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Prediction of total knee 
replacement using deep learning 
analysis of knee MRI
Haresh Rengaraj Rajamohan 1, Tianyu Wang 1, Kevin Leung 2, Gregory Chang 3, 
Kyunghyun Cho 1,2, Richard Kijowski 3 & Cem M. Deniz 3,4*

Current methods for assessing knee osteoarthritis (OA) do not provide comprehensive information 
to make robust and accurate outcome predictions. Deep learning (DL) risk assessment models were 
developed to predict the progression of knee OA to total knee replacement (TKR) over a 108-month 
follow-up period using baseline knee MRI. Participants of our retrospective study consisted of 353 
case–control pairs of subjects from the Osteoarthritis Initiative with and without TKR over a 108-
month follow-up period matched according to age, sex, ethnicity, and body mass index. A traditional 
risk assessment model was created to predict TKR using baseline clinical risk factors. DL models were 
created to predict TKR using baseline knee radiographs and MRI. All DL models had significantly 
higher (p < 0.001) AUCs than the traditional model. The MRI and radiograph ensemble model and MRI 
ensemble model (where TKR risk predicted by several contrast-specific DL models were averaged 
to get the ensemble TKR risk prediction) had the highest AUCs of 0.90 (80% sensitivity and 85% 
specificity) and 0.89 (79% sensitivity and 86% specificity), respectively, which were significantly 
higher (p < 0.05) than the AUCs of the radiograph and multiple MRI models (where the DL models were 
trained to predict TKR risk using single contrast or 2 contrasts together as input). DL models using 
baseline MRI had a higher diagnostic performance for predicting TKR than a traditional model using 
baseline clinical risk factors and a DL model using baseline knee radiographs.

Knee osteoarthritis (OA) is one of the most prevalent and disabling chronic diseases, occurring in 10% of men 
and 13% of women over 60 years of age1 and contributing to more than $27 billion in annual healthcare expen-
ditures in the Unites States alone2. Conservative treatment options including weight loss, aerobic activity, and 
muscle strengthening exercises can alleviate symptoms and potentially slow the rate of disease progression in 
patients with knee OA3,4, but are most effective when initiated during the early stages of the disease5,6. Thus, a 
preventive strategy that targets patients without advanced knee joint degeneration at high risk for OA progres-
sion could optimize the effectiveness of current conservative interventions. In addition, identifying individuals 
with knee OA at high risk for disease progression would help select the most optimal subjects for inclusion in 
clinical OA drug trials. This would facilitate the conduct of more affordable and shorter-duration studies involv-
ing smaller number of subjects that would expedite the development of new disease modifying OA therapies5.

Magnetic resonance imaging (MRI) is a highly useful imaging modality for evaluating knee OA as it can 
assess all joint structures including cartilage, bone, meniscus, ligament, and synovium that can be sources of 
pain in patients with the disease7. Semi-quantitative measures of structural features of knee joint degeneration 
on MRI have been shown to be associated with knee OA progression including an increased risk for future 
total knee replacement (TKR)8–13. However, obtaining semi-quantitative parameters requires a reader to assess 
each individual structural feature in each region of the knee joint using categorical based scoring systems. This 
is a time-consuming and reader-dependent process, which would be difficult to incorporate into widespread, 
cost-effective OA risk assessment models. Thus, more efficient and reliable methods are needed to extract useful 
prognostic information from imaging studies.

Deep learning (DL) is an advanced form of artificial intelligence that has been successfully used for various 
medical imaging applications. Especially notable is a subclass of DL algorithms termed convolutional neural 
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networks (CNNs), which have dominated the field of computer vision and surpassed human abilities in many 
important tasks14. Given enough training data, a CNN could automatically learn a representative subset of fea-
tures such as structural features of knee joint degeneration on MRI associated with knee OA progression. DL 
offers an exciting new opportunity for rapid, fully automated extraction of useful prognostic information from 
imaging studies that could potentially be used to assess the risk of OA progression in every patient being evalu-
ated in clinical practice with knee radiographs and MRI. Our study was performed to develop DL risk assess-
ment models to predict the progression of knee OA to TKR over a 108-month follow-up period using baseline 
knee MRI. We hypothesize that DL models using baseline MRI would have higher diagnostic performance for 
predicting TKR than a traditional model using baseline clinical risk factors and a DL model using baseline knee 
radiographs.

Methods
Subject cohort.  Our retrospective study was performed using knees selected from subjects in the publicly 
available Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) databases. The OAI data-
base contains demographic and clinical information, radiographs, and MRI examinations from 4796 subjects 
between 45 and 79 years of age with or at risk for knee OA evaluated at baseline and 12, 24, 36, 48, 60, 72, 84, 
and 108-month follow-up15. The MOST database contains the same information and imaging studies from 3026 
subjects between 50 and 79 years of age with or at risk for knee OA evaluated at baseline and 15, 30, 60, 84, 144, 
and 168-month follow-up. The OAI and MOST were approved by the Internal Review Boards at University of 
California at San Francisco, Boston University Medical Center, and each individual clinical recruitment site and 
was performed in compliance with the Declaration of Helsinki. All subjects signed written informed consent.

