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Deep learning‑based automated 
detection and multiclass 
classification of focal interictal 
epileptiform discharges in scalp 
electroencephalograms
Yoon Gi Chung 1,5, Woo‑Jin Lee 2,5, Sung Min Na 1, Hunmin Kim 1*, Hee Hwang 1,3, 
Chang‑Ho Yun 2 & Ki Joong Kim 4

Detection and spatial distribution analyses of interictal epileptiform discharges (IEDs) are important 
for diagnosing, classifying, and treating focal epilepsy. This study proposes deep learning‑based 
models to detect focal IEDs in electroencephalography (EEG) recordings of the frontal, temporal, 
and occipital scalp regions. This study included 38 patients with frontal (n = 15), temporal (n = 13), 
and occipital (n = 10) IEDs and 232 controls without IEDs from a single tertiary center. All the EEG 
recordings were segmented into 1.5‑s epochs and fed into 1‑ or 2‑dimensional convolutional neural 
networks to construct binary classification models to detect IEDs in each focal region and multiclass 
classification models to categorize IEDs into frontal, temporal, and occipital regions. The binary 
classification models exhibited accuracies of 79.3–86.4%, 93.3–94.2%, and 95.5–97.2% for frontal, 
temporal, and occipital IEDs, respectively. The three‑ and four‑class models exhibited accuracies of 
87.0–88.7% and 74.6–74.9%, respectively, with temporal, occipital, and non‑IEDs F1‑scores of 89.9–
92.3%, 84.9–90.6%, and 84.3–86.0%; and 86.6–86.7%, 86.8–87.2%, and 67.8–69.2% for the three‑ and 
four‑class (frontal, 50.3–58.2%) models, respectively. The deep learning‑based models could help 
enhance EEG interpretation. Although they performed well, the resolution of region‑specific focal IED 
misinterpretations and further model improvement are needed.

Interictal epileptiform discharges (IEDs) are electroencephalography (EEG) biomarkers of epilepsy important 
for diagnosing, classifying, and monitoring the disease and for selecting anti-seizure  medication1–4. In current 
practice, IEDs are manually detected during EEG interpretation. This process is highly labor-intensive and 
time-consuming because it depends on visual interpretation by neurology  specialists5–7. Ongoing investigations 
have endeavored to develop an automated technique that could efficiently detect IEDs in EEG recordings at an 
acceptable  accuracy8. Recently, deep learning techniques have been widely accepted as the main strategy for 
building automated IED detectors for  scalp9–17 and  intracranial18–21 EEG recordings.

Epilepsy, a chronic disorder of the brain that causes recurrent spontaneous seizures, is categorized as focal 
or generalized. Recurrent seizures originating within a neuronal network limited to one hemisphere, unifocal 
or multifocal, are core features of focal epilepsy. Analyzing the spatial distribution of IEDs in focal epilepsy is 
of fundamental importance to properly classify it and determine the cortical generators of the epileptic activity. 
Nevertheless, the irritative zone might not exactly match the epileptogenic  zone22,23. Most deep learning-based 
investigations performed binary classification of scalp EEG recordings into IED and non-IED, regardless of their 
location. Studies have reported automated detectors for centrotemporal IEDs, a characteristic EEG marker for 
self-limited epilepsy with centrotemporal  spikes13,16,24. One study reported an automated detector trained by 
frontal, temporal, parietal, and occipital IEDs in patients with focal epilepsy, although they did not attempt to 
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classify the IEDs according to their spatial  properties12. Deep-learning-based models to automatically detect 
and classify multiple region-specific IEDs have not yet been reported.

Despite continuous improvements, limited diagnostic performance and accuracy have been major obstacles 
to deep learning-based EEG analysis, preventing its clinical application. EEG artifacts and normal EEG variants 
are major sources of false IED identification. Furthermore, the IED types vary substantially by the location in 
the brain. To improve the diagnostic performance and extend the application range, a deep learning-based IED 
detector should be trained and validated to detect IEDs in each region. The ideal algorithm should be able to 
detect and localize the IEDs.

This study aimed to develop a deep learning-based model to detect focal IEDs in the frontal, temporal, and 
occipital regions of scalp EEG recordings. Binary models classified each focal region as IED and non-IED. Sub-
sequently, multiclass classification models categorized the location into frontal, temporal, occipital, or non-IEDs.

