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Genes whose expressions 
in the primary lung squamous 
cell carcinoma are able 
to accurately predict 
the progression of metastasis 
through lymphatic system, inferred 
from a bioinformatics analyses
Khalil Khashei Varnamkhasti 1, Mehdi Moghanibashi 2* & Sirous Naeimi 1

Lymph node metastasis is the most important prognostic factor in patients with lung squamous 
cell carcinoma. The current findings show that lymph node metastatic tumor cells can arise by 
programming metastasis in primary tumor cells. Thereby, the genetic alterations responsible for the 
metastasis could be detected in the primary tumors. This bioinformatic study aimed to determine 
novel potential prognostic biomarkers shared between primary lung squamous cell tumors (without 
lymph node metastasis) and lymphatic metastasis, using the Cancer Genome Atlas database. 
Differentially expressed genes were screened by limma statistical package in R environment. Gene 
ontology and biological pathways analyses were performed using Enrichr for up-regulated and 
down-regulated genes. Also, we selected lymph node metastasis related genes among DEGs using 
correlation analysis between DEGs and suitable references genes for metastasis. Receiver operating 
characteristic curves was applied using pROC and R package ggplot2 to evaluate diagnostic value of 
differentially expressed genes. In addition, survival and drug resistance analyses were performed for 
differentially expressed genes. The miRNA-mRNA interaction networks were predicted by miRwalk 
and TargetScan databases and expression levels analysis of the miRNAs which were mainly targeting 
mRNAs was performed using UALCAN database. Protein–protein interaction network analysis and 
hub genes identification were performed using FunRich and Cytoscape plugin cytoHubba. In this 
study, a total of 397 genes were differentially expressed not only with a significant difference between 
N + vs. normal and N0 vs. normal but also with significant difference between N + vs. N0. Identified GO 
terms and biological pathways were consistent with DEGs role in the lung squamous cell carcinoma 
and lymph node metastasis. A significant correlation between 56 genes out of 397 differentially 
expressed genes with reference genes prompted them being considered for identifying lymph node 
metastasis of lung squamous cell carcinoma. In addition, SLC46A2, ZNF367, AC107214.1 and NCBP1 
genes were identified as survival-related genes of patients with lung squamous cell carcinoma. 
Moreover, NEDD9, MRPL21, SNRPF, and SCLT1 genes were identified to be involved in lung squamous 
cell carcinoma drug sensitivity/resistance. We have identified several numbers of miRNAs and their 
related target genes which could emerge as potential diagnostic biomarkers. Finally, CDK1, PLK1, 
PCNA, ZWINT and NDC80 identified as hub genes for underlying molecular mechanisms of lung 
squamous cell carcinoma and lymphatic metastasis. Our study highlights new target genes according 
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to their relation to lymph node metastasis, whose expressions in the primary lung squamous cell 
carcinoma are able to accurately assess the presence of lymphatic metastasis.

Abbreviations
LUSC  Lung squamous cell carcinoma
NSCLC  Non-small cell lung cancer
LNM  Lymph node metastasis
miRNA  Micro RNA
TCGA   The cancer genome atlas
CPM  Counts per million
TMM  Trimmed mean of the M-values
DGE  Differential gene expression analysis
GO  Gene ontology
CC  Cellular component
MF  Molecular function
BP  Biological process
KEGG  Kyoto encyclopedia of genes and genomes
CC  Correlation coefficients
ROC  Receiver operating characteristic
CCLE  Cancer cell line encyclopedia
FDA  Food and drug administration
HPRD  Human protein reference database
FDR  False discovery rate
AUC   Area under curve
PPI network  Protein–protein interaction network
SLC  Solute carrier proteins
ZNF367  Zinc finger protein 367
NCBP1  Nuclear cap-binding protein 1
CDC25A  Cell division cycle 25A
ZWINT  ZW10 interacting kinetochore protein
NDC80  Nuclear division cycle 80
CDK1  Cyclin dependent kinase 1

Lung Squamous cell carcinoma (LUSC) is a common subtype of non-small cell lung cancer (NSCLC), accounting 
for 20% of all cases and causing more than 400,000 new cases worldwide each  year1,2. In general, LUSC tends to 
be aggressive, and 60% of patients are diagnosed with local and distant  invasion3–5. Metastasis of LUSC is a major 
cause of mortality, often presenting diagnostic challenges and is the main drawback of successful  treatments6,7.

During metastasis, malignant cells may invade through the blood or lymphatic vessels, however, spread to the 
hilar or interlobar lymph nodes (N1), then to the ipsilateral (N2), or contralateral mediastinal lymph nodes (N3) 
is the primary route for LUSC and other NSCLC histologic subtypes metastasis, which facilitate tumor distant 
 metastasis6,8,9. Lymphatic vessels with slower flow rate along with reduce shear stress due to impaired lymphatic 
vessels contraction increase the tumor cells survival more than systematic vessels. In addition, stagnation lymph 
flow can directly connect cancer cells to each other, as well as activate the integrin-mediated signaling pathway 
and increase tumor growth in the  vessel10. Also, there are many gap junctions in the discontinuous basement 
membrane, which causes leakage of lymphatic vessels and metastatic spread of tumor  cells11. Accordingly, the 
prognosis of LUSC greatly depends on the presence of lymph node metastasis (LNM)6. It has recently been sug-
gested that although the metastasis appears in the later stages of cancer, the initiation of metastatic programming 
occurs much earlier in the primary tumor  cells12,13.