Training and validation group.  A training and validation group from the OAI database was selected to 
train the models that are not biased towards age, BMI, sex, and race, and use only features on radiographs and 
MRI to predict TKR. A balanced case–control cohort was selected by matching case subjects and control sub-
jects using baseline demographic variables associated with knee OA progression including age, sex, ethnicity, 
and body mass index (BMI). Case subjects were defined as individuals who underwent a TKR in either knee after 
the baseline enrollment date, while control subjects were defined as individuals who appeared at the 108-month 
follow-up visit and had not undergone a TKR in either knee. If a patient underwent TKR in both knees during 
OAI data collection, the knee that first underwent TKR was included. Each case patient with TKR was matched 
to a control subject without TKR who was the same age, sex, and ethnicity and with an additional constraint on 
the baseline BMI within a 10% tolerance. The data set from case–control pairs contained either the left or right 
knee from each case and control subject.

A total of 353 case–control pairs were identified from the 4796 subjects in the OAI database. Subjects were 
excluded if they had TKR at baseline, received partial knee replacement over the course of follow-up, were miss-
ing baseline or 108-month follow-up information, or did not match with a case or control subject. A summary of 
the selection of case–control pairs is illustrated in Fig. 1. Study cohort characteristics are summarized in Supple-
mentary Table 1. All 706 matched subjects had baseline standing posterior-anterior knee radiographs, knee MRI 
examinations, and clinical outcome measures including the Western Ontario and McMaster Universities Osteo-
arthritis Index (WOMAC)16 and Quality of Life from Knee Injury and Osteoarthritis Outcome Score (KOOS 
QoL)17. A subset of 270 subjects had baseline semi-quantitative MRI scores for the severity of cartilage loss and 
bone marrow edema lesions on 14 knee articular surfaces using the MRI Osteoarthritis Knee Score (MOAKS) 
system18 provided by central reading of the National Institute of Health OA Biomarkers Consortium Project.

Total knee replacement risk assessment models.  The MRI examinations for all subjects in the train-
ing and validation group included coronal intermediate-weighted turbo spin-echo (IW-TSE), sagittal fat-sup-
pressed intermediate-weighted turbo spin-echo (FS-IW-TSE), and sagittal fat-suppressed three-dimensional 
(3D) dual-echo in steady state (DESS) sequences performed on a 3.0T whole-body scanner (Magnetom Trio, 
Siemens Healthcare, Erlangen, Germany) with the imaging parameters shown in Supplementary Table 2. To 
determine the best OA risk assessment model, multiple models were developed using analysis of each individual 
sequence and using two different approaches for combined analysis of multiple sequences. Three separate MRI 
models were created for the IW-TSE, FS-IW-TSE, and DESS images as each tissue contrast has advantages for 
evaluating different knee joint structures19. A multi-input MRI model was also developed by inherently com-
bining information from FS-IW-TSE and DESS images in the same CNN architecture (Fig. 2). All MRI models 
were created with CNN architectures using conventional residual blocks with extension to 3D. The use of 3D 
CNN architectures allowed 3D analysis of the DESS sequence without the need to evaluate reformatted images 
in different planes. The outcome predictions for the models were a confidence value between 0 and 1 indicating 
the likelihood for TKR. Details regarding the CNN architectures used in the IW-TSE, FS-IW-TSE, DESS, and 
multi-input MRI models are included in the Supplementary Materials. The source code for this study is available 
at [Link provided after review].

A radiograph model for predicting TKR was created from a previous study using a CNN architecture adapted 
from ResNet with 34 layers, which analyzed baseline standing posterior-anterior knee radiographs and provided 
a confidence value between 0 and 1 as an outcome prediction indicating the likelihood for TKR20. The OAI cohort 
used in this work is a subset of the cohort from20 and during evaluation, it was ensured that there was no leakage 
between the training sets in20 and the test set in our work. An MRI ensemble model was created by averaging 
the outcome predictions of the IW-TSE, FS-IW-TSE, and DESS models. In comparison to the multi-input MRI 
model that analyzed the different MRI sequences together to predict TKR, the MRI ensemble model averaged 
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the outcome predictions of the models analyzing the different sequences separately. An MRI and radiograph 
ensemble model was created by averaging the outcome predictions of the ensemble MRI and radiograph models.