Methods
Dataset. This study retrospectively analyzed scalp EEG recordings of 38 patients diagnosed with focal epi-
lepsy (15 females, 23 males; mean age 20.1 ± 16.2 years) and 232 controls with paroxysmal non-epileptic neuro-
logical events such as syncope, headache, or vertigo, but without seizures, epilepsy, or any other neurological dis-
ease (132 females, 100 males; mean age 12.9 ± 3.1 years) from the pediatric and adult neurology clinics of Seoul 
National University Bundang Hospital. Patients with focal epilepsy were categorized into frontal (n = 15; three 
females, 12 males; age 11.4 ± 3.6 years), temporal (n = 13; seven females, six males; mean age 35.3 ± 20.2 years), 
and occipital (n = 10; five females, five males; mean age 13.2 ± 2.7 years) IED groups. The Institutional Review 
Board of Seoul National University Bundang Hospital approved this study (No. B-2106-688-105) and waived the 
requirement for informed consent due to the retrospective nature of the study. This study was conducted follow-
ing the principles of the Declaration of Helsinki.

The EEG recordings were obtained in awake-resting and sleeping states using 32-channel digital EEG systems 
(Grass Telefactor Inc., West Warwick, RI, USA). EEG was recorded for at least 30 min at a sampling frequency of 
200 Hz, with a notch filter of 60 Hz and 19 electrodes, following the international 10–20 system. Chloral hydrate 
(50 mg/kg, maximum 1000 mg) was used as a sedative for pediatric patients if clinically indicated. EEG record-
ings were re-referenced to the average reference montages with 19 channels and band-pass filtered between 1 
and 70 Hz for further analysis. Two epileptologists (HH and HK) reviewed the EEG data of the 38 patients with 
focal epilepsy to annotate IEDs. Each IED was defined from the beginning of its spike, sharp wave, or spike/
sharp-wave complex to the end of its discharge component. The epileptologists also confirmed that no IED was 
present in the EEG recordings of the 232 control individuals.

IED annotation. A total of 4557 IEDs (2112 frontal, 1176 temporal, and 1269 occipital) were annotated 
from the 38 patients with focal epilepsy. The number of IEDs per EEG recording was 141 ± 129, 90 ±  ± 99, and 
127 ± 68 in the frontal, temporal, and occipital regions, respectively. The mean lengths of frontal, temporal, and 
occipital IEDs were 0.45, 0.52, and 0.48 s, respectively. Detailed information on the patients with focal IEDs is 
presented in Table 1.

Classification models. Binary classification models were constructed individually for the frontal, tempo-
ral, and occipital IEDs. Multiclass classification models were constructed to distinguish focal IEDs from other 
IEDs in various regions. One-dimensional (1D) and two-dimensional (2D) convolutional neural networks 
(CNNs) were adopted for the classification models, with multichannel EEG time series as input data. EEG 
recordings with IEDs were segmented into 1.5 s epochs that contained the IEDs at their center and spanned 
− 0.75 s to + 0.75 s from the IED center (hereafter referred to as focal IED epochs). The EEG recordings of the 
controls were segmented into 1.5 s epochs at random time points (hereafter referred to as non-IED epochs). At 
here, an epoch denoted a 1.5 s EEG segment.

The focal IED epochs were split randomly into training, validation, and test sets at a ratio of 6:2:2. Frontal, 
temporal, and occipital IED epochs were handled separately in the individual binary classification to classify 
IED and non-IED epochs. A set of focal IED epochs was handled collectively in the multiclass classification 
models to classify frontal, temporal, occipital IED, and non-IED epochs. The focal IED epochs were augmented 
by random jittering between − 50 ms and + 50 ms from the center of each epoch to handle imbalanced data 
distributions caused by much smaller number of focal IED epochs compared to non-IED epochs. The non-IED 
epochs were randomly under-sampled to match the number of augmented focal IED epochs at a 1:1 ratio. We 
made the focal IED epochs have fully shaped IEDs to ensure a sufficient number of clean-labeled training data 
for the robustness of our deep learning-based  classification25. Representative focal IED and non-IED epoch 
images are shown in Fig. 1.

The binary classification models’ performance was assessed using sensitivity, specificity, accuracy, and the 
area under the receiver operating characteristic curve (AUC). The multiclass classification models’ performance 
was assessed using precision and recall, and the F1-score was calculated. We used Python 3.8 with Tensorflow 
2.2, compute unified device architecture 10.1, four NVIDIA TITAN V graphic cards with 12 GB memory to 
implement classification models; and sklearn.metrics module for the performance evaluation.