Genetic alterations in some of the tumor cells in the primary tumor give them advantages that enable them 
to form large populations in the primary tumor mass. These beneficial traits include acquisition of mitogenic 
signal propagation, capability to resist growth inhibiting signals, the ability to prevent apoptosis or programmed 
cell death, and lymphangiogenesis growth induction. A subset of these genetic changes, acquired by cells in the 
early stages of tumorigenesis confer the ability to metastasis later. It seems that there is a genetic programing 
to enable cancer cells in the primary tumors to  metastasize14–16. Interestingly, some of the genomic aberrations 
required for progression and metastatic spread identified in LUSC patients with lymph node metastasis cor-
respond to aberrations that impair the function of growth regulatory proteins and inactive growth inhibitory 
pathways in primary  LUSC17. Therefore, the identification of molecular biomarkers in the early stages of tumor, 
whose expressions are able to accurately predict the progression to lymph node metastasis, is strongly  needed18,19.

Recent advances in molecular oncology have described some coding and non-coding genes including micro 
RNAs (miRNAs), as molecular biomarkers in the early cancer detection and prognostic  markers20. Uncovering 
biomarkers whose differential expression in primary tumor is strongly associated with the potential LUSC tumor 
progression could improve the prognosis by developing novel and groundbreaking therapeutic approaches that 
target specific genetic alterations in primary tumors.

Identification of key genes involved in molecular mechanism of cancer, especially for metastasis and lymph 
node metastasis, has been addressed in certain genetic  studies21,22, and in some of them it may even have been 
shown that the same genes are shared between the primary and metastatic lesions. However, to our knowledge, 
there are no studies that identify genes involved not only in growth and development of tumor but also in lymph 
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node metastasis in LUSC. Hence, the present bioinformatic study aimed to determine new molecular pathways 
and potential novel prognostic biomarkers expressed differentially between N + and N0 compared to normal, 
which were also significantly expressed differentially in N + compared to N0 in LUSC using The Cancer Genome 
Atlas (TCGA) database.

Methods
Data collection and preparation. Approval for this bioinformatics-based study was obtained from the 
Islamic Azad University- Kazerun Branch Ethics Committee (IR.IAU.KAU.REC.1400.141). All methods were 
performed in accordance with the guidelines and regulations of the Islamic Azad University- Kazerun Branch.

In this study, the Cancer Genome Atlas Lung Squamous Cell Carcinoma (TCGA-LUSC) data (Accession 
number: caArray_EXP-592) were downloaded from LinkedOmics (http:// linke domics. org/). All genes with 
insignificant and close to zero expression levels were removed from the matrix using the counts per million 
(CPM) method. Also, normalization was performed using the trimmed mean of the m-values (TMM) method, 
and all values were converted to log2 scale. The flowchart is presented in Fig. 1.

Differential gene expression analysis. To perform differential gene expression (DGE) analysis, linear 
model of the limma package in the R environment was used. All samples were divided into three groups: patients 
with N + (including N1, N2 and N3) metastasis (n = 176), patients without lymph node metastasis or N0 condi-
tion (n = 320) and normal tissue samples (n = 49). DGE was performed between N + vs. normal, N0 vs. normal 
and N + vs. N0. The selection criteria were the adj. p value < 0.05 and log fold change was not considered. Genes 
were selected as DEGs in final that were not only significantly deregulated in N + and N0 compared to normal, 
but also deregulated in N + compared to N0.

Signaling pathway and gene ontology analyses. Pathway analysis was done using Enrichr online 
web tool, comprising analyses of REACTOME pathways and Wikipathways (https:// amp. pharm. mssm. edu/ 
Enric hr). Furthermore, we performed Gene ontology (GO) function analysis including the cellular component 
(CC), molecular function (MF), and biological process (BP), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis on the differentially expressed genes.

Genes selection for lymph node metastasis. First, we conducted a literature search to find suitable 
reference genes for lymph node metastasis in lung cancer by searching PubMed, Google Scholar, Embase, Scien-
ceDirect and Cochrane Library with the keywords: “Metastasis”, “Gene Expression”, “Lung cancer”and “Lymph 
node metastasis”. For example, the search query in PubMed was (Metastasis [MeSH Terms]) AND (Gene 
Expression [MeSH Terms]) AND (Lung cancer [MeSH Terms]).Then determined the correlation coefficient 
(CC) between all the differentially expressed genes with the reference genes. Differentially expressed genes with 
a correlation coefficient range of > 0.4 or < − 0.4 with the reference genes were selected as lung cancer progression 
and lymph node metastasis.