A traditional risk assessment model for predicting TKR was created using multi-layer perceptrons, which 
analyzed baseline clinical risk factors including BMI, WOMAC and contralateral WOMAC, and KOOS QoL21,22. 
Input features were normalized to unit mean and zero variance using training dataset statistics. The multi-layer 
perceptrons passed the input features through 2 fully-connected hidden layers of size 256 with ReLU activation 
and batch normalization and provided a confidence value between 0 and 1 as an outcome prediction indicating 
the likelihood for TKR.

Model training and validation.  Model training and validation was performed using sevenfold nested 
cross-validation. The 353 case–control pairs were split equally into 7 parts, with the number of pairs used for 
model training ranging between 250 and 256 and the number of pairs used for model validation and testing 
ranging between 47 and 52. The dataset splits were performed randomly using a random data generator in 
Python (version 2.7, Python Software Foundation, Wilmington, DE). Details regarding model training, evalua-
tion, and dataset splits are included in the Supplementary Materials.

Model evaluation on internal and external testing groups.  The models were evaluated on an inter-
nal hold-out testing group from the knees of the remaining 4090 subjects in the OAI database that were not 
involved in model training and validation and who were evaluated using the same MRI protocol and same MRI 
scanner. Among the remaining 4090 subjects, there were 32 case knees in 27 subjects that underwent TKR and 
7891 control knees in 4034 subjects that did not undergo TKR between the baseline and 108-month follow-up 
periods. The remaining 257 knee in 216 subjects were excluded due to missing baseline or 108-month follow-up 
information. Study cohort characteristics are summarized in Supplemental Table 3.

The models were also evaluated on an external testing group from the MOST database, which consisted 
of a 270 case–control pairs of subjects with and without TKR performed between the baseline and 84-month 
follow-up periods. Case subjects and control subjects were matched using baseline age, sex, ethnicity, and BMI 
with identical inclusion and exclusion criteria as used for selection of the case–control pairs for the training 

Figure 1.   Selection of the 353 case–control pairs of subjects in the OAI database with and without TKR over a 
108-month follow-up period that comprised the subject cohort.
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and validation group. Study cohort characteristics are summarized in Supplemental Table 4. The MRI examina-
tions for all subjects consisted of coronal short-tau inversion recovery (COR STIR) and sagittal fat-suppressed 
intermediate-weighted turbo spin-echo (SAG FS-IW-TSE) sequences performed on a 1.0T dedicated extremity 
scanner (ONI MSK Extreme; GE Healthcare, Waukesha, WI) with the imaging parameters shown in Supple-
mentary Table 2.

Analysis of saliency maps.  Saliency maps were created for the DESS model that showed the regions of 
discriminative high activation on the images on which the CNN based its interpretation. The saliency maps were 
produced by one minus the prediction probability of the DESS model with blocking 32 × 32 × 16 regions sequen-
tially with stride of 8, 8, 4 in the 3 directions. The saliency maps were created for 50 randomly selected subjects 
and were overlaid on their corresponding DESS reformatted images in axial, coronal, and sagittal planes.

The axial, coronal, and sagittal overlaid saliency maps and DESS images for all image slices through the knee 
were reviewed by a fellowship trained musculoskeletal radiologist who was blinded to all subject information. 
The radiologist graded the presence and absence of regions of discriminative high activation in different anatomic 
locations of the knee including the central bone-cartilage interface and peripheral bone-cartilage interface of 
the medial and lateral femoral condyles and tibia plateau, medial and lateral meniscus, infrapatellar fat pad, 
intercondylar notch, and fluid filled joint space.

Statistical analysis.  Statistical analysis was performed using R Project for Statistical Computing Software 
(R version 3.6.0, R-Project.org). Statistical significance was defined as a p value less than 0.05. The Holm method 
was used to adjust p values to account for multiple comparisons23.

Model evaluation was performed using sevenfold nested cross-validation on the testing and validation group 
with additional evaluation performed on an internal hold-out testing group from the OAI database and an exter-
nal testing group from the MOST database. Models were evaluated for all knees combined and for knees of each 
individual Kellgren-Laurence (KL) grade for the internal hold-out testing group in the OAI database and for all 
knees combined for the external testing group in the MOST database. Receiver operator characteristic analysis 
with areas under the curve (AUC) and area under the precision-recall curve (AUPRC) was used to evaluate the 
diagnostic performance of the different models developed to predict TKR. 95% confidence intervals for AUCs 
and AUPRCs were calculated across 5000 bootstrap samples. The Youden index was used to determine optimal 

Figure 2.   (a) Architecture of the coronal intermediate-weighted turbo spin-echo (IW-TSE), sagittal fat-
suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE), and fat-suppressed three-dimensional dual-
echo in steady-state (DESS) models. (b) Architecture of the multi-input MRI model.
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model sensitivity and specificity24. Statistical significance of improvements in diagnostic performance of the 
different models was analyzed by comparing AUC differences between models using the Delong test25.