CNN architecture. We adopted a CNN architecture consisting of three convolution layers, batch normali-
zation, and max pooling layers. Multi-channel EEG time series were fed into the first convolution layer with an 
input size of 19 × 300 (number of channels × number of data points). Fully connected layers had output sizes of 
two (IED and non-IED epochs), three (temporal and occipital IED and non-IED epochs), and four (frontal, tem-
poral, and occipital IED and non-IED epochs) in accordance with classification types. For our 1D CNN-based 
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classification, the three convolution layers had 64, 128, and 64 filters, with a kernel size of 19 × 6 and a stride of 1. 
For our 2D CNN-based classification, the three convolution layers had 32, 64, and 32 filters with a kernel size of 
1 × 6 and a stride of 1. We set the kernel size considering the minimum size of spikes and waves each described 
in a previous study on EEG characteristics of  IEDs26. 1D or 2D max pooling layers were applied to the three 
convolution layers with a pooling size of 3, 2, and 1 in order and a stride of 2. Batch normalization was applied 

Table 1.  Profiles of patients with frontal, temporal, and occipital IEDs. IED interictal epileptiform discharge, 
M male, F female.

Frontal Temporal Occipital

Subject 
No

Age
(yr) Sex

Duration of IEDs

Number 
of IEDs

Subject 
No

Age
(yr) Sex

Duration of IEDs

Number 
of IEDs

Subject 
No

Age
(yr) Sex

Duration of IEDs

Number 
of IEDs

Max 
(s)

Min 
(s)

Avg 
(s)

Max 
(s)

Min 
(s)

Avg 
(s)

Max 
(s)

Min 
(s)

Avg 
(s)

1 9 M 0.70 0.25 0.43 134 1 17 F 0.83 0.30 0.52 189 1 14 F 0.69 0.19 0.33 86

2 8 M 0.58 0.33 0.48 6 2 11 M 0.65 0.30 0.42 65 2 13 F 0.70 0.24 0.44 90

3 12 M 0.86 0.20 0.45 549 3 7 M 0.72 0.26 0.43 15 3 9 F 1.03 0.26 0.45 281

4 16 M 0.77 0.28 0.48 113 4 18 M 0.56 0.25 0.34 20 4 16 F 0.75 0.25 0.42 167

5 12 M 0.48 0.44 0.45 4 5 63 M 0.76 0.22 0.44 345 5 17 F 0.86 0.28 0.52 159

6 7 F 0.80 0.22 0.49 147 6 39 M 0.68 0.22 0.44 108 6 12 M 0.81 0.31 0.50 158

7 10 M 0.61 0.17 0.35 69 7 31 M 0.83 0.29 0.49 210 7 11 M 1.05 0.31 0.61 127

8 11 M 0.67 0.22 0.41 107 8 63 F 0.86 0.36 0.65 39 8 10 M 0.91 0.38 0.51 57

9 13 M 0.76 0.33 0.53 149 9 51 F 0.59 0.28 0.46 40 9 16 M 0.76 0.33 0.53 89

10 12 F 0.45 0.22 0.30 39 10 63 F 0.46 0.30 0.39 11 10 14 M 0.76 0.39 0.51 55

11 12 M 0.77 0.24 0.48 227 11 45 F 2.60 0.31 1.01 52

12 18 F 0.69 0.24 0.46 103 12 25 F 1.27 0.31 0.58 50

13 17 M 0.75 0.27 0.43 117 13 26 F 0.86 0.36 0.61 32

14 7 M 0.92 0.27 0.49 167

15 7 M 0.84 0.27 0.47 181

Sum 2112 1176 1269

Average 0.45 141 0.52 90 0.48 127

Figure 1.  Representative epochs corresponding to focal interictal epileptiform discharges (IEDs) and non-IED.
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to each convolution layer to provide regularization and enhance training speed. Categorical cross-entropy and 
Softmax were used as the loss and activation functions, respectively, for the binary and multiclass classifications. 
The root mean square propagation (RMSprop)27 was used as an optimizer with a learning rate of 1 ×  10−5. The 
model with the highest validation accuracy during training was selected for testing by the model checkpoint in 
Keras to avoid overfitting. The total number of training epochs was 300 with a batch size of 64.

