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Generalizability of 3D CNN models 
for age estimation in diverse youth 
populations using structural MRI
Sergio Leonardo Mendes 1, Walter Hugo Lopez Pinaya 2*, Pedro Mario Pan 3, 
Andrea Parolin Jackowski 3,4, Rodrigo Affonseca Bressan 3 & João Ricardo Sato 1

Recently, several studies have investigated the neurodevelopment of psychiatric disorders using 
brain data acquired via structural magnetic resonance imaging (sMRI). These analyses have shown 
the potential of sMRI data to provide a relatively precise characterization of brain structural 
biomarkers. Despite these advances, a relatively unexplored question is how reliable and consistent 
a model is when assessing subjects from other independent datasets. In this study, we investigate 
the performance and generalizability of the same model architecture trained from distinct datasets 
comprising youths in diverse stages of neurodevelopment and with different mental health 
conditions. We employed models with the same 3D convolutional neural network (CNN) architecture 
to assess autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), brain 
age, and a measure of dimensional psychopathology, the Child Behavior Checklist (CBCL) total 
score. The investigated datasets include the Autism Brain Imaging Data Exchange II (ABIDE-II, 
N = 580), Attention Deficit Hyperactivity Disorder (ADHD-200, N = 922), Brazilian High-Risk Cohort 
Study (BHRCS, N = 737), and Adolescent Brain Cognitive Development (ABCD, N = 11,031). Models’ 
performance and interpretability were assessed within each dataset (for diagnosis tasks) and inter-
datasets (for age estimation). Despite the demographic and phenotypic differences of the subjects, 
all models presented significant estimations for age (p value < 0.001) within and between datasets. 
In addition, most models showed a moderate to high correlation in age estimation. The results, 
including the models’ brain regions of interest (ROI), were analyzed and discussed in light of the youth 
neurodevelopmental structural changes. Among other interesting discoveries, we found that less 
confounded training datasets produce models with higher generalization capacity.

In the last few decades, several studies have investigated neurodevelopment and psychiatric disorders using 
brain data acquired via structural magnetic resonance imaging (sMRI)1–3. These analyses have shown the great 
potential of sMRI data as a  biomarker4–6. One main asset of the current methodology is the ability to perform 
relatively precise characterization of brain structures, which is essential for using structural neuroimaging data to 
understand the brain mechanisms of psychiatric  disorders1. Moreover, sMRI biomarkers are already an important 
part of clinical assessment for neurodegenerative diseases such as Alzheimer’s and other prevalent  dementias7. 
Unfortunately, most psychiatric disorders still rely solely on clinical judgment. Therefore, investigations on 
neuroimaging biomarkers, particularly in youth, may help clinicians in differentiating between typical and 
atypical developmental  trajectories8. These quantitative measures could help distinguish typically developing 
(TD) from children with attention deficit hyperactivity disorder (ADHD)9 or autism spectrum disorder (ASD)10. 
Furthermore, these investigations could be useful for understanding the neural basis of dimensional symptoms 
in psychopathology.

Recent studies have explored typical neurodevelopment based on age estimation from sMRI data and con-
volutional neural network (CNN) machine-learning  models8,11,12. Increased brain age estimations have been 
correlated with an increased risk of schizophrenia, epilepsy, Down’s syndrome, and progression to Alzheimer’s 
disease in high-risk  subjects13–16. Notably, decreased predicted age has been correlated with protective influences 
exerted by meditation, increased education level, and physical  exercises17,18. In recent years, CNN-based deep 
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learning approaches outperformed previous shallow models (such as Gaussian process regression) in estimating 
brain age from  sMRI11, becoming the state of the art for this  task12. Despite promising results, CNNs (as well as 
other artificial neural networks) can be difficult to interpret, providing little insight into the nature of the neural 
mechanisms underlying psychiatric  disorders19,20. Furthermore, the generalizability and consistency of CNN 
models across different datasets remain an open question. How a model trained in one dataset performs when 
evaluating other distinct datasets remains poorly explored, which is critical for the clinical use of any proposed 
biomarker.

A model trained from a given dataset should perform adequately when estimating new unseen subjects. 
However, these new subjects do not always meet the same characteristics (i.e., age, sex, ethnicity, or mental health 
conditions) as those included in the training data. Furthermore, knowing what features a model focuses on when 
making decisions is essential. That is, which are the most representative ROIs during estimations? Are these ROIs 
the same, or do they vary when evaluating unseen data? Are the most representative ROIs equal or different for 
models trained from similar versus distinct populations? The answer to these questions is very relevant when 
making conclusions for a study. That is, how much the findings can be generalized to similar subjects but with 
distinct demographic characteristics. To the best of our knowledge, these questions are relatively unexplored 
in neuroimaging data analyzed via CNNs, especially for the neurodevelopment stage between childhood and 
adulthood.

The current study investigates the performance and generalizability of models trained from distinct datasets 
comprising youths in diverse stages of neurodevelopment and with different mental health conditions. We trained 
3D CNN models of the same architecture to assess ASD, ADHD, brain age, and Child Behavior Checklist (CBCL) 
total score, with no previous hypothesis. Then, we evaluated the performance and interpretability of these models 
within each dataset (for diagnosis tasks) and inter-datasets (for age estimation). Finally, the performance and 
relevant brain regions of interest were analyzed and discussed in light of neuroscience.