Univariate and multi-variate conditional logistic regression models were used to determine the ability of dif-
ferent variables to predict TKR including the outcome prediction of the MRI ensemble model, outcome predic-
tion of the radiograph model, and individual clinical and MRI risk factors for all knees combined and for knees 
with each individual KL grade. The risk values predicted by the models were normalized to zero mean and unit 
variance to ensure that differences in mean magnitude prediction are not leading to any discrepancies in odds 
ratio computation. Clinical risk factors included baseline BMI, WOMAC and contralateral WOMAC scores, and 
KOOS QoL scores, while MRI risk factors included baseline semi-quantitative MOAKS scores for the severity 
of cartilage loss and bone marrow edema lesions, which were available in a subset of 270 case–control pairs. The 
number of articular surfaces with cartilage loss and bone marrow edema lesions was used as MRI risk factors as 
these variables were shown to provide superior diagnostic performance for predicting incident knee OA than 
the total MOAK scores for cartilage loss and bone marrow edema lesions26. Crude odds ratio (OR) was used to 
assess the effect of a given variable when it was used as the only predictor, while adjusted OR was used to assess 
the effect of the given variable adjusted for the effects of all other variables included in the model. Wald test was 
used to assess the significance of individual variables.

The frequency of regions of discriminative high activation on the saliency maps at each anatomic location of 
the knee were calculated for case and control subjects. Fisher’s exact test was used to compare differences in the 
proportions of locations of discriminative high activation in different anatomic locations of the knee between 
subjects with and without TKR.

Results
Table 1 shows the AUCs and AUPRCs of the models developed to predict TKR evaluated using sevenfold nested 
cross-validation on the testing and validation group. All DL models using baseline MRI and radiographs had 
significantly higher (p < 0.001) AUCs for predicting TKR when compared to a traditional machine learning 
model using clinical risk factors. The MRI and radiograph ensemble model had the highest overall diagnostic 
performance with an AUC of 0.90 (80% sensitivity and 85% specificity), which was similar (p = 0.12) to the AUC 
of the MRI ensemble model and significantly higher (p < 0.05) than the AUCs of the radiograph, IW-TSE, FS-IW-
TSE, DESS, and multi-input MRI models. The MRI ensemble model had the second highest overall diagnostic 
performance with an AUC of 0.89 (79% sensitivity and 86% specificity), which was marginally significantly 
higher (p = 0.06) than the AUC of the DESS model and significantly higher (p < 0.05) than the AUCs of the 
radiograph, IW-TSE, FS-IW-TSE, and multi-input MRI models. The DESS model had the highest diagnostic 
performance of all individual MRI models with an AUC of 0.88 (82% sensitivity and 81% specificity), which 
was similar (p = 0.24) to the AUC of the IW-TSE model and significantly higher (p < 0.05) than the AUCs of the 
IW-FSE and multi-input MRI models.

Table 2 shows the crude and adjusted ORs of the models developed to predict TKR for all knees combined, 
while Supplemental Table 5 shows the adjusted ORs of the models for knees with each individual KL grade. The 
outcome prediction of the MRI ensemble model was the variable that had the highest predictive performance 
in the univariate and multi-variate models with a crude OR and adjusted OR of 17.64 and 10.54, respectively for 
all knees combined and an adjusted OR of 7.55, 5.84, 3.33, and 3.19 for knees with KL grades of 0, 1, 2, and 3, 
respectively. For all knees combined, the outcome prediction of the MRI ensemble model, outcome prediction 
of the radiograph model, BMI, WOMAC score, KOOS QoL score, cartilage MOAK score, and bone marrow 
edema lesion MOAK score were significant predictors (p < 0.05) of TKR in the univariate model. However, the 

Table 1.   Receiver operator characteristic analysis with areas under the curve (AUC) and area under the 
precision-recall curve (AUPRC) evaluating the diagnostic performance of the models to predict total knee 
replacement (TKR) using sevenfold nested cross-validation on the training a validation group in the OAI 
database. MLP Multi-layer perceptron, 3D Three-dimensional, CNN Convolutional neural network, CI 
Confidence interval, DESS Sagittal fat-suppressed three-dimensional dual-echo in steady state, FS-IW-TSE 
Sagittal fat-suppressed intermediate-weighted turbo spin-echo, IW-TSE Coronal intermediate-weighted turbo 
spin-echo.