Feature visualization. We applied t-distributed stochastic neighbor embedding (t-SNE) for 2D visualiza-
tions of frontal, temporal, occipital, and non-IED epoch features. t-SNE is a statistical tool for dimensional-
ity reduction that minimizes the mismatch between the joint probabilities of high- and low-dimensional data 
 points28. We extracted the focal IED and non-IED epoch features from the flattened layers in the 1D and 2D 
CNN-based classification models. We used sklearn.manifold.TSNE module in the scikit-learn library with 
default parameters that included a component number of 2, perplexity of 30, and early exaggeration of 12. No 
additional statistical analyses were performed using the t-SNE results.

Patient‑level evaluation. We additionally performed leave-one-patient-out cross-validation for patient-
level evaluation of the multiclass classification of focal IEDs. We excluded frontal IEDs to avoid potential effects 
of eye-related artifacts on the classification. Therefore, we performed the leave-one-patient-out cross-validation 
with respect to the three-class classification of temporal, occipital, and non-IEDs using the EEG recordings of 13 
and 10 patients with temporal and occipital IEDs, respectively. We trained 2D CNN-based three-class classifica-
tion models using the focal IED epochs of N-1 patients, where N was the total number of patients with temporal 
or occipital IEDs. Then, we evaluated performance of the classification models using the focal IED epochs of 
the remaining one patient. The performance of the patient-level evaluation was assessed using a detection rate 
defined as the number of correctly identified model-classified focal IED epochs divided by the total number of 
focal IED epochs for individual patients. All the focal IED epochs in this procedure were augmented by random 
jittering as described above.

Results
Binary classification. The numbers of epochs in the individual binary classification for the frontal, tem-
poral, and occipital IEDs were 38,946, 27,952, and 24,222, respectively. The 1D CNN-based binary classifica-
tion exhibited accuracies of 86.4% (sensitivity, 86.5%; specificity, 86.3%), 94.2% (95.3% and 93.1%), and 97.2% 
(98.5% and 95.8%) for frontal, temporal, and occipital IEDs, respectively. The 2D CNN-based binary classifica-
tion exhibited respective accuracies of 79.3% (85.3% and 73.4%), 93.3% (96.4% and 90.2%), and 95.5% (96.6% 
and 94.4%). The accuracies for frontal IEDs were 7.8% and 10.7% lower than those for temporal and occipital 
IEDs, respectively, in the 1D CNN-based classification and 14.0% and 16.2%, respectively, in the 2D CNN-
based classification. The frontal IED accuracy in the 2D CNN-based classification was 7.1% lower than in the 
1D CNN-based classification (Table 2). The respective AUCs for the frontal, temporal, and occipital IEDs were 
93.7%, 97.9%, and 99.8% for the 1D CNN-based classification and 87.2%, 98.0%, and 98.6% for the 2D CNN-
based classification (Normal in Fig. 2).

To explore the effect of the source of non-IED epochs on the binary classification, we examined additional 
performance using the non-IED epochs from the patients with focal epilepsy. In this case, the non-IED epochs 
were selected at random time points outside the focal IED epochs in the EEG recordings of the patients. The 
respective AUCs for the frontal, temporal, and occipital IEDs were 60.3%, 76.2%, and 90.1% for the 1D CNN-
based classification and 63.7%, 72.9%, and 78.1% for the 2D CNN-based classification (Abnormal in Fig. 2), 
which were noticeably lower than the above.

Three‑class classification. The three-class classification (excluding the frontal IEDs) included 32,709 
epochs with a near 1:1:1 ratio between the temporal (11,439), occipital (10,575), and non-IED (10,695) epochs. 
The 1D CNN-based three-class classification exhibited F1 scores of 89.9% (precision, 94.9%; recall, 85.4%), 
90.6% (97.9% and 84.2%) and 86.0% (77.4% and 96.6%) for temporal, occipital, and non-IEDs, respectively, 
with an overall accuracy of 88.7%. The 2D CNN-based three-class classification showed respective F1 scores of 
92.3% (92.7% and 91.9%), 84.9% (97.5% and 75.1%), and 84.3% (75.8% and 95.1%), with an overall accuracy of 
87.0% (Table 3). The precision for non-IEDs was 17.5% and 20.5% lower than that for the temporal and occipital 
IEDs, respectively, in the 1D CNN-based classification, and 16.9% and 21.8%, respectively, in the 2D CNN-based 
classification. The number of temporal and occipital IEDs misclassified as non-IEDs (false negative focal IEDs) 
was 290 and 314, respectively, in the 1D CNN-based classification and 161 and 490, respectively, in the 2D CNN-

Table 2.  Diagnostic performance of the binary classification models. CNN convolutional neural network, AUC  
area under the receiver operating characteristic curve.