Materials and methods
Data description. The studied data were retrieved from two public sets: Autism Brain Imaging Data 
Exchange II (ABIDE-II) and ADHD-200, and from two large neurodevelopmental studies: the Adolescent 
Brain Cognitive Development (ABCD) and Brazilian High-Risk Cohort Study (BHRCS)21–24. We used only 
T1-weighted sMRI data from all investigated datasets. For the ABCD and BHRCS datasets, only data from the 
first collection (i.e., baseline—wave zero) were considered. ABIDE-II and ADHD-200 images were collected 
from several locations in different countries, including 19 location sites for ABIDE-II, and 8 sites for ADHD-
200. Thus, the acquisition parameters of ABIDE-II and ADHD-200 varied, comprising 1.5 T and 3 T scanners, 
each hosting a head coil from 8 to 32 channels. These public datasets can be found on the ADHD-200 (http://
fcon_1000.projects.nitrc.org/indi/adhd200/) and ABIDE-II (http://fcon_1000.projects.nitrc.org/indi/abide/
abide_II.html) websites. ABCD data were collected from multi-brand 3 T scanners, from 21 sites in the USA. 
Additional detailed acquisition parameters can be retrieved from ABCD (https:// abcds tudy. org/ images/ Proto 
col_ Imagi ng_ Seque nces. pdf). The BHRCS data were collected in two Brazilian cities using GE Signa HDX 1.5 T 
and GE Signa HD 1.5 T scanners. Detailed acquisition parameters for the BHRCS can be found in a study by 
Sato et al.25. Data were collected and made available according to guidelines and approval from the local ethics 
committee of each project.

Subjects. As we focused on the study of neurodevelopmental processes in youth, we selected only subjects 
younger than 20 years of age from all included datasets. Some participants had more than one sMRI scan within 
the dataset (from different scanning sessions). We only used the earliest sMRI from each subject in these cases. 
Data without information on sex, age, or psychiatric evaluation (i.e., TD, ASD, ADHD, or CBCL) were dis-
carded. Furthermore, each subject belonged exclusively to a single dataset. That is, there is no overlapping diag-
nosis of subjects included in different models due to having multiple disorders (i.e., ASD and ADHD). After this 
filtering, we arrived at the following sample sizes: ABIDE-II (N = 580), ADHD-200 (N = 922), BHRCS (N = 737), 
and ABCD (N = 11,031). Figure 1 shows the demographic and phenotypic overview of the study data.

MRI processing. The sMRI images were processed using  VBM26 via the Statistical Parametric Mapping 
 software27 (SPM12 v7771, from https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/). VBM spatially normalizes 
MRI images to the same stereotactic space, allowing the extraction of different brain tissues from images parti-
tioned with correction for nonuniform intensity  variations26. The processing steps followed the recommended 
script for VBM, as follows:

First, sMRI data were spatially segmented to segregate grey matter (GM), white matter (WM), and cerebro-
spinal fluid (CSF)28. In this step, the skull, tissues, and artifacts outside the brain were removed from the original 
image. Second, the DARTEL  algorithm29 was applied to increase the accuracy of inter-subject alignment. This 
transformation works by aligning GM among the images, while simultaneously aligning WM during the genera-
tion of a template to which the data are iteratively  aligned30. Third, the resulting files from the previous step were 
spatially normalized, Jacobian scaled, and smoothed with the Gaussian full width at half maximum (FWHM) set 
to 8 mm to generate images in the Montreal Neurological Institute (MNI) coordinate  system31,32.

After the transformations, each sMRI produced three 3D matrices (i.e., GM, WM, and CSF), with each 
voxel carrying the probable density of brain tissue at that location. The produced matrixes with a dimension of 
121 × 145 × 121 (voxel size = 1.5 mm) were padded and trimmed resulting in 128 × 128 × 128 volumes. This trans-
formation affected only background voxels (outside the brain) and was applied for best GPU usage (https:// www. 
tenso rflow. org/ guide/ gpu_ perfo rmance_ analy sis). The processing was done in separate batches of tasks (i.e., one 
batch per dataset) to ensure that there would be no bias due to the interaction of examples in different datasets.

https://abcdstudy.org/images/Protocol_Imaging_Sequences.pdf
https://abcdstudy.org/images/Protocol_Imaging_Sequences.pdf
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.tensorflow.org/guide/gpu_performance_analysis
https://www.tensorflow.org/guide/gpu_performance_analysis
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We used only the GM and WM resulting data, and all voxels outside the brain were set to zero. This step was 
conducted to ensure that only data related to brain tissues (i.e., neurodevelopment data) would be available to 
the models. Despite the potential that out-of-brain data has to improve the accuracy of models, this information 
could add confounding variables to the analyses. Therefore, we opted for potentially worse performance in favor 
of more interpretable and reliable results.

Evaluation procedure. We trained CNN models from different datasets to perform several tasks: to clas-
sify the mental health status (i.e., TD, ASD, and ADHD), estimate the CBCL total score via regression, and 
estimate brain age via regression. For each dataset, the partitions for training, validation, and testing were cre-
ated from a nested cross-validation scheme, where the outer cross-validation was a k-fold, and the inner cross-
validation was a random split of 90% for training and 10% for validation. Therefore, we had the advantage of 
robust nested cross-validation while preserving the lower processing time of a non-nested  schema8. The ABIDE-
II, ADHD-200, and BHRCS datasets were assessed in K = 5 folds, while the ABCD was evaluated in K = 10 folds. 
Unlike other datasets, the huge sample size of ABCD (N = 11,031) allowed the use of 10 folds, maximizing the 
sample size of the training sets and still guaranteeing large test samples. All the partitions’ splits were stratified by 
sex and age. As age is a continuum variable, before stratification, we discretized the distribution in 15 categori-
cal quantiles. As there were few subjects with higher CBCL scores or positive diagnoses for ASD or ADHD (see 
Fig. 1), additional stratifications by CBCL, ASD, or ADHD were not feasible and therefore were not performed.

