magnitude of infec-
tion rates and the level of heterogeneity in hospital-specific infection rates. The larger the heterogeneity in these 
rates, the easier it is to differentiate them. Small surgical volume and rare outcomes lead to a large amount of 
uncertainty in estimating hospital-specific SSI rates, making it more difficult to distinguish hospitals based on 
observed rates. Austin et al.17 defined a metric termed as ‘rankability’ which can be interpreted as the proportion 
of the variation between hospitals that is due to true differences in infection rates as opposed to sampling vari-
ation in the observed data. This rankability index ranges between 0 and 1, with higher values corresponding to 
better accuracy. When most of surgical volumes are small or the level of heterogeneity in true hospital-specific 
infection rates is small, the rankability will be low. While the rankability index provides an attractive overall 
measure of ranking accuracy for a given set of hospitals, it does not quantify ranking accuracy for each individual 
hospital relative to other hospitals in the pool of hospitals being ranked or provide a way to evaluate the minimal 
event requirements for reliable classification. To the best of our knowledge, such a tool is not currently available. 
This article aims to fill this gap and addresses the need for individualized accuracy metrics for each hospital and 
a means of evaluating the minimal event requirements for reliable classification.

In this article, we first define accuracy evaluation metrics such as power, false positive rate (FPR), positive 
predictive value (PPV), and negative predictive value (NPV) of identifying hospitals in the worst-performing 
quartile. We then propose a simulation-based algorithm to assess these metrics in real-world settings and to 
provide recommendations for the minimum surgical volumes required for reliable classification of hospitals 
into the worst-performing quartile, a crucial issue for Medicare penalties imposed by the HCARP. Through 
simulation studies, we evaluate the impact of surgical volume, the overall prevalence of the infection, variability 
in hospital-specific prevalence, as well as case-mix adjustment factors on these accuracy metrics.

The remainder of this article is organized as follows. The section “Models and classification accuracy meas-
urements” introduces notation, models, and proposes accuracy evaluation metrics, as well as a simulation-based 
approximation algorithm for assessing these metrics in a given setting. In the section “Colon surgery surgical site 
infections”, we apply the proposed approach to a colon surgery SSI dataset to determine the number of predicted 
events and the surgical volume needed to reach a desired level of classification accuracy. The section “Simula-
tion studies” reports simulation studies evaluating the performance of the proposed algorithm and assessing the 
impact of various factors on ranking accuracy metrics. We conclude with a discussion.

Models and classification accuracy measurements
Standardized infection ratio. Let Yij denote the binary response variable of the jth patient in the ith 
hospital, and xij denote the corresponding p dimensional vector of covariates with i = 1, . . . ,m , j = 1, . . . , ni , 
and N =

∑m
i=1 ni . We assume that the outcome Yij follows a Bernoulli distribution and consider the following 

generalized linear mixed effects model

where αi is the intercept of hospital i, xij = (xij1, . . . , xijp)
⊤ is a vector of patient specific covariates, and 

β = (β1, . . . ,βp)
⊤ are the corresponding covariate effects. We further assume that the hospital-specific inter-

cept αi s are independent and identically distributed with mean α and variance σ 2
α.

A hospital’s true ranking is determined by the value of αi , with larger values indicating worse performance. 
One way to rank hospitals is to use their standardized infection ratios (SIRs), defined as

where expit (a) = exp(a)
1+exp(a) for a ∈ R , Yi =

∑ni
j=1 Yij , π̂i =

∑ni
j=1 expit (α̂s + x

⊤
ij β̂s) , and α̂s and β̂s are consistent 

estimates of αs and βs in the model

    Models in the form of (3) are usually referred to as marginal models or population-average  models18. The 
parameters αs and βs represent the population-averaged intercept and covariate effects, respectively. It has been 
shown that the parameters (α,β⊤)⊤ in the model (1) are always larger (in absolute value) than the correspond-
ing parameters (αs ,β⊤

s )
⊤ from the model (3), and that the relationship between (αs ,β⊤

s )
⊤ and (α,β⊤)⊤ can be 

approximated using the cumulative Gaussian approximation to the logistic  function18,19:

where c = 16
√
3

15π .