Model AUC (95% CI) p value AUPRC (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI)

MLP model

 Traditional 0.77 (0.74, 0.81) Reference 0.76 (0.71, 0.81) 73 (68, 77) 73 (68, 78)

CNN models

 DESS 0.88 (0.86, 0.91)  < 0.001 0.87 (0.83, 0.91) 82 (78, 86) 81 (77, 85)

 FS-IW-TSE 0.86 (0.84, 0.89)  < 0.001 0.87 (0.84, 0.90) 77 (73,82) 84 (80, 87)

 Multi-input MRI 0.85 (0.82, 0.88)  < 0.001 0.85 (0.81, 0.89) 79 (75, 83) 79 (74, 83)

 IW-TSE 0.87 (0.84, 0.90)  < 0.001 0.87 (0.84, 0.90) 82 (78, 86) 78 (73, 82)

 Radiograph 0.87 (0.84, 0.89)  < 0.001 0.87 (0.84, 0.90) 81 (76, 85) 80 (76, 84)

Ensemble models

 MRI 0.89 (0.87, 0.91)  < 0.001 0.89 (0.87, 0.91) 79 (75, 83) 86 (82 ,89)

 MRI and radiograph 0.90 (0.87, 0.92)  < 0.001 0.90 (0.87, 0.93) 80 (76, 84) 85 (81, 88)
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outcome prediction of the MRI ensemble model and cartilage MOAK score were the only variables that remained 
statistically significant predictors (p < 0.05) in the multi-variable model.

Tables 3 and 4 shows the AUCs and AUPRCs of the models developed to predict TKR evaluated using the 
internal hold-out testing group in the OAI database and the external testing group in the MOST database, respec-
tively for all knees combined. All models showed a small decrease in diagnostic performance for the internal 
testing group with AUCs between 0.84 and 0.89 compared to AUCs between 0.85 and 0.90 for the sevenfold 
nested cross-validation. All models showed a larger decrease in diagnostic performance for the external testing 
group with AUCs between 0.55 and 0.71. The DESS, FS-IW-TSE, and MRI ensemble models had the highest 
AUCs between 0.67 and 0.71 for evaluating the sagittal fat suppressed intermediate-weighted TSE images in 
the MOST database, while the FS-IW-TSE and MRI ensemble models had the highest AUCs of 0.69 and 0.66, 
respectively for evaluating the coronal STIR images.

Table 5 shows the AUCs of the models developed to predict TKR for knees of each individual KL grade evalu-
ated using the internal hold-out testing group in the OAI database. The MRI ensemble model had the highest 
diagnostic performance with AUCs of 0.66, 0.70, 0.78, 0.74, and 0.87 for predicting TKR in knees with KL grades 
of 0, 1, 2, 3, and 4, respectively. For all models, the diagnostic performance was highest for knees with a KL grade 
of 4 and lowest for knees with a KL grade of 0.

Table 6 shows the frequency of regions of discriminative high activation on the saliency maps at each anatomic 
location of the knee for case and control subjects. Significantly higher proportion (p < 0.05) of case subjects with 
TKR had regions of high activation on the peripheral bone-cartilage interfaces of the medial and lateral femoral 
condyles and tibia plateau, intercondylar notch, and medial meniscus compared to subjects without TKR. Signifi-
cantly higher proportion (p < 0.05) of control subjects without TKR had regions of high activation on the central 
bone-cartilage interfaces of the femoral condyles and tibia plateau compared to subjects with TKR (Figs. 3, 4).

Table 2.   Crude odds ratio (OR) and adjusted OR indicating the ability of different variables to predict total 
knee replacement (TKR) in univariate and multi-variate conditional logistic regression models for all knees 
combined. Data in parenthesis are 95% confidence intervals. Analysis of cartilage and BML subregions 
was performed on a subset of the study cohort due to missing semi-quantitative MOAKS. BMI Body mass 
index, WOMAC Western Ontario and McMaster Universities Osteoarthritis Index, KOOS QoL Quality of life 
from knee injury and osteoarthritis outcome score, BML Bone marrow lesions. *Adjusted odds ratio from 
multivariable analysis uses clinical risk factors and image readings from 270 case–control patients. + Wald test 
was used to assess the significance levels of individual risk factors.

Parameter Crude odds ratio Adjusted odds ratio p value+

MRI ensemble 18.24 (9.1, 36.7) 10.81 (4.89, 23.91) < 0.001

Radiograph 5.56 (3.95, 7.83) 1.45 (0.91, 2.31) 0.119

BMI 1.69 (1.32, 2.16) 1.4 (0.94, 2.09) 0.098

WOMAC 1.32 (1.24, 1.41) 1.02 (0.89, 1.17) 0.776

WOMAC contralateral 1.12 (1.06, 1.18) 1.02 (0.91, 1.14) 0.722

KOOS QoL 0.96 (0.95, 0.96) 0.99 (0.97, 1.01) 0.195

Cartilage subregions 1.48 (1.29, 1.69) 1.06 (0.82, 1.37)* 0.667

BML subregions 1.4 (1.22, 1.61) 1.01 (0.79, 1.3)* 0.909

Table 3.   Receiver operator characteristic analysis with areas under the curve (AUC) and area under the 
precision-recall curve (AUPRC) evaluating the diagnostic performance of the models to predict total knee 
replacement (TKR) using the internal hold-out testing group in the OAI database for all knees combined. 3D 
Three-dimensional, CNN Convolutional neural network, CI Confidence interval, DESS Sagittal fat-suppressed 
three-dimensional dual-echo in steady state, FS-IW-TSE Sagittal fat-suppressed intermediate-weighted turbo 
spin-echo, IW-TSE Coronal intermediate-weighted turbo spin-echo.