The validation set allowed the extraction of metrics for model selection, and the test set remained unseen until 
the models were fully trained. Therefore, the performance metrics were assessed from unbiased and unexplored 
data according to the following schema:

(1) AGE regression models (ABIDE-II, ADHD-200, BHRCS, and ABCD) were evaluated on their respective 
test sets.

(2) The best-performing AGE model from one dataset was evaluated on the full independent (out-of-sample) 
datasets.

(3) CBCL regression models (BHRCS and ABCD) were evaluated on their respective test sets.

Figure 1.  Demographic and phenotypic distribution of subjects. In violin plots, the dotted lines show the 
quartiles. Ages are presented in years, and CBCL in raw values. Acronyms: TD = typical development, APD = any 
psychiatric diagnostic, and CBCL = child behavior checklist. APD indicates autism spectrum disorder for 
ABIDE-II, attention deficit hyperactivity disorder for ADHD-200, and any psychiatric diagnostic (from 
DSM-IV or DSM-V) for BHRCS and ABCD, respectively.



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6886  | https://doi.org/10.1038/s41598-023-33920-7

www.nature.com/scientificreports/

(4) ASD classification models (ABIDE-II) were evaluated on their respective test sets.
(5) ADHD classification models (ADHD-200) were evaluated on their respective test sets.

The fitting of additional age models from full training datasets to evaluate the out-of-sample data could 
improve performance. However, we intended to compare the results of the same trained model within and 
between datasets. Accordingly, we chose the best-performing age model from cross-validation to evaluate the 
external datasets, potentially losing performance in favor of comparability. In addition, using a k-fold split in 
the inner loop of the cross-validation (instead of a training/validation split) followed by creating an ensemble of 
the inner models (to evaluate the test set) could increase robustness and generalizability. However, this approach 
would increase the training times by 25 to 50 times, so we opted not to implement this strategy.

To evaluate the models’ performance for the regression tasks, we assessed MAE (mean absolute error), Pear-
son’s correlation, P-value of the Pearson’s correlation, and the prediction  R2 (also known as cross-validation  R2 
or  q2, which best assesses numerical accuracy for regression  tasks33). For the classification tasks, we assessed 
sensitivity, specificity, balanced accuracy (mean between sensitivity and specificity), and area under the receiver 
operating characteristic curve (AUC). We chose balanced accuracy (instead of simple accuracy) because it can 
better evaluate unbalanced data, which can bias the models toward classifying minority cases into  majorities34. To 
find the best cutoff values, we used a ROC operating point selection that maximizes the harmonic mean between 
the sensitivity and  specificity34. Thus, for each trained model, validation data was used to find an optimal cutoff, 
and then, this value was used to classify the new test data. We ran permutation tests (with 1,000 permutations) to 
determine the p values for the classification predictions. The accepted statistical significance level (alpha) was 5%.

We adopted the approach proposed by Dinga et al.35 to assess the effects of confounding variables, which uses 
trained model predictions to estimate confounding effects. For that, three different models are fitted to the target: 
(1) using only confounders as predictors, (2) using only predictions as predictors, and (3) using confounders 
and predictions as predictors. Next, the coefficient of determination  (R2 for regression and  D2 for classification) 
is calculated for each model. Then, the results are separated into the contributions from predictions only, con-
founders only, and shared (i.e., predictions + confounders). This method is reliable even when other methods 
(e.g., methods based on input variable adjustment)  fail35. The confounders selected for age predictions were: sex, 
acquisition site, and total brain volume. For ADHD, ASD, and CBCL estimations, the chosen confounders were: 
age, sex, acquisition site, and total brain volume.

Model architecture and training. The model architecture used in this study was projected by Cole et al.11. 
This architecture was chosen because: (1) it was designed to predict brain age with satisfactory performance, 
and (2) it was not created or optimized to any of the studied datasets (i.e., ABIDE-II, ADHD-200, BHRCS, or 
ABCD). Therefore, the model architecture had no performance bias toward any of the evaluated datasets.

In summary, the model architecture contains five blocks. Each block is composed of: a (3 × 3 × 3) convolutional 
layer (stride = 1), rectified linear unit (ReLU), (3 × 3 × 3) convolutional layer (stride = 1), 3d batch normalization 
 layer36, ReLU and finally a (2 × 2 × 2) max-pooling layer (stride = 2)11. The number of channels was set to eight 
in the first block and doubled after each max-pooling layer to obtain a sufficiently rich brain  representation11. 
The final prediction is obtained after applying a fully connected layer, which maps the output of the last block 
to a single output  value11. The original study does not state what value was set for L2 regularization. Therefore, 
to prevent overfitting, we adopted L2 kernel regularizers (equal to 0.001) in every convolutional and fully con-
nected layer, as done in a related  study8. We also padded and trimmed the brain input matrix, which originally 
had a size of 121 × 145 × 121 × 2, to a size of 128 × 128 × 128 × 2, aiming for memory optimization and training 
 performance8. The final output layer was chosen according to the model task. For the regressions (i.e., AGE or 
CBCL), we used the ReLU activation with mean squared error (MSE) loss function. For the classifications (i.e., 
TD, ASD, or ADHD), we used sigmoid activation with binary cross-entropy as the loss function.