1D CNN-based classification 2D CNN-based classification

Sensitivity (%) Specificity (%) Accuracy (%) AUC (%) Sensitivity (%) Specificity (%) Accuracy (%) AUC (%)

Frontal 86.5 86.3 86.4 93.7 85.3 73.4 79.3 87.2

Temporal 95.3 93.1 94.2 97.9 96.4 90.2 93.3 98.0

Occipital 98.5 95.8 97.2 99.8 96.6 94.4 95.5 98.6
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Figure 2.  Binary classification performance with receiver operating characteristic (ROC) curves for frontal, 
temporal, and occipital IEDs. The upper, middle, and lower panels in each column represent the ROC curves 
of the frontal, temporal, and occipital IEDs, respectively. Abnormal and Normal in each small box indicate the 
performance using the non-IED epochs from patients and controls, respectively. CNN, convolutional neural 
network; IED, interictal epileptiform discharge; TPR, true positive rate; FPR, false positive rate.

Table 3.  Diagnostic performance of the multiclass classification models. CNN convolutional neural network, 
IED interictal epileptiform discharge.

1D CNN-based classification 2D CNN-based classification

Precision (%) Recall (%) F1 Score (%) Precision (%) Recall (%) F1 Score (%)

Three class

 Temporal 94.9 85.4 89.9 92.7 91.9 92.3

 Occipital 97.9 84.2 90.6 97.5 75.1 84.9

 Non-IED 77.4 96.6 86.0 75.8 95.1 84.3

Four class

 Frontal 63.5 53.6 58.2 73.4 38.2 50.3

 Temporal 89.2 84.4 86.7 83.8 89.7 86.6

 Occipital 95.3 80.3 87.2 89.5 84.2 86.8

 Non-IED 58.6 80.6 67.8 58.2 85.5 69.2
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based classification (Fig. 3a). The 2D CNN-based classification exhibited a 6.4% higher recall for temporal IED 
but a 9.1% lower recall for occipital IED than the 1D CNN-based classification.

Four‑class classification. The four-class classification included 43,269 epochs with a near 1:1:1:1 ratio 
among the frontal (10,560), temporal (11,439), occipital (10,575), and non-IED (10,695) epochs. The 1D CNN-
based four-class classification exhibited F1 scores of 58.2% (precision, 63.5%; recall, 53.6%), 86.7% (89.2% and 
84.4%), 87.2% (95.3% and 80.3%), and 67.8% (58.6% and 80.6%) for frontal, temporal, occipital, and non-IEDs, 
respectively, with an overall accuracy of 74.9%. The 2D CNN-based four-class classification showed respective 
F1 scores of 50.3% (73.4% and 38.2%), 86.6% (83.8% and 89.7%), 86.8% (89.5% and 84.2%), and 69.2% (58.2% 
and 85.5%), with an overall accuracy of 74.6% (Table 3).

The precision for non-IEDs was 5.0%, 30.6%, and 36.8% lower than for the frontal, temporal, and occipital 
IEDs, respectively, in the 1D CNN-based classification, and 15.2%, 25.6%, and 31.3%, respectively, in the 2D 
CNN-based classification. The numbers of temporal, occipital, and non-IEDs misclassified as frontal IEDs (false 
positives for frontal IED) were 130, 240, and 281, respectively, in the 1D CNN-based classification and 53, 45, 
and 195, respectively, in the 2D CNN-based classification. The numbers of frontal, temporal, and occipital IEDs 
misclassified as non-IEDs (false negative focal IEDs) were 909, 172, and 139, respectively, in the 1D CNN-based 
classification, and 931, 132, and 250, respectively, in the 2D CNN-based classification (Fig. 3b).

The 2D visualization of the frontal, temporal, occipital, and non-IED features is shown in Fig. 4. We quali-
tatively examined that those features were apparently separated from each other, in particular for the 2D CNN-
based three-class classification. We could observe large overlaps between frontal and non-IED features for the 
four-class classification.