Clustering and ROC analysis. DE genes presented a positive correlation with the reference genes were 
clustered through the kmeans method to draw a heat map. We divided candidate genes into the number of 
groups equal to the number of clusters and applied Receiver Operating Characteristic (ROC) curve analysis 
using the pROC package to examine how each gene in each cluster could distinguish cancer from normal sam-
ples. In addition, the calculated sensitivities and specificities were used to draw ROC curves through the ggplot2 
R package.

Figure 1.  The flow chart of the present study for data collection, processing and analysis.

http://linkedomics.org/
https://amp.pharm.mssm.edu/Enrichr
https://amp.pharm.mssm.edu/Enrichr
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Survival analysis. First, the clinical data including T-stage, N-stage, pathological-stage, gender, tobacco 
smoking history, age, state of living, and follow-up time were added to the expression matrix. Then, all expres-
sion values of each gene were scaled between zero and one, and these scaled values were rounded into 1–10 to 
have ten gene expression levels. Next, the univariate Cox regression analysis was performed on each gene to 
evaluate their role in the patient survival (log rank test < 0.05) also, the same analysis was performed on them for 
survival-related clinical data.

Selected genes from univariate Cox regression analysis of identified DE genes were used to compute a risk 
score model to assess the patients’ survival rate with the following formula:

where  Wj is the multivariate coefficient for gene j,  Expij is the expression value of gene j in patient i, and n is the 
number of testing genes.

In addition, multivariate cox regression analysis was performed considering significant clinical parameters 
and risk scores. Patients were divided into high and low-risk groups based on the average risk score as the cut-off 
value and finally the survival plots were depicted based on each gene and model genes.

Drug resistance/sensitivity analysis. Drug resistance analysis was performed using the PharmacoGX 
package in R which is connected to various public databases to find out which candidate genes are related to cell 
drug response. We used lung samples from Cancer Cell Line Encyclopedia (CCLE) to perform our analysis. The 
association between expression of each gene and drugs was calculated based on IC50 and other parameters such 
as estimate, p.value, and the number of samples was also calculated. The estimate measures the correlation of 
each gene to sensitivity or resistance to each drug. The number is between − 1 and 1; − 1 means that the higher 
gene expression causes the higher sensitivity to the specific drug, while 1 indicates the highest resistance to the 
drug based on the increased gene expression. Only Food and Drug Administration (FDA)-approved drugs were 
checked in this study (p value less than 0.05).

Analysis of mRNA- miRNAs interaction. For all identified DE genes, possible interactions with miR-
NAs were checked through TargetScan (https:// www. targe tscan. org/) and miRWalk (http:// mirwa lk. umm. uni- 
heide lberg. de/) databases and those miRNAs that could pass double-checking process in both databases, were 
selected. Cytoscape v 3.7 was applied to visualize miRNA-mRNA interaction networks. In addition, we used the 
UALCAN database (http:// ualcan. path. uab. edu)23 to analyze expression levels of the miRNAs which were target-
ing any more mRNAs in LUSC.

Identification of hub genes. First, FunRich tool version 3.1.324 was applied to illustrate the interaction of 
differentially expressed genes. Then, hub genes were selected using the Cytoscape plugin cytoHubba. Protein–
protein interaction network of these hub genes were constructed by STRING (http:// string- db. org; version 10.5) 
and visualized by Cytoscape.

Moreover, to identify critical upstream signals that lead to lymph node metastasis we expanded the network 
by adding Human Protein Reference Database (HPRD)-derived direct interacting partners.

Soft wares and statistics. All statistical and in-silico analyses were performed in R environment version 
4.0.1 and 0.05 was considered as cut-off p.value in all steps of the study. Cytoscape version 3.9.1, GraphPad Prism 
version 9, FunRich version 3.1.3 and cytoHubba, were used for network analysis and visualization.

Informed consent. This work is not involving “human participants” because in this bioinformatics-based 
study, as a Secondary Research collected information for another primary activity has been used. Generally 
speaking, all samples in TCGA have been collected and utilized following strict human subjects protection 
guidelines, informed consent and IRB review of protocols.

Results
Identification of DEGs. A total of 397 genes were significantly showed expressed differentially between 
N + and N0 compared to normal, which were also significantly expressed differentially in N + compared to N0 
(including 281 upregulated (Fig. 2, Supplementary File 1) and 116 genes downregulated (Fig. 3, Supplementary 
File 2)).

Reactome /GO/KEGG analysis for all identified DEGs. We utilized Enrichr web tools to identifying 
possible signaling pathways for all 397 DE genes. In REACTOME analysis (Table 1), the most outstanding path-
way for down-regulated DEGs was “surfactant metabolism pathway” which provides valuable insights into the 
pathways implicated in lung cancer tumor-infiltrating lymphocytes. From the results of Wikipathway analysis 
for down-regulated DEGs (Table 2), the most highly correlated pathway was “Lung fibrosis”. There is only one 
cellular component ontology of down-regulated DEGs enriched categories, which were associated with alveolar 
lamellar body (Table 3).