Adam algorithm was chosen to optimize the objective  loss37. Briefly, this is a gradient-based method that 
employs adaptive learning rates. Adam’s initial learning rate was set to 0.001, and the exponential decay rates 
for the first and second estimate moments were maintained at their default values (i.e., 0.9 and 0.999, respec-
tively). The batch size was set to 48 examples. The examples were not stratified at the batch level, and they were 
randomly shuffled before batch splits. The number of epochs was set to 1000, and an early stopping technique 
was adopted to stop the training process when there was no improvement in the validation output loss for 75 
consecutive  epochs8. In addition, we used a technique named model checkpoint, where the model is evaluated 
against its validation set after every epoch, and the best-performing model weights are saved. This strategy can 
prevent overfitting by storing the weights at an optimal moment during the training.

Models’ interpretability. To address the low interpretability level of neural networks that provide little 
or no insight into the nature of  data19,20, we used  SmoothGrad8,38. This algorithm generates a sensitivity map of 
voxels that contributes the most to the neural network decisions. It measures the impact that small perturba-
tions in the input images produce in the output gradients. Although it is similar to other algorithms (e.g., Vanilla 
 Saliency39), SmoothGrad produces sharper pictures due to its strategy of averaging results from different noise 
patterns applied to every input  picture38.

Sensitivity map algorithms often produce gradients with signed  values38. However, there is ambiguity in 
converting these signed values to visualization colors, as the gradient direction is context-dependent8. To resolve 
this issue, we adopted the absolute values of the gradients, which can produce clearer  pictures8,38,40. Following the 
SmoothGrad  authors38, we set the noise level to 20% and the number of noisy samples to 50. The implementa-
tion used by this study is available in an open-source library named tf-keras-vis (available at https:// pypi. org/ 
proje ct/ tf- keras- vis).

https://pypi.org/project/tf-keras-vis
https://pypi.org/project/tf-keras-vis
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The attention maps were generated from (1) the test sets corresponding to each of the k-fold cross-validations 
and (2) the full out-of-sample (independent) tested datasets. For the cross-validation test sets, the results were 
first averaged within each fold, and then normalized and averaged across all folds. This resulted in (1a) one atten-
tion map for each dataset and model task (i.e., predicting age or mental health status), and (2a) one attention 
map for each of the full out-of-sample tested datasets. This strategy captures common brain structures that are 
most descriptive for the models’ decision-making8. Finally, the resultant attention maps were intersected with 
the AAL3 3D brain  atlas41 to provide ROI identifications and then rendered in the MRICron software (https:// 
www. nitrc. org/ proje cts/ mricr on) to provide 3d visualization of brain  locations8.

Software and hardware specification. The sMRI preprocessing was done through the SPM12 v7771 
software (https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ spm12/). All further steps used Python 3.8.5 and Tensor-
flow 2.4.0 (https:// docs. nvidia. com/ deepl earni ng/ frame works/ tenso rflow- relea se- notes/ rel_ 21- 03. html). The 
machine learning experiments were performed on an NVIDIA DGX-2 server, within a Docker virtual machine 
containing 4 CPUs @2.7Ghz and 1 GPU TESLA V100-SXM3-32 GB. All source codes are available at Github 
(https:// github. com/ Sergi oLeon ardoM endes/ 3dcnn_ smri_ gener aliza tion).

Results
Demographic and phenotypic analyses showed distinct distributions of sex, age, and/or mental health condi-
tions for each dataset (see Table 1). For all datasets, the models trained to predict age were able to learn, showing 
statistically significant correlations between the predicted and target ages (i.e., r >  = 0.45 and p values < 0.001). 
Moreover, the best-performing age model from each dataset cross-validation was able to generalize well to 
other (independent) datasets (correlation p values < 0.001). However, the models trained to predict CBCL were 
not able to adequately estimate dimensional psychopathology using CBCL’s total score. That is, the estimations 
of CBCL in BHRCS and ABCD datasets were not statistically significant (p values: 0.20 and 0.07). Regarding 
discrete psychiatric diagnoses, models trained from ABIDE-II to classify ASD presented poor performance 
(p value = 0.53, AUC = 0.48 ± 0.09), but models trained from ADHD-200 to classify ADHD were able to learn, 
achieving above chance metrics (p value = 0.02, AUC = 0.64 ± 0.04, specificity = 0.62 ± 0.04, sensitivity = 0.59 ± 0.12, 
balanced accuracy = 0.60 ± 0.04).

Out of the age models, the ones trained from ADHD-200 achieved the best correlation and coefficient of 
determination in cross-validation (r = 0.84 ± 0.02 and prediction R2

cv = 0.62 ± 0.14). When considering the metric 
MAE, the ABCD models performed best in age cross-validation (MAE = 0.47 ± 0.01 years). Using correlation as 
a metric to assess generalization capacity, the ABCD model evaluated on ADHD-200 presented the best result 
(r = 0.80). All assessed metrics are presented in Tables 2 and 3.