(1)logit (pij) =
log(pij)

1− log(pij)
= αi + x

⊤
ij β , αi ∼ N(α, σ 2

α), pij = E (Yij|αi , xij),

(2)SIRi =
∑ni

j=1 Yij
∑ni

j=1 expit (α̂s + x
⊤
ij β̂s)

= Yi

π̂i
,

(3)logit (p∗ij) = αs + x
⊤
ij βs , p

∗
ij = E (Yij|xij).

αs ≈
α√

c2σ 2
α + 1

, βs,ℓ ≈
βℓ√

c2σ 2
α + 1

for ℓ = 1, . . . , p,
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From the assumed logistic mixed effects model (1), conditioning on αi and X i = (xi1, . . . , xini ) , we have 
Yi ∼ Poisson Binomial(pi1, . . . , pini ) . The numerator Yi is the observed number of infections at hospital i, and 
the denominator πi represents the model-predicted number of infections for the same patients but treated at a 
“typical” hospital (i.e., with the infection probability representing the population average). Thus, hospitals with 
SIR greater than one are considered as “worse than average” and hospitals with SIR less than one are considered 
as “better than average”.

Power, false positive rate, positive predictive number, and negative predictive number. To 
quantify the accuracy of classifying hospitals into the worst quartiles, we define several accuracy metrics. We 
define power as the probability of correctly being ranked in the worst quartile (SIR i  in the upper quartile) given 
the hospital is truly in the worst quartile ( αi in the upper quartile), i.e.

    We define FPR as the probability of erroneously being ranked in the worst quartile (SIR i  in the upper quartile) 
given the hospital i is not in the worst quartile ( αi in the 1st–3rd quartile), i.e.

    We define PPV as the probability of truly being in the worst quartile ( αi in the upper quartile) given the hospital 
is being ranked in the worst quartile (SIR i  in the upper quartile):

NPV is the probability of truly not being in the worst quartile ( αi in the 1st–3rd quartile) given the hospital is 
not being ranked in the worst quartile (SIR i  in the 1st–3rd quartile):

    In practice, for a given dataset, since the true ranking of a hospital, the relative position of αi , is unknown, 
the power and FPR can be estimated for every hospital assuming that the hospital is in the worst quartile or 
not, respectively. The minimal predicted events (or surgical volume) threshold can be determined based on a 
pre-specified power or FPR threshold. On the other hand, because rankings based on SIR are available, we can 
estimate the PPV for hospitals being ranked in the worst quartile and the NPV for hospitals not being ranked 
in the worst quartile.

Simulation-based approximation. For real-world settings based on an observed dataset, we can use a 
simulation-based algorithm to approximate the power, FPR, PPV, or NPV defined in the section “Power, false 
positive rate, positive predictive number, and negative predictive number”. Pseudocode for the proposed algo-
rithm is provided in Algorithm 1. Because the true model parameters (β⊤,α, σ 2

α)
⊤ are unknown, we first fit 

a logistic mixed effects model to the data to obtain (β̂
⊤
, α̂, σ̂ 2

α)
⊤ . We then simulate K datasets conditioning 

on the patient-level covariates X and estimated parameter values (β̂
⊤
, α̂, σ̂ 2

α)
⊤ , where X = (x11, . . . , xmnm)

⊤ . 
That is, for the kth simulated dataset ( k = 1, . . . ,K ), we generate hospital effects and outcomes, denote by 
α(k) = (α

(k)
1 , . . . ,α

(k)
m )⊤ and Y (k) = (Y

(k)
11 , . . . ,Y

(k)
mnm)

⊤ , respectively, from model (1). The calculation of the SIR 
requires estimates of (β⊤

s ,αs)
⊤ . If the published values (e.g., by  CMS3) for these estimates are available, they can 

be used directly; otherwise, we can fit a logistic model (3) to obtain (β̂
⊤
s , α̂s)

⊤ , and calculate SIR(k) =(SIR(k)
1 , . . . , 

SIR(k)
m )⊤ using Eq. (2).
Based on the terminology of measures of diagnostic  accuracy20, we define the number of true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) for hospital i across the K simulated datasets as

where α(k)
0.75 and SIR(k)

0.75 are the 75th percentile of α(k) and SIR(k) , respectively. Power, FPR, PPV, and NPV can 
be estimated by

Poweri = P( SIRi ∈ upper quartile |αi ∈ upper quartile) = P( SIRi ∈ upper quartile
⋂

αi ∈ upper quartile)

P(αi ∈ upper quartile)
.