Gene enrichment analysis results of up-regulated DEGs using the Reactome Pathway (Table 4), Wikipathway 
(Table 5), KEGG Pathway (Table 6), Gene ontology Biological Process, Gene ontology Cellular Component and 
Gene ontology Molecular Function (Table 7), mainly concentrated in “mitotic division,” and “cell cycle”.   

Risk score =

n∑

j=1

Wj × expij

https://www.targetscan.org/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
http://ualcan.path.uab.edu
http://string-db.org


5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6733  | https://doi.org/10.1038/s41598-023-33897-3

www.nature.com/scientificreports/

Identification of lymph node metastasis diver genes among all DEGs. We retrieved 143 articles 
related to lung cancer lymph node metastasis following strictly filtering based on exclusion criteria (conference 
abstracts, letters, and animal model studies were excluded) by searching PubMed, Google Scholar, Embase, Sci-
enceDirect and Cochrane Library. Eventually, a total of four genes including, CD151, MMP1, PVT1, and SKP2 
genes were selected as reference genes based on their known functions in lung cancer progression and lymph 

Figure 2.  Identification of dedicated and overlapping up-regulated DEGs related to N + and N0 conditions.

Figure 3.  Identification of dedicated and overlapping down-regulated DEGs related to N + and N0 conditions.

Table 1.  Reactome pathway down-regulated DEGs enrichment analysis.

Description p-value Adjusted p-value Odds ratio Combined score

1 Defective CSF2RA causes SMDP4 R-HSA-5688890 6.713E − 06 0.001269 130.78 1557.82

2 Diseases associated with surfactant metabolism R-HSA-
5687613 0.00001597 0.001486 87.18 962.86

3 Ficolins bind to repetitive carbohydrate structures on target 
cell surface R-HSA-2855086 0.0003354 0.01268 115.25 921.99

4 Lectin pathway of complement activation R-HSA-166662 0.0009284 0.02925 57.61 402.26

5 Surfactant metabolism R-HSA-5683826 0.00002359 0.001486 28.12 299.58
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node metastasis which have been pointed out in the found articles. CD151 is a member of the transmembrane 
4 superfamily, also known as the tetraspanin family. It is involved in cellular processes including cell adhe-
sion and enhances cell motility, invasion and metastasis of cancer cells. MMP1 is a member of zinc-dependent 
endopeptide proteases family, which is prominently associated with extracellular matrix destruction (a genetic 
alteration responsible for programming metastasis in primary tumors) that is critical to the development of a 
primary tumor and its metastatic progeny. The PVT1 gene is known as an oncogene, and its overexpression is 

Table 2.  Wikipathway down-regulated DEGs enrichment analysis.

Description p-value Adjusted p-value Odds ratio Combined score

1 Complement activation WP545 0.0002770 0.02133 27.51 225.36

2 Lung fibrosis WP3624 0.0005078 0.02133 11.89 90.22

3 TFs regulate miRNAs related to cardiac hypertrophy WP1559 0.04586 0.3898 24.48 75.44

4 Complement and coagulation cascades WP558 0.004764 0.1001 9.49 50.72

5 NAD metabolism, sirtuins and aging WP3630 0.06252 0.3898 17.13 47.50

Table 3.  Gene ontology cellular component-based enrichment analysis of down-regulated DEGs.

Description p-value Adjusted p-value Odds ratio Combined score

1 Alveolar lamellar body (GO:0097208) 0.0005012 0.01854 86.43 656.74

2 Lamellar body (GO:0042599) 0.00005347 0.005935 52.30 514.42

3 Multivesicular body lumen (GO:0097486) 0.0006990 0.01917 69.14 502.37

4 Late endosome lumen (GO:0031906) 0.001189 0.02200 49.38 332.56

5 Multivesicular body (GO:0005771) 0.0001634 0.009068 16.33 142.41

Table 4.  Reactome pathway up-regulated DEGs enrichment analysis.

Description p-value Adjusted p-value Odds ratio Combined score

1 G2/M DNA replication checkpoint R-HSA-69478 1.913e − 7 0.000002259 283.70 4388.59

2 Polo-like kinase mediated events R-HSA-156711 1.651e − 11 4.444e − 10 71.93 1785.92

3 Cell cycle R-HSA-1640170 3.080e − 50 2.073e − 47 12.71 1448.61

4 Resolution Of sister chromatid cohesion R-HSA-2500257 3.441e − 25 3.309e − 23 24.93 1404.34

5 Cell cycle, mitotic R-HSA-69278 7.137e − 45 2.402e − 42 13.16 1338.09

Table 5.  Wikipathway up-regulated DEGs enrichment analysis.

Description p-value Adjusted p-value Odds ratio Combined score

1 Regulation of sister chromatid separation at the metaphase-
anaphase transition WP4240 6.009e − 10 3.565e − 8 62.71 1331.57

2 Retinoblastoma gene in cancer WP2446 1.265e − 12 2.252e − 10 15.33 419.96

3 DNA Replication WP466 1.102e − 7 0.000003923 16.90 270.81

4 Gastric Cancer Network 1 WP2361 0.000002694 0.00006851 18.62 238.73

5 Cell cycle WP179 1.500e − 10 1.335e − 8 10.49 237.37

Table 6.  KEGG pathway based enrichment analysis of up-regulated DEGs.