The confounding analysis was conducted as planned, generating the metrics in Table 4. For age predic-
tions, low confounding effects were observed in the BHRCS (∆confounds = 0.07, shared < 0.01) and ABCD 
(∆confounds = 0.04, shared = 0.02). However, moderate to high confounding effects were observed in ADHD-
200 (∆confounds = 0.05, shared = 0.40) and ABIDE-II (∆confounds = 0.13, shared = 0.55). For ADHD classifi-
cation, almost all the performance can be explained by confounders (∆predictions = 0.01, ∆confounds = 0.22, 
shared = 0.03). Only models performing above-chance predictions had their confounders evaluated (i.e., the 
ASD and CBCL models were ignored).

By analyzing the top 10 most representative ROIs for age estimation, we found that the ABCD included the 
substantia nigra pars compacta and pars reticulata (left and right), red nucleus (left and right), ventral tegmental 
area (left and right), and raphe nucleus (dorsal and median). For ABIDE-II, the ROIs that arose were the para-
central lobules (left and right), superior parietal gyrus (left and right), inferior parietal gyrus (right), precuneus 
(left and right), postcentral gyrus (right), superior occipital gyrus (gyrus), and motor supplementary cortex 
(right). In the ADHD-200, the ROIs that emerged were the medial orbital gyrus (left and right), anterior orbital 
gyrus (left), gyrus rectus (left and right), middle temporal gyrus (left and right), inferior temporal gyrus (left), 
superior parietal gyrus (left), and angular gyrus (left). Interestingly, all the top ROIs of BHRCS were in the right 
side of the brain, and these regions included the temporal gyrus (superior and middle), orbital gyrus (anterior, 
posterior, medial, and lateral), parietal gyrus (superior and inferior), angular gyrus, and inferior frontal gyrus 
(opercular part) (Fig. 2).

Table 1.  Subjects’ demographic and phenotypic information. The sample size (N) is shown in numbers. Age 
is in years ± standard deviation and range of minimum–maximum years of age. The CBCL total score is a raw 
scale. Subjects with Any Mental Disorder are grouped in AMD. For ABIDE-II, AMD contains subjects with 
different levels of the autism spectrum, while ADHD-200 AMD includes different subtypes of ADHD. For 
both BHRCS and ABCD datasets, AMD comprises subjects with at least one diagnostic of mental disorders 
according to DSM-IV (for BHRCS) or DSM-V (for ABCD).

Dataset N Female, % Age, y ± SD Age range, y AMD, % CBCL ± SD

ABIDE-II 580 26.2% 12.1 ± 3.2 6.1–20.0 43.3% –

ADHD-200 922 36.9% 11.7 ± 3.0 7.1–19.9 38.7% –

BHRCS 737 42.9% 9.9 ± 1.9 5.8–14.3 30.5% 27.1 ± 25.2

ABCD 11,031 48.0% 9.9 ± 0.6 8.9–11.1 15.0% 18.1 ± 17.9

https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_21-03.html
https://github.com/SergioLeonardoMendes/3dcnn_smri_generalization
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To better illustrate the distribution of ROIs’ representativeness for age models, Fig. 3 depicts the un-thresh-
olded attention maps for all brain regions within each dataset.

For ADHD classification in ADHD-200 data, the top ROIs were the superior parietal gyrus (left), middle fron-
tal gyrus (left), superior occipital gyrus (right), parahippocampal gyrus (right), angular gyrus (right), amygdala 
(right), ventral tegmental area (right), median raphe nucleus, locus coeruleus (right), and substantia nigra pars 

Table 2.  Regression performance metrics. The performance indicators are presented in mean 
values ± standard deviation. The chosen model for between dataset evaluation is the best-performing from 
the cross-validation. In column titles, n is the sample size, MAE is the mean absolute error, r is the Pearson’s 
correlation between prediction and target, and R2 is the prediction  R2 (also known as cross-validation  R2 or  q2). 
While r shows how correlated predictions and targets are, R2 expresses how much of the target’s variability can 
be explained by predictions. Note that good MAEs (low values) may present poor correlations due to a narrow 
age range in the evaluated dataset. p values lower than 0.001 were omitted for clarity. CBCL Child behavior 
checklist total score.

AGE regression cross-validation n MAE, y r r p value R2
cv

ABIDE-II model, fivefold CV on test set 116 1.51 ± 0.18 0.81 ± 0.02  < 0.001 0.62 ± 0.09

ADHD-200 model, fivefold CV on test set 184 1.41 ± 0.25 0.84 ± 0.02  < 0.001 0.62 ± 0.14

BHRCS model, fivefold CV on test set 147 1.22 ± 0.15 0.62 ± 0.11  < 0.001 0.35 ± 0.13

ABCD model, tenfold CV on test set 1103 0.47 ± 0.01 0.45 ± 0.02  < 0.001 0.18 ± 0.04

AGE regression cross-data set evaluation n MAE, y r r p value R2

ABIDE-II model on ADHD-200 full data 922 1.88 0.71  < 0.001 0.32

ABIDE-II model on BHRCS full data 737 2.57 0.50  < 0.001  − 1.7

ABIDE-II model on ABCD full data 11,031 1.98 0.27  < 0.001  − 13.5

ADHD-200 model on ABIDE-II full data 580 1.56 0.76  < 0.001 0.56

ADHD-200 model on BHRCS full data 737 1.44 0.53  < 0.001 0.0

ADHD-200 model on ABCD full data 11,031 1.29 0.31  < 0.001  − 5.79

BHRCS model on ABIDE-II full data 580 1.74 0.72  < 0.001 0.43

BHRCS model on ADHD-200 full data 922 1.59 0.75  < 0.001 0.49

BHRCS model on ABCD full data 11,031 0.92 0.30  < 0.001  − 2.43

ABCD model on ABIDE-II full data 580 2.26 0.65  < 0.001  − 0.07

ABCD model on ADHD-200 full data 922 2.17 0.80  < 0.001 0.07

ABCD model on BHRCS full data 737 1.47 0.56  < 0.001 0.12

CBCL Regression cross-validation n MAE, y r p value R2

BHRCS model, fivefold CV on test set 147 19.3 0.09 0.20  − 0.01

ABCD model, tenfold CV on test set 1103 13.2 0.08 0.07  − 0.01

Table 3.  Classification performance metrics. The performance metrics are in mean values ± standard 
deviation. ASD Autism spectrum disorder, ADHD Attention deficit hyperactivity disorder.