FPRi = P( SIRi ∈ upper quartile |αi ∈ 1st-3rd quartile) = P( SIRi ∈ upper quartile
⋂
αi ∈ 1st-3rd quartile)

P(αi ∈ 1st-3rd quartile)
.

PPVi = P(αi ∈ upper quartile | SIRi ∈ upper quartile) = P( SIRi ∈ upper quartile
⋂
αi ∈ upper quartile)

P( SIRi ∈ upper quartile)
.

NPVi = P(αi ∈ 1st-3rd quartile | SIRi ∈ 1st-3rd quartile) = P( SIRi ∈ 1st-3rd quartile
⋂

αi ∈ 1st-3rd quartile)

P( SIRi ∈ 1st-3rd quartile)
.

NTPi =
K∑

k=1

[
I(α

(k)
i > α

(k)
0.75

⋂
SIR

(k)
i > SIR

(k)
0.75)

]
,

NTNi =
K∑

k=1

[
I(α

(k)
i ≤ α

(k)
0.75

⋂
SIR

(k)
i ≤ SIR

(k)
0.75)

]
,

NFPi =
K∑

k=1

[
I(α

(k)
i ≤ α

(k)
0.75

⋂
SIR

(k)
i > SIR

(k)
0.75)

]
,

NFNi =
K∑

k=1

[
I(α

(k)
i > α

(k)
0.75

⋂
SIR

(k)
i ≤ SIR

(k)
0.75)

]
,



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:7624  | https://doi.org/10.1038/s41598-023-33937-y

www.nature.com/scientificreports/

for i = 1, . . . ,m.

Colon surgery surgical site infections
Colon surgery is one of the most commonly performed procedures in U.S. hospitals. Colorectal SSI is one of the 
HAI measures used in the HACRP to determine hospital reimbursement. But the impact of surgical volume on 
the accuracy of classifying hospitals into the worst quartile has not been well quantified. Currently, hospitals with 
less than one expected SSI are excluded from  rankings3, but whether or to what extent this exclusion criterion 
is an effective approach is unknown.

We apply the proposed algorithm (Algorithm 1) to calculate the power, FPR, PPV, and NPV associated with 
being ranked in the worst quartile for hospitals in the HCA colon surgery SSI dataset described in Caroff et al.13 
The dataset included 39,468 adult patients who underwent colon surgery within 149 facilities affiliated with 

(4)P̂oweri =
NTPi

NTPi + NFNi

, F̂PRi =
NFPi

NFPi + NTNi

, P̂PVi =
NTPi

NTPi + NFPi

, N̂PVi =
NTNi

NTNi + NFNi

,
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HCA Healthcare from January 2014 through December 2016. Only the first eligible episode of colon surgery 
for each individual was included. The number of surgical volumes in each hospital ranged from 2 to 903. Colon 
surgery SSIs were determined by each hospital’s infection prevention staff using CDC National Healthcare Safety 
Network  criteria21. A total of 1216 (3.1%) of patients developed deep incisional or organ/space SSI. Patient and 
hospital level data were obtained from the CDC National Healthcare Safety Network submissions and the HCA 
central data repository.

We consider rankings based on the current CMS model, where age, gender, ASA (American Society of Anes-
thesiologists) score, diabetes, BMI (Body Mass Index), and primary closure are included as covariates. Figure 1a,b 
present the number of predicted events against approximated power and FPR for all hospitals ( n = 149 ). Results 
are based on 10,000 simulated datasets ( K = 10, 000 ). As the number of predicted events increases, power gener-
ally increases while FPR generally decreases. Based on the CDC exclusion criteria, 15 hospitals with predicted 
events < 1 would be excluded from ranking. However, among 134 hospitals with predicted events ≥ 1 , only four 
hospitals are associated with at least 80% chance of being correctly classified into the worst quartile if they are 
truly in that quartile. The minimum number of predicted events to achieve ≥ 80% power is 25.5. Fifty hospitals 
with predicted events ≥ 1 are associated with an FPR greater than 10%. The minimum number of predicted 
events to achieve ≤ 10% FPR is 6.0 events.