Model AUC​ AUPRC Sensitivity (%) Specificity (%)

CNN models

 DESS 0.84 0.02 69 80

 FS-IW-TSE 0.84 0.02 66 82

 Multi-input MRI 0.85 0.02 84 78

 IW-TSE 0.87 0.04 66 82

 Radiograph 0.88 0.03 81 85

Ensemble models

 MRI 0.87 0.02 69 83

 MRI and radiograph 0.89 0.03 69 84
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Table 4.   Receiver operator characteristic analysis with areas under the curve (AUC) and area under the 
precision-recall curve (AUPRC) evaluating the diagnostic performance of the models to predict total knee 
replacement (TKR) using the external testing group in the MOST database for all knees combined. 3D 
Three-dimensional, CNN Convolutional neural network, CI Confidence interval, DESS Sagittal fat-suppressed 
three-dimensional dual-echo in steady state, FS-IW-TSE Sagittal fat-suppressed intermediate-weighted turbo 
spin-echo, IW-TSE Coronal intermediate-weighted turbo spin-echo, COR STIR Coronal short tau inversion 
recovery, SAG FS-IW-TSE Sagittal fat-suppressed intermediate-weighted turbo spin-echo.

Model COR STIR AUC​
COR STIR 
AUPRC

SAG FS-IW-TSE 
AUC​

SAG FS-IW-TSE 
AUPRC Radiograph AUC​

Radiograph 
AUPRC

Radiograph 0.88 0.85

3D CNN models

 DESS 0.58 0.56 0.71 0.69

 FS-IW-TSE 0.69 0.69 0.67 0.66

 IW-TSE 0.55 0.55 0.56 0.55

Ensemble models

 MRI 0.66 0.65 0.71 0.69

Table 5.   Receiver operator characteristic analysis with areas under the curve (AUC) evaluating the diagnostic 
performance of the models to predict total knee replacement (TKR) using the internal hold-out testing group 
in the OAI database for knees with each individual Kellgren-Laurence (KL) grade. 3D Three-dimensional, 
CNN Convolutional neural network, CI Confidence interval, DESS Sagittal fat-suppressed three-dimensional 
dual-echo in steady state, FS-IW-TSE Sagittal fat-suppressed intermediate-weighted turbo spin-echo, IW-TSE 
Coronal intermediate-weighted turbo spin-echo.

Model

KL grade

0 1 2 3 4

Radiograph 0.59 0.63 0.73 0.67 0.77

3D CNN models

 DESS 0.64 0.71 0.76 0.70 0.74

 FS-IW-TSE 0.63 0.68 0.71 0.71 0.87

 IW-TSE 0.66 0.67 0.76 0.73 0.78

Ensemble models

 MRI 0.66 0.70 0.78 0.74 0.87

Table 6.   Frequency of regions of discriminative high activation on the saliency maps at anatomic location 
of the knee for case subjects with total knee replacement (TKR) and control subjects without TKR computed 
using the DESS model.

Location

Frequency (%)

p valueCases Controls

Bone-cartilage interface central

 Medial femoral condyle 64.29 100 0.001

 Lateral femoral condyle 57.14 100  < 0.001

 Medial tibia plateau 64.29 95.45 0.01

 Lateral tibia plateau 57.14 95.45 0.003

Bone-cartilage interface peripheral

 Medial femoral condyle 92.86 18.18  < 0.001

 Lateral femoral condyle 82.14 22.83  < 0.001

 Medial tibia plateau 82.14 23.81  < 0.001

 Lateral tibia plateau 71.43 18.18  < 0.001

 Medial meniscus 46.43 9.09 0.005

 Lateral meniscus 17.86 4.55 0.21

 Fat pad 3.57 0.00 0.99

 Intercondylar notch 75 4.55  < 0.001

 Fluid filled joint space 10.71 4.55 0.62
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Discussion
Our study showed that DL models using baseline MRI had significantly higher (p < 0.05) diagnostic performance 
for predicting the progression of TKR over a 108-month follow-up period when compared to a traditional model 
using baseline clinical risk factors and a DL model using baseline radiographs. Furthermore, the outcome predic-
tion of the MRI ensemble model in the univariate and multi-variate analysis had much higher crude and adjusted 
ORs than the outcome prediction of the radiograph model and clinical and MRI risk factors and was one of few 
variables that was a significant predictor (p < 0.05) of TKR when accounting for the effects of all other variables 
in the multivariate analysis. Thus, our findings indicate that DL analysis of the ensemble of baseline IW-TSE, 
FS-IW-TSE, and DESS images provides the best independent prognostic information regarding the likelihood of 
TKR. This emphasizes the need to incorporate DL analysis of baseline MRI into knee OA risk assessment models 
to maximize diagnostic performance, especially when the imaging modality is available for use.