Figure 3.  Confusion matrices for the 1D and 2D CNN-based multiclass classification results with the number 
of correctly and incorrectly classified focal and non-IEDs. Performance of the three-class (upper panels) and 
four-class (lower panels) classifications. CNN, convolutional neural network; IED, interictal epileptiform 
discharge.
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Patient‑level evaluation. Our patient-level evaluation for the 2D CNN-based three-class classification 
showed a mean detection rate of 82.8 ± 22.6% and 87.6 ± 15.2% for temporal and occipital IEDs, respectively, 
averaged over each corresponding number of patients. For the temporal IED detection, 13 patients had detec-
tion rates from 34.3% to 100% (> 90% in seven patients, < 66% in two patients, where 33% was a chance for 
each class). For the occipital IED detection, 10 patients had detection rates from 49.0 to 100% (> 90% in six 
patients, < 66% in one patient). Detailed results for the patient-level evaluation are shown in Table 4.

Discussion
This study implemented deep learning-based automated binary focal IED detectors with accuracies of 
79.3–86.4%, 93.3–94.2%, and 95.5–97.2% for frontal, temporal, and occipital IEDs, respectively, and multiclass 
focal IED detectors with accuracies of 87.0–88.7% and 74.6–74.9% for three and four (frontal IED included) IED 
classes, respectively, on scalp EEG recordings. Frontal IEDs were associated with a low detection performance, 
probably due to eye-related artifacts in the frontal region. The inclusion of spatial information by applying 2D 
CNN to multi-channel scalp EEG recordings provided mixed effects on the focal IED detection performance.

The major finding of the current study was that the implemented individual binary IED detectors showed a 
significant discrepancy in their focal IED detection performance among the three brain regions. Detection of 

Figure 4.  2-dimensional feature visualization for frontal, temporal, occipital, and non-IEDs using t-SNE. 
Feature visualization for the three-class (upper panels) and four-class (lower panels) classification. Green, 
blue, yellow, and red dots represent frontal, temporal, occipital, and non-IEDs, respectively. Owing to the 
large number of epochs (32,709 in the three-class classification and 43,269 in the four-class classification), we 
randomly selected 1000 of each class for visualization (3000 in the three-class classification and 4000 in the four-
class classification). IED: interictal discharge and t-SNE: t-distributed stochastic neighbor embedding.
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temporal and occipital IEDs exhibited accuracies of 94.2 and 97.2%, respectively, while detection of frontal IEDs 
showed inferior performance with an accuracy of 86.4%.

Previous studies have reported binary classification performance with sensitivities of 47.4–99.0%, specificities 
of 79–98.0%, and AUCs of 0.935–0.98010–12,14,15,17, regardless of the IED location. Assessment of centrotemporal 
IEDs on scalp EEG recordings resulted in a sensitivity of 92.0%, precision of 85.8%, and F1-score of 88.5% in 
one  study13, and AUCs of 0.768–0.942 in  another16. Although it is difficult to directly compare the performance 
among the models, our good performance for temporal and occipital IED detection might be due to the exclu-
sion of frontal IEDs, which have a low detection  performance12. In addition, in terms of the source of non-IED 
epochs, using the non-IED epochs from patients’ EEG recordings resulted in a poorer performance, possibly 
due to the presence of the abnormal EEG signals in or near the source of the focal IEDs, such as slow activity, 
voltage attenuation, or alteration of the background synchrony of EEG  signals29,30.

Another major strength of this study is that it is the first to implement multiclass IED detectors that enable 
location-specific IED classification. Recent deep learning-based studies have reported multiclass classification for 
various morphological characteristics of IEDs, such as spikes, sharp waves, broadly distributed sharp waves, and 
spike-and-wave complexes in scalp EEG  recordings18; and repetitive high-amplitude complexes, high-amplitude 
isolated spikes, and atypical epileptiform activities in intracranial EEG  recordings20. However, multiclass location-
specific IED classification could have a clinical advantage over morphology-specific classification as its relevance 
can be more easily determined and provide clues for epilepsy classification. Considering clinical application of 
our multiclass IED detectors, we carried out patient-level evaluation for the 2D CNN-based three-class clas-
sification which showed the best performance among our multiclass classification approaches in Table 3. It was 
based on leave-one-patient-out cross-validation which was known to be suitable for the confirmation of model’s 
 generalizability31. Our three-class IED detectors provided considerably high detection rates (> 90%) in 57% of 
the patients with temporal or occipital IEDs, while low (< 66%) in only 13% of the patients, as shown in Table 4. 
We suggest that our deep learning-based automated multiclass IED detection approaches have a potential for 
clinical application, provided that we enhance their detection rates for a larger number of patients with a deep 
understanding of inter-patient variability on electroencephalographic focal IED characteristics. As we concerned 

Table 4.  Performance of patient-level evaluation using leave-one-patient-out cross-validation for 2D CNN-
based three-class classification. CNN convolutional neural network, IED interictal epileptiform discharge, SD 
standard deviation.