Figure 1c presents the estimated PPV for the hospitals ( n = 37 ) being ranked in the worst quartile. Nineteen 
hospitals with predicted events ≥ 1 have PPV less than 80% (blue triangles). The minimal number of predicted 
events to achieve ≥80% PPV is 11.3 events. Figure 1d presents the estimated NPV for the hospitals ( n = 112 ) 
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Figure 1.  Estimated classification accuracy measures by the number of predicted events. Each hospital 
corresponds to a triangle. (a) Estimated power for all hospitals. Hospitals highlighted in blue correspond to 
those with the number of predicted events greater than 1 and power less than 80%. (b) Estimated false positive 
rate (FPR) for all hospitals. Hospitals in blue correspond to those with the number of predicted events greater 
than 1 and FPR higher than 10%. (c) Estimated positive predictive value (PPV) for hospitals being ranked into 
the worst quartile. Hospitals in blue correspond to those with the number of predicted events greater than 1 
and PPV lower than 80%. (d) Estimated negative predictive value (NPV) for hospitals not being ranked into the 
worst quartile. Hospitals in blue correspond to those with the number of predicted events greater than 1 and 
NPV lower than 90%.
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not being ranked in the worst quartile. All hospitals with predicted events ≥ 1 have PPV greater than 85%, and 
among these hospitals, 31 have PPV less than 90% (blue triangles). The minimal number of predicted events to 
achieve ≥ 90% NPV is 5.0 events.

Figure 2 presents the estimated classification accuracy measures by the hospital surgical volume. To achieve 
a power of greater than 80%, a FPR of less than 10%, an 80% PPV, or a 90% NPV, the surgical volume needs to 
exceed 848, 200, 377, or 161, respectively.

Simulation studies
We perform simulation studies to assess the performance of the proposed simulation-based algorithm and to 
investigate the impact of the overall event rate, between-hospital heterogeneity, and model misspecification on 
the four ranking accuracy metrics defined in the section “Power, false positive rate, positive predictive number, 
and negative predictive number”.

Data generation processes. We generate data mimicking the structure of the HCA colon surgery SSI 
data, where the intraclass correlation coefficients (ICC) for each covariate range between 0.0066 and 0.1211, 
reflecting a modest level of heterogeneity in patient population across hospitals. The Pearson’s correlation coef-
ficients among these covariates range from −0.2722 to 0.6515.
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Figure 2.  Estimated classification accuracy measures by the hospital surgical volume ( ni ). Each hospital 
corresponds to a triangle. (a) Estimated power for all hospitals. Hospitals highlighted in blue correspond to 
those with the number of predicted events greater than 1 and power less than 80%. (b) Estimated false positive 
rate (FPR) for all hospitals. Hospitals in blue correspond to those with the number of predicted events greater 
than 1 and FPR higher than 10%. (c) Estimated positive predictive value (PPV) for hospitals being ranked into 
the worst quartile. Hospitals in blue correspond to those with the number of predicted events greater than 1 
and PPV lower than 80%. (d) Estimated negative predictive value (NPV) for hospitals not being ranked into the 
worst quartile. Hospitals in blue correspond to those with the number of predicted events greater than 1 and 
NPV lower than 90%.
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Outcomes are generated based on the generalized mixed effects model (1). For most simulation studies except 
in the section “Effect of underfitting”, we consider the CMS model with the six risk factors used in the section 
“Colon surgery surgical site infections” as the true outcome data-generating model. When evaluating the impact 
of underfitting, we use the Claims-plus-EHR model derived in Caroff et al.13 which included additional risk 
factors as the true outcome data generating model. We fit a generalized mixed effects model on the HCA colon 
surgery SSI data and use the fitted coefficients as the true parameter values in the data-generating process. The 
covariate ICCs and corresponding coefficients are summarized in Table 1. The random effects (α1, . . . ,αm) are 
generated from a Normal distribution with mean α = −2.7862 and variance σ 2

α = 0.52.