Description p-value Adjusted p-value Odds ratio Combined score

1 Homologous recombination 9.030e − 8 0.000002799 17.42 282.50

2 Cell cycle 2.216e − 11 2.747e − 9 10.92 267.94

3 DNA replication 6.050e − 7 0.00001250 17.28 247.44

4 Fanconi anemia pathway 5.918e − 8 0.000002446 14.41 239.86

5 Progesterone-mediated oocyte maturation 1.704e − 8 0.000001056 9.91 177.34



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6733  | https://doi.org/10.1038/s41598-023-33897-3

www.nature.com/scientificreports/

associated with many types of cancers, including breast and ovarian cancers. The SKP2 gene encodes a member 
of the F-box protein family, this gene is established as a protooncogene involved in the pathogenesis of lympho-
mas (Supplementary File 3).

Correlation results showed that out of 397 differentially expressed genes in our study, 157 were highly cor-
related to CD151, 77 with MMP1, 160 with PVT1, and 227 with SKP2 (CC > 0.4 or < − 0.4). 56 of them were 
shared between all four reference genes (Supplementary Table 1, Fig. 4A) and selected as lymph node metastasis 
driver genes.

In addition, Kmeans clustering results indicated that these 56 genes could be divided into two up-regulated 
(with 50 genes) and down-regulated (with 6 genes) clusters, and the correlation between genes and clusters was 
shown by heatmap (Fig. 4B).

The ROC analysis was performed for each cluster (Fig. 5) and have shown that these genes could be used as 
excellent potential biomarkers (AUC > 0.9) (Supplementary Table 2).

A four‐gene‐based prognostic model may influence patient survival. The univariate cox regres-
sion results indicated that 45 of 397 DE genes might affect patients’ survival. On the other hand, only T-stage, 
N-stage, tobacco smoking history, and pathological-stage showed a significant association with survival among 
clinical parameters (Table 8). Also, multivariate CoxPH analysis was performed and results showed that SLC46A2, 
ZNF367, AC107214.1 and NCBP1 genes can significantly affect survival independent of clinical parameters 
(Table 9). Also, T-stage and N-stage and pTNM showed p value < 0.05 in multivariate results (Table 9).

The risk score models for these four genes were calculated with the following formula:

And, was performed for each patient to obtain another multivariate Cox regression analysis to see whether it 
can independently impact survival. The results revealed that the risk score could significantly affect the survival 
of patients (p value < 0.0001). Moreover, we tested the model by dividing patients into high and low-risk groups 
and drawing their survival plots (Fig. 6A). Also, the survival plot for each gene in two conditions of high expres-
sion and low expression is shown in Fig. 6B.

Mainly, survival analyses showed that the same expression of SLC46A2, ZNF367, AC107214.1 and NCBP1 
genes in the primary and LNM lesions can provides more potent prognostic information when no analyses of 
the primary tumor have been done. This prediction gene signature of prognosis in early LUSC will support 
treatment decision-making.

Contribution of five crucial genes to Dovitinib and Paclitaxel resistance/sensitivity in 
LUSC. We used the CCLE database to assess the association of 397 DE genes with drugs used for lung cancer 
chemotherapy applying PharmacoGX package in the R environment. IC50 was used to compare the expression 
of each gene for each drug and calculate a False Discovery Rate (FDR). Our parameter called estimate shows the 
association of each drug and gene with a number in the range of − 1 and 1 (1 shows the highest resistance and − 1 

Risk Score= 0.2463×EXPSLC46A2+ 0.2191×EXPZNF367+ 0.134×EXPAC107214.1−0.2842×EXPNCBP1

Table 7.  Gene ontology biological process, molecular function, and cellular component-based enrichment 
analysis of up-regulated DEGs.

Biological process Description p-value Adjusted p-value Odds ratio Combined score