ASD/ADHD classification cross-validation n Specificity Sensitivity Bal. acc Auc p value

ASD: ABIDE-II model, fivefold CV on test set 116 0.50 ± 0.34 0.46 ± 0.41 0.48 ± 0.07 0.48 ± 0.09 0.53

ADHD: ADHD-200 model, fivefold CV on test set 184 0.62 ± 0.04 0.59 ± 0.12 0.60 ± 0.04 0.64 ± 0.04 0.02

Table 4.  Confounding effects for models’ predictions. Metrics are presented in mean values ± standard 
deviation. The numbers reflect the coefficient of determination of the target  (R2

cv for AGE and  D2
cv for 

ADHD). In column titles, ∆Confounds = confounds only, ∆Predictions = predictions only, and Shared = both 
confounds and predictions.

Dataset, task ∆Confounds ∆Predictions Shared

ABIDE-II, AGE predictions (fivefold test sets) 0.13 ± 0.04 0.11 ± 0.02 0.55 ± 0.01

ADHD-200, AGE predictions (fivefold test sets) 0.05 ± 0.01 0.31 ± 0.03 0.40 ± 0.05

BHRCS, AGE predictions (fivefold test sets) 0.07 ± 0.04 0.39 ± 0.11 0.00 ± 0.02

ABCD, AGE predictions (tenfold test sets) 0.04 ± 0.01 0.19 ± 0.02 0.02 ± 0.01

ADHD-200, ADHD predictions (fivefold test sets) 0.22 ± 0.04 0.01 ± 0.02 0.03 ± 0.03
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compacta (right). However, the confounding effects (see Table 4) lead us to believe that these ROIs are mostly 
related to confounders (i.e., age, sex, acquisition site, and total brain volume) rather than ADHD.

To investigate the generalization process, we used the best-performing age model from each dataset to extract 
the top representative ROIs for the out-of-sample datasets. For ABIDE-II and ADHD-200 models, the most 
representative ROIs were the same for all evaluated datasets. For ABCD and BHRCS models, almost all ROIs (9 
out of 10) were identical in all datasets. In other words, the set of most representative ROIs of each model was 
invariant to different evaluated datasets. The list of ROIs is presented in Fig. 4, following the AAL3  acronyms41.

Discussion
Each studied dataset presents specific characteristics, making it unique in terms of demographic and phenotypic 
distribution. Each set has a unique distribution of sex, age, ethnicity, and mental health conditions (i.e., levels of 
total CBCL, ASD, ADHD, and TD). Moreover, the datasets are composed of images collected from different sites, 
from multiple scanner brands and models, presenting distinct parameter settings. Despite these differences, the 
models trained to estimate age were able to (1) show good performance in their test sets, (2) generalize reason-
ably well to out-of-sample datasets and (3) present almost identical brain ROIs for the out-of-sample dataset 
evaluations. However, the models trained to predict CBCL total scores were not able to learn from BHRCS (p 
value = 0.20) and ABCD (p value = 0.07). Models trained to detect ASD also showed below-chance prediction (p 
value = 0.53), while models trained to detect ADHD had above-chance performance (p value = 0.02). However, 
posterior statistical analyses revealed that both ADHD and ASD predictions were almost exclusively influenced 
by confounders (see Table 4). Therefore, the brain structural differences produced by ADHD, ASD, and dimen-
sional psychopathologies assessed by CBCL total score were not captured by the sMRI in association with the 
CNN methods employed in this study.

Comparing performance among different studies is not a trivial task, as different studies commonly use 
distinct methods, preprocessing steps, and criteria for including participants. However, the performance of our 
study seems to be in line with the modern related literature. A recent study used a normative boosting model 
trained from data combining six datasets (including ABIDE-II) to predict the age of adolescents, resulting in 
MAE = 1.53 years for typical development, and MAE = 1.49 for at-risk  individuals42. This aligns with the results we 
obtained for the ABIDE-II cross-validation (MAE = 1.51). Another study used multitask learning CNN  models8 
to predict age, obtaining correlations very similar to those achieved here for the cross-validations of ABIDE-II 
(r = 0.76 vs r = 0.81), and for ADHD-200 (r = 0.84 vs r = 0.84). Furthermore, the multitask learning  study8 achieved 
similar correlations for the ABIDE-II model predicting ADHD-200 (r = 0.72 vs r = 0.71), and for the ADHD-
200 model predicting ABIDE-II (r = 0.75 vs r = 0.76). Aside from these interesting findings, to the best of our 
knowledge, no studies in the current literature evaluate the between-dataset performance of ABCD and BHRCS.

Figure 2.  Top representative regions of age models. The images reflect models trained from (a) ABCD, (b) 
BHRCS, (c) ADHD-200, and (d) ABIDE-II. The attention maps were averaged from all cross-validation models. 
Note that ABCD attentions are subcortical regions. Acronyms: L = left, A = anterior, and S = superior.