Performance of the proposed simulation-based algorithm. We first assess the performance of our 
proposed simulation-based algorithm. For each dataset, outcomes are generated conditioning on the observed 
covariates from the HCA colon surgery SSI data. We apply the Algorithm 1 with K = 1000 and compare the 
resulting power, FPR, PPV, and NPV estimates with the empirical true values. To obtain these empirical true 
values, we simulate 10,000 datasets based on the true parameter values and calculated the corresponding SIRs. 
For each hospital, the empirical power, FPR, PPV, and NPV are calculated as in (4).

Figure 3 presents the true and estimated accuracy measures from 100 simulated datasets. Estimates from the 
algorithm (100 blue dashed curves) are close to and centered at the corresponding true values (solid black curve) 
for all measures, indicating our proposed algorithm can provide accurate estimates of the true parameter values.

Impact of the overall event rate and the random effects variance. A key driver of the accuracy of 
hospital rankings is the level of heterogeneity in the true hospital-specific infection rates. The expectation of the 
empirical variance ( s2 ) of hospital-level event rate  is22

where π is the overall event rate and n̄H is the harmonic mean of surgical volumes. The expectation in Eq. (5) 
increases as σ 2

α increases and is maximized when π = 0.5 for a fixed σ 2
α . A related concept is “rankability” (or 

“reliability”), which is defined as

where si represents the sampling standard error of the observed hospital-specific infection rates for the ith 
 hospital17,23. Both E (s2) and r provide an overall measure of ranking accuracy for a given set of hospitals. The 
metrics we define and investigate in this article aim to provide a tool to quantify ranking accuracy for each indi-
vidual hospital relative to other hospitals in the pool of hospitals being ranked and to enable us to assess the role 
of surgical volume (hospital-specific characteristics) in combination with other important contributing factors 
such as the overall event rate and between hospital heterogeneity on classification accuracy.

Impact of overall event rate. In the colon SSI setting described in the section “Colon surgery surgical site infec-
tions”, the overall event rate is about 3% . We evaluate the impact of the overall event rate on hospital ranking 
accuracy by increasing the random effects mean α , representing the overall event rate, to 5% , 10% , 15% , 20% , 
30% , and 50% . In order to preserve the heterogeneous patient populations across hospitals and the correlation 
structure among covariates, for each simulated dataset, we re-sample covariates with replacement from each 
hospital. Outcomes are generated as described in the section “Data generation processes”. The empirical power, 
FPR, PPV, and NPV are calculated based on 10,000 simulated datasets.

Empirical power, FPR, PPV, and NPV by surgical volume for different overall event rates are presented in 
Fig. 4. Generally, a higher overall event rate (up to 50%) is associated with higher ranking accuracy: higher power, 
PPV, and NPV, as well as lower FPR. The magnitude of improvement becomes smaller when the overall event rate 
increases to 15%. As an illustration, we present the accuracy measures by the overall event rate for two hospitals 
with surgical volumes 78 (yellow triangles) and 303 (blue solid circles) in Fig. 5.

Impact of random effects variance. We assess the impact of between-hospital heterogeneity by increasing the 
random effects variance to σ 2

α = 0.752, 1.02 . Similar the simulation study in the section “Impact of the overall 

(5)E (s2) = π(1− π)

n̄H
+ σ 2

α ,

r = σ 2
α

σ 2
α + median (s2i )

,

Table 1.  Covariates and corresponding coefficients.

Name Coefficient ( β) ICC

X1 : Age (year) − 0.0087 0.0732

X2 : Gender (male) 0.0361 0.0229

X3 : ASA score (1, 2, 3, 4, 5) 0.1470 0.1123

X4 : Diabetes (yes) 0.1181 0.0230

X5 : BMI ( ≥ 30) 0.4235 0.0166

X6 : Closure technique (other) − 0.9813 0.0433
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event rate and the random effects variance”, we calculate the empirical power, FPR, PPV, and NPV based on 
10,000 simulated datasets.