Our study confirmed the findings of a previous study by Tolpadi et al., which also showed a significantly 
higher (p < 0.05) diagnostic performance for a DL model using baseline DESS images for predicting TKR over 
a 60-month follow-up period in 4,796 subjects in the OAI when compared to a DL model using baseline radio-
graphs. In this study, a traditional model using clinical risk factors, DL model using radiographs, and DL model 
using DESS images had AUCs of 0.87, 0.85, and 0.89, respectively for predicting TKR, which were similar to the 
AUCs in our study of 0.77, 0.86, and 0.88, respectively27. Our study further investigated the diagnostic perfor-
mance of DL models that used different MRI tissue contrasts and found that the DESS model had higher AUC 
than the IW-TSE and FS-IW-TSE models. The improved diagnostic performance of the DESS model is likely 
due to the fact that the CNN analyzed higher resolution, 3D volumetric images with a larger number of slices 
that provided more image data for model training. In addition, DESS has been shown to have high diagnostic 
performance for detecting various structural features of knee joint degeneration on MRI including cartilage 
defects, osteophytes, joint effusion and synovitis, ligament and tendon tears, and bone marrow edema lesions28.

Figure 3.   (a) Baseline coronal DESS reformatted image of a case subject (WOMAC pain score—9, stiffness 
score—39.3, disability score—5) with TKR shows regions of discriminative high activation along the peripheral 
bone-cartilage interface of the medial femoral condyle and medial tibia plateau in areas of osteophyte formation 
(thin arrows), within the extruded medial meniscus (thick long arrow), and within the lateral tibial spine and 
intercondylar notch (thick short arrow). (b) Baseline coronal DESS reformatted image of a control subject 
(WOMAC pain score—0, stiffness score—0, disability score—0) without TKR shows regions of discriminative 
high activation along the central bone-cartilage interface of the medial femoral condyle and medial tibia plateau 
in areas of healthy appearing cartilage (arrows).

Figure 4.   (a) Baseline axial DESS reformatted image of a case subject (WOMAC pain score—4, stiffness 
score—32, disability score—1) with TKR shows a region of discriminative high activation within the 
intercondylar notch (arrow). (b) Baseline axial DESS reformatted image of a control subject (WOMAC pain 
score—0, stiffness score—0, disability score—0) without TKR does not show a region of discriminative high 
activation within the intercondylar notch (arrow).
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Our study was the first to investigate DL models that used different MRI tissue contrasts and different imaging 
modalities together to predict TKR. The MRI ensemble model, which averaged the outcome predictions of the 
IW-TSE, FS-IW-TSE, and DESS models, and MRI and radiograph ensemble models, which averaged the outcome 
predictions of the MRI ensemble and radiograph models, had the highest diagnostic performance for predicting 
TKR. Previous studies have also shown that ensemble models outperform the best individual model inside the 
ensemble, provided that the individual models are uncorrelated29,30. Our study also investigated a multi-input 
MRI model that analyzed the IW-FSE and DESS images together in the same CNN architecture. However, the 
multi-input MRI model had lower diagnostic performance than the DESS and MRI ensemble models, which was 
likely the result of the increase in the number of model parameters, or the inadequate concatenation fusion strat-
egy used in the model architecture. Future work is needed to investigate alternative approaches for DL analysis 
of different MRI tissue contrasts and different imaging modalities in the same CNN architecture. For example, 
knowledge distillation and attention-based fusion approaches have been shown to be superior to ensemble 
methods in DL prediction models combining information from multi-view images31,32.

Our study showed a decrease in diagnostic performance when the models were evaluated using an external 
testing group in the MOST database. This highlights the challenges for widespread application of DL models 
analyzing baseline MRI, which may be influenced by variability in imaging protocols and scanner types across 
institutions. However, our results were encouraging as the DESS, FS-IW-TSE, and multi-modality MRI models 
had moderately high AUCs for predicting TKR for subjects in the MOST database, which could be considered a 
“worse-case scenario” external testing group with MRI sequences acquired on 1.0T extremity scanners with lower 
image quality than most clinical MRI protocols performed on 1.5T and 3.0T whole-body scanners. Nevertheless, 
future research efforts are needed to develop better CNN model architectures that are less sensitive to image 
fluctuations and new methods of model training using image datasets with more heterogeneous tissue contrasts 
and image quality to optimize model performance and improve model generalizability.