Figure 3.  Heat map of importance for age models within each dataset. Lighter areas indicate more 
representative brain regions. The datasets and ROIs are in the y- and x-axis, respectively. The ROIs follow the 
AAL3 atlas  acronyms41.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6886  | https://doi.org/10.1038/s41598-023-33920-7

www.nature.com/scientificreports/

Interestingly, our models’ capacity to estimate age presented statistically significant performances for dis-
tinct out-of-sample datasets, even considering the narrow age ranges of ABCD and BHRCS (see Fig. 1). This 
is evidenced by analyzing the mean of the correlations obtained by each model on the out-of-sample data-
sets (see cross-dataset evaluation in Table 2). The means of correlations presented by the models on cross-
dataset evaluations were: ABCD  (rmean = 0.67), BHRCS  (rmean = 0.59), ADHD-200  (rmean = 0.53), and ABIDE-II 
 (rmean = 0.49). Interestingly, the less confounded models ABCD (∆confounds = 0.04, shared = 0.02) and BHRCS 
(∆confounds = 0.07, shared < 0.01) presented better generalization capacity than that of the more confounded 
ones, ADHD-200 (∆confounds = 0.05, shared = 0.40) and ABIDE-II (∆confounds = 0.13, shared = 0.55). These 
indicate that less confounded datasets may push the models to learn more robust features (i.e., not related to 
confounders), which results in better generalization capacity for out-of-sample datasets.

Other unexpected findings come from the observation that the model trained from ABCD (with the nar-
rowest age range) presented the best cross-dataset correlation (r = 0.8) on ADHD 200 (with a wider age range). 
This may have occurred due to some characteristics of the studied datasets. The ABCD has a large sample size, 
being more than 10 times bigger than the other studied datasets (see section "Subjects"). Whereas small sam-
ple sizes tend to deliver better accuracies (within the dataset), large sample sizes present better generalization 
 power43. Moreover, the ABCD is the least confounded of the studied datasets, which we postulate results in better 
generalization capacity. The observation of the distributions for age (see Fig. 1), lead us to suppose that ABCD 

Figure 4.  Top 10 most representative ROIs for different datasets in age prediction. The lists are ordered by 
the most to the less representative ROI. Notice that the set of ROIs from a given trained model is invariant to 
different datasets, and there is little or no difference in the ROIs’ importance for the evaluated datasets. The 
chosen trained models are the ones with the best performance in cross-validation.
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models should perform best on the BHRCS dataset. However, the ABCD and BHRCS datasets were exclusively 
collected by 3 T scanners (ABCD) and 1.5 T scanners (BHRCS). We guess the differences in scanners’ acquisition 
parameters may have contributed to the ABCD lower correlation on BHRCS (r = 0.56). In contrast, the influence 
of the age distributions was reflected more directly on MAE indicators, where the ABCD model presented the 
best performance on BHRCS (MAE = 1.47), followed by ADHD-200 (MAE = 2.17) and ABIDE-II (MAE = 2.26). 
Therefore, MAE indicators seem to be more influenced by the tendency of models to predict values nearby the 
center of its training distribution. In this way, the MAE is better (lower values) on datasets whose center of the 
distribution is closer to the center of the distribution of the training set. Conversely, the correlation (in cross-
dataset evaluations) appears to be more influenced by the sample size and confounders (of the training set), and 
by the similarities between the images’ input features of the training and test data.

There were other interesting findings from the analyses of the most representative ROIs from models evalu-
ated in distinct datasets (see Fig. 4). The top ROIs’ list from a model trained in one dataset was distinct from the 
ROIs’ lists of models trained in other datasets. This could be due to the optimization process (i.e., the training 
phase), where the model is pushed to learn features that best explain the target given the training data. As the 
training data distribution is distinct from one dataset to another (see Fig. 1), the most representative learned 
features would be the ones that best describe the data variability (i.e., age, sex, and mental health conditions). 
The more distinct the datasets are, the more different the features learned by each model will be, producing dif-
ferent lists of the most representative ROIs for each dataset. In contrast, the representative ROIs had little to no 
variability when a given model was evaluated against out-of-sample datasets. The list of the top 10 ROIs from 
a trained model was almost invariable when evaluated on out-of-sample distinct datasets (see Fig. 4). This is 
because trained models employ the same fixed parameters to assess any dataset. Therefore, the few differences 
in the lists of ROIs were due to the variability of the evaluated data.

The models trained from different datasets have the most distinct representative ROIs. When we evaluated 
these models against out-of-sample datasets, their representative ROIs remained nearly the same. Nevertheless, 
these distinct models can predict age from out-of-sample datasets with statistically significant performance. 
Moreover, these structural changes are enough to estimate aging by different models whose learned features are 
based on different sets of representative ROIs (see Figs. 2, 3, and 4).

The capability to estimate age (within- and inter-datasets) from models with distinct representative ROIs (see 
Fig. 2, 3, and 4) suggests that structural changes are distributed throughout the brain during neurodevelopment. 
This finding supports previous longitudinal studies, which found that GM and WM volumes change from child-
hood to  adulthood44,45. Neural development involves highly coordinated and sequenced events characterized by 
both progressive (myelination) and regressive (synaptic pruning)  processes46. A two-year-old child can have 50% 
more synapses than an  adult47. The synaptic pruning process reduces the number of synapses in a regionally and 
temporarily specific manner, resulting in more efficient  connections46. Simultaneously, myelination generates 
a protective sheath around nerve axons, facilitating the speed and efficacy of neural  communication48. In other 
words, synaptic pruning and myelination processes affect the GM and WM densities of distinct ROIs at different 
rates during  neurodevelopment45,46. Therefore, the divergences in ROIs’ representativeness for models trained 
from different datasets agree with previous neuroscience knowledge.