Results are presented in Fig. 6. As expected, a larger between-hospital heterogeneity is associated with 
increased power, PPV and NPV, and decreased FPR.

Impact of model misspecification. Our next set of simulation studies investigates the impact of risk-
adjustment model misspecification on ranking accuracy. We focus on two scenarios: (1) model overfitting, that 
is, the risk-adjustment model includes additional covariates that are not risk factors for the outcome; and (2) 
model underfitting, that is, the risk-adjustment model misses important risk factors for the outcome.

Effect of overfitting. We first evaluate the effect of including additional covariates that are unrelated to the out-
come into the risk-adjustment model after the set of risk factors have been included. The true outcome model is 
set as the CMS model with the coefficients β ,α , and σ 2

α estimated from the observed data. We generate 10,000 
datasets and calculate the SIRs based on CMS model (correct model) and Claims-plus-EHR model (overfitted 
model). Results of empirical power, FPR, PPV, and NPV are summarized in Fig. 7. The ranking accuracy curves 
based on the true and overfitted models overlap, suggesting that classifying hospitals into the worst quartile 
based on an overfitted model has negligible effect on the ranking performance.

Effect of underfitting. To assess the effect of model underfitting, we set the Claims-Plus-EHR model developed 
in Caroff et al.13 as the true model. The Claims-Plus-EHR model includes laparoscopy, age, ASA score, diabe-
tes status, BMI, sex, Charlson/Elixhauser comorbidities, concomitant colon procedures, concomitant noncolon 
intraabdominal procedures, anesthesia, procedure duration, wound class, and use of primary closure as covari-
ates. We generate outcomes from the Claims-plus-EHR model, where the corresponding coefficients, α and σ 2

α 
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Figure 3.  True and estimated power (a), false positive rate (b), positive predictive value (c), and negative 
predictive value (d) by surgical volume. True accuracy measures are obtained from simulation (black curves). 
The corresponding estimates for each of the 100 simulated datasets are obtained by the proposed algorithm 
(blue curves).
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are estimated from the observed data. We generate 10,000 datasets and calculate SIRs based on the Claims-plus-
EHR model (correct model) and the CMS model (underfitted model), respectively. Results are summarized in 
Fig. 8. We observe that the power, FPR, PPV and NPV curves based on the underfitted model (i.e., omitting 
important risk factors) can be substantially higher or lower compared to their empirical true values based on the 
correct model that fully adjusts the case-mix.

Discussion
Motivated by the CMS HACRP, we investigate the effect of hospital volume on identifying hospitals in the worst-
performing quartile. We define accuracy measures to quantify classification accuracy and propose simulation-
based algorithms that approximate the power, FPR, PPV, and NPV associated with being classified into the 
worst-performing quartile.

Mimicking data from HCA healthcare, we perform simulation studies to investigate the impact of surgical 
volume, the overall event rate, between-hospital heterogeneity, and risk-adjustment on classification accuracy. 
Our results show hospital ranking accuracy is affected by several factors. Different outcomes have different overall 
event rates and different between-hospital variability in observed event rates. All these factors in addition to the 
distribution of volumes for the set of hospitals being evaluated affect ranking  accuracy24,25. For any combination 
of outcome and quality measure, the proposed simulation-based algorithm can account for all these factors and 
help identify which hospitals can and cannot be accurately ranked.