1 Microtubule cytoskeleton organization 
involved in mitosis (GO:1902850) 1.507e − 25 2.110e − 22 21.63 1236.03

2 Kinetochore organization (GO:0051383) 1.177e − 8 9.152e − 7 61.21 1117.65

3 Sister chromatid segregation (GO:0000819) 7.733e − 13 1.547e − 10 34.76 969.33

4 Mitotic spindle organization (GO:0007052) 9.965e − 22 6.976e − 19 15.95 771.50

5 Regulation of sister chromatid cohesion 
(GO:0007063) 3.929e − 7 0.00001618 50.83 749.70

Molecular function p-value Adjusted p-value Odds ratio Combined score

1 RNA–DNA hybrid ribonuclease activity 
(GO:0004523) 0.00002716 0.0008540 106.00 1114.46

2 Histone serine kinase activity 
(GO:0035174) 0.00005375 0.001383 70.66 694.70

3 Histone kinase activity (GO:0035173) 0.0001474 0.002781 42.39 374.02

4 5’-flap endonuclease activity (GO:0017108) 0.0001474 0.002781 42.39 374.02

5 Damaged DNA binding (GO:0003684) 8.924e − 9 0.000002526 18.54 343.62

Cellular component p-value Adjusted p-value Odds ratio Combined score

1 Condensed chromosome, centromeric 
region (GO:0000779) 0.000007600 0.00007195 47.27 557.20

2 Spindle microtubule (GO:0005876) 2.370e − 12 1.122e − 10 19.80 530.12

3 Condensed chromosome (GO:0000793) 5.918e − 8 7.003e − 7 14.41 239.86

4 Mitotic spindle (GO:0072686) 1.500e − 10 3.044e − 9 10.49 237.37

5 Spindle (GO:0005819) 3.832e − 12 1.360e − 10 8.67 228.04
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shows the highest sensitivity). We identified abnormal expression NEDD9 gene confer resistance to Dovitinib 
with an estimate value of 0.77. On the other hand, high expression of SNRPF and SCLT1 genes cause sensitivity 
to Paclitaxel with estimate values of around − 0.7. However, MRPL21 might cause sensitivity to both drugs, with 
the estimate value around − 0.7 (Table 10).

Construction of mRNAs-miRNAs interaction network. Our results revealed that there are probably 
526 miRNA interactions with candidate genes. Among downregulated mRNAs, KCND3, SCN1A, NFIA, and 
CYB561D1 were targeted by the highest number of miRNAs. However, hsa-miR-526b-3p and hsa-let-7e-5p 
target the most genes in this group. On the other hand, among overexpressed mRNAs group, TLK2, CDC25A, 
FAM104A, and HNRNPU were targeted by more than 10 miRNAs. The number of miRNAs in this group is 
much more; among them, hsa-let-7b-5p, hsa-miR-129-5p, hsa-miR-3681-3p, hsa-miR-520d-3p, hsa-miR-
497-5p, hsa-miR-216a-3p revealed the highest number of mRNAs target (Fig. 7A,B). NEDD9 was the only gene 
among the drug resistance mRNAs that was targeted by 6 miRNAs. Then, expression levels of the miRNAs which 
were targeting more mRNAs including, hsa-miR-526b-3p, hsa-let-7e-5p, hsa-let-7b-5p, hsa-miR-129-5p, hsa-
miR-3681-3p, hsa-miR-520d-3p, hsa-miR-497-5p, hsa-miR-216a-3p were analyzed by the UALCAN website. 
As shown in the Fig. 8, the miRNA expression of hsa-miR-526b-3p, hsa-let-7b-5p, hsa-miR-129-5p, hsa-miR-
3681-3p, hsa-miR-497-5p, hsa-miR-216a-3p were differ significantly between the tumor tissues and normal (p 
value < 0.05). However, the expression of hsa-let-7e-5p and hsa-miR-520d-3p in tumor tissues were not signifi-
cant.

Figure 4.  Genes that are significantly expressed differentially between N + and N0 compared to normal, which 
were also significantly expressed differentially in N + compared to N0. (A) Venn diagram of the significantly 
correlated DEGs with the reference genes, (B) 56 candidate genes are significantly correlated with CD151, 
MMP1, PVT1, and SKP2 and divided into two clusters.
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Hub genes selection. The Protein–protein interaction (PPI) network of the 397 differentially expressed 
genes created by the FunRich software. CDK1, PLK1, PCNA, ZWINT, NDC8 were the important nodes (genes) 
with many edges with at least 10 proteins (Fig. 9A), and all of which selected and ranked by at least one of the 
methods available in the cytoHubba, one of the Cytoscape plugin. CytoHubba provides a simple interface to ana-
lyze a network based on shortest paths by computing eleven topological analysis methods including Degree, Edge 
Percolated Component, Maximum Neighborhood Component, Density of Maximum Neighborhood Compo-
nent, Maximal Clique Centrality and six centralities (Bottleneck, EcCentricity, Closeness, Radiality, Between-
ness, and Stress) in one stop shopping  way25. Among them, ZWINT and NDC80 were identified in this study for 
the first time as our knowledge as hub genes for lymph node metastasis in LUSC. CDK1 and ZWINT were as 10 
top genes in more than four cytoHubba methods, but NDC80 was only in the bottleneck cytoHubba method. 
Interestingly, CDK1, ZWINT and NDC80 were commonly as 10 top genes in bottleneck method (Fig. 9B). In this 
work, a directed statistically significant reliable Protein–protein interaction network was constructed from the 

Figure 5.  ROC curves of two clusters show high AUC the candidate genes. The ROC curves of all genes in each 
cluster are shown.

Table 8.  Univariate CoxPH results for clinical parameters.