All except the ABCD models presented representative ROIs on the cortical surface. In contrast, ABCD models 
focused mostly on subcortical regions, specifically in the midbrain and pons (see Fig. 2 and 3). Even the BHRCS 
models, whose datasets have demographics similar to ABCD; focused on completely different ROIs than the 
ABCD models. Again, a possible explanation for these differences could be the distinct and nonlinear rates of 
neurodevelopment in each brain  region45,46. The midbrain and pons (focused by ABCD) embody a primitive role, 
controlling sensory and motor functions, including elements of the visual and auditory  system49. Furthermore, 
three of the four major dopaminergic tracts originate in the substantia nigra of the  midbrain49. Whereas BHRCS 
models focus on the sparse cortical regions, more specifically, on the right lobe, and the temporal, orbital, parietal, 
angular, and inferior frontal gyri. According to Gogtay et al.45, who analyzed brain maturation from childhood to 
adulthood, phylogenetically older brain areas mature earlier than that newer ones. More complex brain regions 
tend to mature after the more primitive  ones45. This could also have influenced our results, as the datasets had 
different distributions of subjects in distinct stages of brain maturation.

The models’ failure to detect ASD, ADHD, and dimensional psychopathologies assessed by CBCL indicate 
that the structural alterations from these conditions are subtle and  heterogeneous8,50 enough to not be captured 
by CNNs trained with sMRI from large datasets. In psychiatric disorders, large and heterogeneous data samples 
tend to deliver high confidence and generalization power; however, they also lead to low  accuracy43, possibly 
affecting our results. Another potential constraint is related to the capacity of the CNN to internalize complex 
long-range relationships of input features. In this case, a possible approach could be the use of transformer-based 
normative  models50,51. Transformers’ attention mechanisms model the dependency of input features without 
regard to their distance, enabling the acquisition of complex long-range  relationships50. Moreover, modeling 
TD subjects to detect psychiatric conditions based on deviations from normality appears to be a good strategy 
to circumvent the issue of structural heterogeneities in psychopathology.

Despite the surprising generalization capacity of the age models to estimate out-of-sample datasets, given 
they were trained from datasets with diverse demographic variations (especially for the ABCD and BHRCS age 
ranges), the results should be interpreted cautiously. First, a significant performance loss can occur when estimat-
ing subjects with distinct demographics from the ones used for training. The more different the subjects are from 
the training demographics, the greater the performance loss. Second, the representative ROIs for the models’ 
decision-making were strictly specific to the population used during training. Thus, small demographic differ-
ences in the training sample can lead trained models to focus on completely different brain regions. Therefore, 
it is risky to make assumptions beyond the characteristics of the population used for training the model. Fourth, 
the confounders present in training data can bias the model during the learning process. Therefore, instead of 
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learning generalizable features, the model can learn by the cofounders. This scenario causes the model to lose 
generalization power when it is exposed to non-confounded examples.

Keeping these limitations in mind, the models trained to estimate age had a satisfactory performance, present-
ing almost identical brain ROIs in out-of-sample dataset evaluation. However, the models could not adequately 
learn to estimate the brain structural differences produced by ADHD, ASD, and dimensional psychopathologies. 
Larger longitudinal samples are expected to provide better estimates. However, the complexity of psychiatric 
symptoms and syndromes may not be achievable through structural imaging via supervised CNN, during ado-
lescence. In adolescence, many psychiatric symptoms are starting to emerge or are in the early stages, making 
their detection even more challenging.

Data availability
The datasets used in this study were obtained from two public datasets: the Autism Brain Imaging Data Exchange 
II (ABIDE-II) and Attention Deficit Hyperactivity Disorder (ADHD-200); and from two datasets that required 
authorization: Adolescent Brain Cognitive Development (ABCD) and Brazilian High-Risk Cohort Study 
(BHRCS). ADHD-200 and ABIDE-II can be downloaded from the NeuroImaging Tools & Resource Collabora-
tory Image Repository, after free registering and login, from the following download links, respectively: https:// 
www. nitrc. org/ ir/ app/ templ ate/ XDATS creen_ report_ xnat_ proje ctData. vm/ search_ eleme nt/ xnat: proje ctData/ 
search_ field/ xnat: proje ctData. ID/ search_ value/ adhd_ 200, and https:// www. nitrc. org/ ir/ app/ templ ate/ XDATS 
creen_ report_ xnat_ proje ctData. vm/ search_ eleme nt/ xnat: proje ctData/ search_ field/ xnat: proje ctData. ID/ search_ 
value/ ABIDE_ II. For ABCD and BHRCS datasets, application and consortium approval of an NDA form are 
required. The data were collected and made publicly available according to the guidelines, and approval was 
provided by the local ethics committee for each project. Detailed information on these datasets and their acquisi-
tion parameters can be retrieved from ABIDE-II (http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html), 
ADHD-200 (http://fcon_1000.projects.nitrc.org/indi/adhd200/), ABCD (https:// nda. nih. gov/ abcd), and BHRCS 
(https:// osf. io/ ktz5h/ wiki/ home/).
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