We find that as hospital surgical volume increases, the power, PPV, and NPV generally increase and the FPR 
generally decreases. These general patterns are observed for overall event rates from 3 to 50%, and such event rates 
are representative of a wide variety of medical conditions. For example, 30-day mortality rates among 2004–2006 
Medicare patients ranged from 10 to 20% for acute myocardial infarction, pneumonia, and heart  failure7. Fur-
thermore, 30-day mortality rates among 2000–2009 Medicare patients ranged from 6 to 14% for gastrointestinal 
procedures, 3.5–12.5% for cardiac procedures, and 3–6% for carotid  endarterectomy11.
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Figure 4.  Empirical power (a), false positive rate (b), positive predictive value (c), and negative predictive value 
(d) by surgical volume for varying overall event rates.
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Our results suggest that current minimum hospital volume and predicted events criteria may be insufficient. 
When evaluating HAIs, the CDC only calculates SIRs for hospitals with predicted events ≥ 13. When evaluating 
30-day mortality and readmission events, CMS only requires the hospital volume to be ≥ 25 (https:// www. medic 
are. gov/ care- compa re/). These criteria are applied to all medical events regardless of other factors. However, our 
results show that power, FPR, PPV, and NPV are also affected by overall event rates and between-hospital vari-
ability. For example, as illustrated in Fig. 5, for a hospital surgical volume of 78, the power for an event with an 
overall rate 3% would be ≈ 62%, but the power for an event with an overall rate 20% would be ≈ 75%. In addi-
tion, the SIR criteria of ≥ 1 predicted events may be inadequate; applying our algorithm to the HCA colon SSI 
dataset, the minimum number of predicted events to achieve ≥ 80% power or ≤ 10% FPR is 25.5 and 6.0 events, 
respectively. Our simulation results based on datasets mimicking HCA data indicate that missing important 
covariates in the risk-adjustment models can lead to inaccurate power, FPR, PPV, and NPV approximations. 
This underscores the importance of appropriate variable selection in constructing a proper risk-adjusted model.

There are some limitations with our study. While CMS HACRP flags hospitals with the lowest quartile HAI 
measures, different programs have different methods for identifying poorly performing hospitals. For example, 
CMS identifies hospitals with subpar 30-day mortality and readmission criteria by looking at 95% confidence 
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(d) by overall event rates for two individual hospitals.
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intervals for the standardized mortality ratio. The model used in our simulation analyses is only an approxima-
tion of reality, and the patient covariates used in studying colon surgery SSI are likely different for other medical 
outcomes. However, regardless of the quality measure and outcome being studied, the proposed algorithm can 
be adapted to evaluate the ranking accuracy for a given set of hospitals and to identify minimum surgical volume 
criteria in other settings. The finding that overall event rates and between-hospital variability affect hospital 
ranking performance is also generalizable to other quality measures such as the standardized mortality ratio 
and to other medical and surgical outcomes.

In conclusion, we develop a simulation-based algorithm to estimate the classification accuracy of ranking hos-
pitals into the worst-performing quartile based on the SIR. This algorithm can help us determine the minimum 
hospital surgical volume requirements and predicted event cutoffs for a particular setting. The results from apply-
ing the proposed algorithm to the HCA colon surgery SSI dataset suggest that, among 37 facilities being ranked 
in the worst quartile, those facilities that performed fewer than 377 procedures in the 3-year period had at least a 
20% probability of being incorrectly ranked in the worst quartile. This highlights the importance of adequate sur-
gical volume for accurate hospital profiling. Based on data from prior  work26, 3934 US hospitals performed colon 
surgery on fee-for-service Medicare beneficiaries in the 3-year period of 2010–2012. When limited to Medicare 
beneficiaries only, 3236 (82%) performed less than 200 total colon procedures during this period. The minimum 
surgical volume criteria for ranking and profiling hospitals ideally should vary by overall event rates and between 
hospital variability, as ranking accuracy is significantly affected by both factors. When the minimum hospital 
surgical volume requirements are not met, one may consider delaying the timing of ranking until an adequate 
number of surgical procedures have been performed. Although we focus on healthcare-acquired infections and 
the SIR in our study, our conclusions and tools developed are broadly applicable to other quality measures and 
outcomes. Such modifications to minimum hospital volume criteria could prevent unmerited financial penalties 
for hospitals and improve the accuracy of existing CMS hospital evaluation programs.
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Figure 6.  Empirical power (a), false positive rate (b), positive predictive value (c), and negative predictive value 
(d) by surgical volume for different random effects variances.
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Data availability
The R code to implement the proposed algorithm and an illustration based on a simulated dataset are provided at 
https:// github. com/ shyye 008/ Hospi tal- ranki ng. The colon surgical infection SSI data used in the section “Colon 
surgery surgical site infections” are not available due to privacy and ethical concerns.
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