Our study found differences in the locations of regions of high discriminatory activation on the saliency maps 
between case and control subjects. Regions of high activation were more common in case subjects with TKR on 
the peripheral bone-cartilage interfaces, intercondylar notch, and medial meniscus. These likely reflected areas 
of osteophyte formation, intercondylar synovitis, and meniscal tear and extrusion, which have been previously 
shown to be risk factors for TKR9–13,33. Our results are different from the results of other studies that have used 
DL models to predict knee pain progression and future TKR. Chang et al. identified regions of high activation 
in areas of joint effusion in 89% of subjects with knee pain progression34. Tolpadi et al. found that the risk of 
TKR decreased when regions of high activation were present on the bone and cartilage, meniscus, and anterior 
cruciate ligament and increased when regions of high activation were present on the medial patella retinaculum, 
gastrocnemius tendon, and plantaris muscle27. Differences in our findings and the findings of previous studies 
may be due multiple factors including differences in CNN architectures, outcome measures for knee OA progres-
sion, and methods for saliency map reconstruction and interpretation.

Our DL models could have important future impact in clinical practice and clinical drug trials. The models 
could improve clinical outcomes and reduce symptoms by identifying patients at high risk for knee OA progres-
sion early enough to provide a window of opportunity for disease modification. The models could also provide a 
paradigm shifting approach that would reduce the size, duration, and costs of future clinical drug trials through 
exclusive selection of subjects at high risk for knee OA progression, thereby expediting the development of 
new OA disease modifying therapies. The models could also provide a paradigm shifting approach that would 
reduce the size, duration, and costs of future clinical drug trials through exclusive selection of subjects at high 
risk for knee OA progression, thereby expediting the development of new OA disease modifying therapies. 
Semi-quantitative measures of structural features on MRI have also been shown to be associated with knee OA 
progression8–13. However, obtaining semi-quantitative parameters is time-consuming and reader-dependent, 
which would make it difficult to incorporate them into widespread, cost-effective OA risk assessment models 
that could be used in all patients evaluated with MRI in clinical practice. Furthermore, our study has shown 
that DL models have higher diagnostic performance for predicting future TKR using baseline MRI than semi-
quantitative MOAK scores for cartilage loss and bone marrow edema lesions.

Our study has several limitations. Our study defined case subjects as individuals who underwent a TKR 
over the 108-month follow-up period. Thus, the outcome measure was a binary variable that did not take into 
account the time after baseline the TKR was performed. Furthermore, the decision to undergo a TKR can be 
influenced by multiple factors other than the degree of structural joint degeneration on imaging studies such 
as pain severity, comorbidities, and healthcare access35. Our models were also trained and evaluated using the 
OAI and MOST databases that were primarily composed of older, overweight, Caucasian subjects. Thus, model 
generalizability to more age, BMI, race, and ethnic diverse populations needs to be further investigated. In 
addition, our traditional machine learning model used only a limited number of clinical risk factors although 
all variables were documented in previous studies to be strongly associated with the progression of knee pain 
and future TKR21,22. Finally, our DL models could provide no mechanistic information regarding the factors 
responsible for progression to TKR.

In conclusion, our study showed that DL models using baseline MRI had significantly higher (p < 0.001) 
diagnostic performance for predicting TKR over a 108-month follow-up period when compared to a traditional 
model using baseline clinical risk factors and a DL model using baseline radiographs. Furthermore, DL mod-
els ensembling different MRI tissue contrasts and different imaging modalities achieved significantly higher 
(p < 0.05) diagnostic performance than DL models that used a single MRI tissue contrast or single imaging 
modality. However, our study also showed a decrease in diagnostic performance of the models when evaluated on 
the external testing group in the MOST database, which demonstrates the influence of variables such as subject 
cohort characteristics and MRI protocols on model performance. Additional work is needed to develop new 
approaches to combine different image datasets in the same CNN architecture to maximize model performance 



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6922  | https://doi.org/10.1038/s41598-023-33934-1

www.nature.com/scientificreports/

and to investigate new methods to improve model generalizability to more diverse subject populations and image 
datasets with more heterogeneous tissue contrasts and image quality.

Data availability
The datasets analyzed during the current study are available in the Osteoarthritis Initiative and Multicenter 
Osteoarthritis Study repositories: https://​nda.​nih.​gov/​oai/, https://​most.​ucsf.​edu/​multi​center-​osteo​arthr​itis-​
study-​most-​public-​data-​shari​ng. The github repo for our model development and analysis can be found in 
https://​github.​com/​deniz​lab/​OAI-​MRI-​TKR.
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