Subject No Age (yr) Sex Number of IEDs
Total number of 
focal IED epochs

Number of model-classified focal 
IED epochs

Detection rate (%)Temporal Occipital Non-IEDs

Patients with temporal IEDs

 1 17 F 189 1890 1827 9 54 96.7

 2 11 M 65 650 223 184 243 34.3

 3 7 M 15 150 61 32 57 40.7

 4 18 M 20 200 194 0 6 97.0

 5 63 M 345 3440 2394 6 1,040 69.6

 6 39 M 108 1080 943 1 136 87.3

 7 31 M 210 2100 1867 209 24 88.9

 8 63 F 39 390 390 0 0 100.0

 9 51 F 40 400 363 26 11 90.8

 10 63 F 11 110 110 0 0 100.0

 11 45 F 52 520 520 0 0 100.0

 12 25 F 50 500 358 142 0 71.6

 13 26 F 32 320 320 0 0 100.0

Mean ± SD 82.8 ± 22.6

Patients with occipital IEDs

 1 14 F 86 860 46 421 393 49.0

 2 13 F 90 900 43 726 131 80.7

 3 9 F 281 2810 12 2661 137 94.7

 4 16 F 167 1670 172 1411 87 84.5

 5 17 F 159 1600 89 1448 63 90.5

 6 12 M 158 1580 0 1576 4 99.7

 7 11 M 127 1280 0 1280 0 100.0

 8 10 M 57 570 7 563 0 98.8

 9 16 M 89 890 56 834 0 93.7

 10 14 M 55 550 0 465 85 84.5

Mean ± SD 87.6 ± 15.2
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that eye-related artifacts could induce unclear interpretations, we did not include frontal IEDs in the patient-
level evaluation.

The main reason for the discrepancy in the focal IED detection performance among brain regions in this 
study might be the different spatial distribution of EEG artifacts and normal EEG variations that might be 
misinterpreted as IEDs. A review of the major sources of artifacts and their potential implications might help 
improve the detector performance by annotating those artifacts and normal EEG variations and discriminating 
them from IEDs in future studies.

Eye-related artifacts are well-known contaminants that can be erroneously interpreted as IEDs in scalp EEG 
recordings. Eye closure and eye blink result in sharp positive waveforms in the frontal channels (Fp1, Fp2, F3, 
and F4), while lateral eye movements generate spiky waveforms with high amplitudes in the frontal (Fp1, Fp2, 
F3, and F4) and anterior temporal (F7 and F8) channels mimicking epileptiform activity if combined with lateral 
rectus  spikes5,6. Additionally, eye flutter with myogenic artifacts during photic stimulation can mimic spike-and-
wave  complexes32. Given that eye-related artifacts are predominantly distributed in the frontal region, these may 
explain the relatively low detection performance of frontal IEDs.

Normal EEG variations are another major cause of erroneous IED  interpretation32–34. First, fragmented or 
sharply contoured background alpha rhythm variations could mimic spike-like waveforms in the occipital region, 
while alpha rhythms in the temporal and occipital regions might have an apiculate  morphology32–35. The 6–11 Hz 
wicket waves in the mid-temporal regions are well-known normal variants commonly mistaken as IEDs owing to 
their sharply contoured  morphology32,36. A previous study reported that incorrect identification of such wicket 
waves as epileptiform activity was observed in more than 50% of the  patients36. These normal EEG variations may 
have influenced the accuracy of telling focal IEDs from non-IEDs in the temporal and occipital regions, more in 
the binary classification than in differentiating between temporal and occipital IEDs in multiclass classification.

Misclassification of frontal IEDs in the binary classification tended to be primarily of the false positive type, 
whereas similar frequencies of the false positive and false negative types were found in the multiclass classifica-
tion. Misclassification of temporal and occipital IEDs in multiclass classification tended to be of the false negative 
type. Although understanding the discrepancy between the false positive and false negative type frequencies 
for frontal IEDs was outside the scope of this study, different binary and multiclass classification schemes might 
have been its  source18.