Beta HR (95% CI for HR) p value

Gender 0.052 1.1 (0.73–1.5) 0.78

T_stage 0.27 1.3 (1.1–1.6) 0.0078

M_stage 0.33 1.4 (0.34–5.7) 0.65

N_stage 0.23 1.3 (1–1.6) 0.04

Tobacco_smoking_history − 0.18 0.84 (0.71–1) 0.045

Age 0.017 1 (1–1) 0.1

P_stage 0.23 1.3 (1–1.5) 0.019

Table 9.  Multivariate Cox Regression Results.

HR Lower 95 Upper 95 Beta Pr( >|z|)

SLC46A2 1.298838 1.015962 1.814551 0.206294 0.039603

ZNF367 1.57952 1.012354 1.725914 0.262508 0.042501

AC107214.1 1.4138555 1.007441 1.439582 0.189982 0.0352

NCBP1 0.8302 0.73102 0.943729 − 0.14982 0.024503

T_stage 1.375873 1.016603 2.016004 0.362092 0.047203

N_stage 1.776052 1.015049 2.867193 0.632813 0.03421

Risk score 1.613912 1.011469 2.116063 0.668662 2.073E − 05

pTNM 1.3501 1.031 1.768 0.300164 0.0291
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hub genes (Fig. 10). In the present study we displayed (Supplementary File 4) direct and indirect interactions to 
point out signaling pathways which involved in a lymph node metastasis upstream of hub genes.

Discussion
Given the importance of lymph node metastasis in the process of metastasis in LUSC, in this study we compared 
the gene-expression profiles of patients with N + metastasis, without lymph node metastasis and normal tissue 
samples to find genes involved in lymph node metastasis encoded in the primary tumor.

Our results showed that a total of 281 and 116 genes were significantly up- and down- regulated, respectively, 
not only in the N0 and N + compared with normal but also in N + compared to N0. Among the 397 identified 
DE genes, 56 genes were significantly correlated with CD151, MMP1, PVT1, and SKP2 as reference genes for 
lymph node metastasis, and due to meeting best criteria in the ROC analysis were known be excellent for the 
distinguish lymph node metastasis cancer from primary LUSC without metastasis (N0). Takada M et al. in  200426 
achieved diagnostic genes which predicted lymph node metastasis in lung squamous cell carcinomas and lung 
adenocarcinomas patients, compared to our study, they used microarray data and lower samples. Importantly, 
we analyzed genes that were not only deregulated significantly in N + and N0 rather than normal, but also in 
N + compared to N0, which could have greater predictive value for metastatic status.

The results of functional enrichment analysis showed that the DEGs were related to pathways such as “sur-
factant metabolism pathway” (which has a role in the regulation of the cancer microenvironment and has been 
suggested as a target in cancer  immunotherapy27),“Lung fibrosis” (Several studies have provided histopathological 
evidence of an increased incidence of lung cancer in pulmonary  fibrosis28), “mitotic division,” and “cell cycle” 
which are consistent with DEGs role in LUSC lymph node metastasis.

In addition, in our study among the total differentially expressed genes, SLC46A2, ZNF367, AC107214.1 and 
NCBP1 were significantly associated with overall survival in multivariate Cox regression analyses. SLC46A2 
belongs to the solute carrier proteins (SLC) superfamily, which includes more than 400 transport proteins in 65 
families and transport a wide variety of substances across the cell membrane and they also transport drugs across 
the lipid bilayer, so they play a role in  carcinogenesis29. Consistent with our study, previously published article 
also described SLC46A2 as a prognostic biomarker for lung squamous cell carcinomas and lung adenocarcinomas 
 patients30. Interestingly, our results showed that the SLC46A2 gene was significantly associated with metastasis 
and survival, indicating the importance of this gene in LUSC.

Figure 6.  Classification of patients into two high and low-risk groups based on risk score model consisting of 
four genes and their survival rate. (A) The survival plot of high and low-risk patients based on median risk score 
and the risk score distribution of patients as a scatter plot. (B) The survival plot of each gene applied to compute 
the risk score based on each gene’s high and low expression levels, using their median as the cut-off value.

Table 10.  Potential genes involved in LUSC drug resistance/sensitivity.

Estimate n p value fdr Drugname Gene symbol

ENSG00000111859 0.770216 17 0.000298 0.043216 Dovitinib NEDD9

ENSG00000197345 − 0.76803 17 0.000318 0.044781 Dovitinib MRPL21

ENSG00000139343 − 0.69455 22 0.000335 0.044422 Paclitaxel SNRPF

ENSG00000151466 − 0.69171 22 0.000363 0.045954 Paclitaxel SCLT1

ENSG00000197345 − 0.7169 22 0.000174 0.02772 Paclitaxel MRPL21
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Zinc finger protein 367 (ZNF367) belongs to the zinc finger protein family and functions as a transcriptional 
factor with a unique zinc finger motif. Several studies have shown that this gene involved in overall survival and 
prognosis of breast  cancer31,32. Nuclear cap-binding protein 1 (NCBP1) is require for capped RNA synthesis and 
is able to mediated proliferation, migration and invasion by participate in transcriptional and post-transcriptional 
processes and, it has been shown that NCBP1 to be associated with survival in lung cancer  patients33,34. According 
to our results and previous studies, SLC46A2, ZNF367 and NCBP genes could be introduced as important fac-
tors for survival and clinical management in LUSC. In this study, for the first time to our knowledge, we report 
ZNF367 and AC107214.1 genes in LUSC as an important factor in survival.