We adopted a CNN architecture with multichannel EEG time series as input data considering the clinical 
environment that neurologists usually reviewed multichannel EEG time series appeared in the form of chan-
nel × time in their monitors to manually detect IEDs. Our EEG channel arrangement was the same as that used by 
our neurologists when they monitored EEG recordings. In addition, we adopted 1D and 2D CNN architectures 
to compare their effects on the performance of classification models.

The main difference between our 1D and 2D CNN architectures is that the 1D CNN used kernels for all 
channels simultaneously, while the 2D CNN used kernels for each channel separately to extract features from 
the 19-channel EEG time series. Therefore, spatial information associated with EEG features from multiple 
scalp regions has been better exploited in 2D CNN-based classification. A previous study reported that 2D 
CNN outperformed 1D CNN in differentiating IED from non-IED binary as it combines temporal and spatial 
 information10. From this perspective, we hypothesized that our 2D CNN-based classification models outper-
formed 1D CNN-based ones unless EEG recordings were severely contaminated by artifacts because kernels of 
the 2D CNN could extract epileptic electroencephalographic features from each channel more precisely than 
those of the 1D CNN. However, the performance of the 2D CNN-based classification noticeably declined for 
frontal IED detection in both binary and four-class classifications, possibly resulting from adverse effects of eye-
related artifacts. To explore the difference of the performance between the 1D and 2D CNN-based classification 
models in more detail, we visualized their corresponding feature maps using t-SNE. We qualitatively examined 
that the 2D CNN-based classification separated focal IED features more distinctly than the 1D CNN-based one, 
particularly for three IED classes.

In this study, the frequency of false-positive frontal IEDs in the 2D CNN-based binary classification was 
higher than that in the 1D CNN-based classification, and the number of false-negative occipital IEDs in the 2D 
CNN-based multiclass classification was higher than that in the 1D CNN-based classification. In terms of the 
region-specific misinterpretation of focal IEDs, we suggest that 2D CNN captures the morphological character-
istics of eye-related artifacts in frontal regions and normal variations in occipital regions more sensitively than 
1D CNN. The number of false-positive frontal IEDs in the 2D CNN-based four-class classification was lower 
than that in the 1D CNN-based classification, while the number of falsely classified frontal IEDs as temporal 
and occipital IEDs was higher, indicating a decreased sensitivity in the 2D CNN-based multiclass classifications 
in detecting frontal IEDs. Although 2D CNN extracts spatial information better than 1D CNN, the additional 
spatial information probably provoked unintended and mixed region-specific effects on the performance of the 
classification procedures.

This study had several limitations. First, we limited the focal IEDs to three categories: frontal, temporal, and 
occipital. Second, the number of annotated IEDs may have been insufficient for generalizing the study results. 
Third, the patients with temporal IEDs were significantly older than the other subgroups. Fourth, there was 
no EEG-level clinical validation of focal IED detectors. To address these limitations, we plan studies that will 
include centrotemporal or generalized IEDs to expand the region-specific detectability of focal IED detectors; 
and utilize CNNs with more optimal hyperparameters or other deep learning techniques such as LSTM that 
effectively analyze time-series data or combined CNNs and  LSTM13. We also plan semi-supervised approaches 
using clinician-initiated automated detectors to rapidly annotate IEDs and abundantly acquire training data-
sets; EEG-level evaluation of our IED detectors to improve their clinical applicability; and explainable artificial 
intelligence-based studies to understand spatiotemporal model interpretability such as occlusion  maps37 and 
gradient-weighted class activation  mapping20. Additionally, studies that will include a larger number of patients, 
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perform group analysis of specific epilepsy syndromes, include complete clinical data, and handle different EEG 
channel arrangements could also help.

Conclusions
This study implemented deep learning-based automated focal IED detectors for detecting and localizing frontal, 
temporal, and occipital focal IEDs based on scalp EEG recordings of patients with epilepsy. Although we believe 
our detectors performed reasonably well, we still need to resolve the unintended EEG features that lead to region-
specific misinterpretations of focal IEDs.

Data availability
The datasets generated and analyzed during the current study are not publicly available due retrospective design 
of the study (waiver of informed consent was approved by IRB) but are available from the corresponding author 
on reasonable request.
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