In addition, we have identified NEDD9, MRPL21, SNRPF, and SCLT1 genes that can predict the response of 
LUSC patients to chemotherapy. Previous studies have shown that NEDD9 plays a key role in tumor initiation, 

Figure 7.  mRNA-miRNA interactions. (A) is the overexpressed group interaction, and (B) is the down-
expressed group. The nodes represent genes, and miRNAs and edges represent interactions. The bigger nodes in 
the middle of the figure depict mRNAs, while the smaller ones are miRNAs. The light green nodes are survival-
related mRNAs.
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progression, and  metastasis35, and Kondo et al. found that NEDD9 could confer resistance to the chemothera-
peutic agents in lung cancer 293 T, A549, PC-9 and PC-14 cell  lines36. The mitochondrial proteins which are 
important for various mitochondrial functions, such as ribosomal subunit proteins (MRPL21), may contribute 
to drug resistance, for example, Huang et al. in 2020 showed that increased levels of MRPL21 is responsible 
for treatment strategies to reduce the chemotherapeutic resistance to recurrent acute myeloid  leukemia37,38. It 
has been reported that SCLT1 by inducing apoptosis combined with chemotherapy drugs enhanced cancer cell 
death. SCLT1- induced apoptosis might be related to DNA damage  response39 and Liu et al. have shown SCLT1 
to be useful biomarker to predict response to chemotherapy in patients with hepatocellular  carcinoma39. SNRPF 
encoded spliceosome small nuclear ribonucleoproteins. SNRPF dysregulation has been reported in some cancers, 
including colorectal, laryngeal squamous cell carcinoma cells and renal cell carcinoma, but not in lung  cancer40. 
Therefore, the SNRPF, SCLT1 and MRPL21 genes presented in this article are considered as novel biomarkers for 
predicting the response of LUSC patients to chemotherapy, as they have not been published before.

Further, thorough the analysis of mRNA-miRNA interaction networks, we found DEGs which were targeted 
by more miRNAs, including KCND3, SCN1A, NFIA, CYB561D1, TLK2, CDC25A, FAM104A, and HNRNPU. As 
a member of the nuclear factor I family, NFIA can lead to uncontrolled cell proliferation and tumor initiation and 
progression and has been reported by Zhao et al. In 2017 in patients with squamous cell cancer, adenocarcinoma 

Figure 8.  Expression levels of miRNA hub genes in normal and different stages of lymph node metastasis in 
LUSC (UALCAN).
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Figure 9.  PPI network differentially expressed genes. (A) The interaction network of the hub genes and their 
related neighboring genes using the FunRich software (green nodes: CDK1, ZWINT and NDC80). (B) Top 10 
hub genes in bottleneck method of cytoHubba.

Figure 10.  Protein–protein interaction network for hub genes.
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and large cell  carcinoma41. So far, there have been no reports on other three down regulated mRNAs (KCND3, 
SCN1A and CYB561D1) in lung cancer targeted by miRNAs. Among up regulated mRNAs found in this study, 
the association of mutant TLK2 (A member of Tousled-like kinases family) has been reported in breast  cancer42. 
However, there are no reports on the function of TLK2 in the context of lung cancer. Overexpression of cell 
division cycle 25A (CDC25A), a member of Cdc25 family, has also been reported as a poor prognosis marker 
in NSCLC. Li et al. in 2020 has been reported that miR-365 target CDC25A mRNA and reduce the expression 
of CDC25A in lung  cancer43. Interestingly, so far, there are no report in the literature on the FAM104A and 
HNRNPU.

Moreover, we found various miRNAs including hsa-miR-526b-3p and hsa-let-7e-5p, hsa-let-7b-5p, hsa-
miR-129-5p, hsa-miR-3681-3p, hsa-miR-520d-3p, hsa-miR-497-5p and hsa-miR-216a-3p could target the most 
candidate differentially expressed genes. Interestingly, some of these miRNAs such as hsa-miR-526b-3p was also 
detected as hub miRNAs associated with colorectal cancer progression by Motieghader et al.44. Cell migration 
mediated by let-7e-5p has been confirmed in the colon carcinoma. Although its underlying mechanism is unclear, 
modulation of MYC pathways assumed in this  study45. Gharib et al. suggested that miR-497-5p overexpression 
affect the development of colorectal cancer by regulating cell proliferation. Therefore, miR-497-5p upregulation 
could be considered as a potential therapeutic  target46. The functional molecular of hsa-let-7b-5p, hsa-miR-
129-5p, hsa-miR-3681-3p, hsa-miR-520d-3p, hsa-miR-216a-3p and their targets in lymph node metastasis have 
not been reported previously. Also, the miRNA expression of hsa-miR-526b-3p, hsa-let-7b-5p, hsa-miR-129-5p, 
hsa-miR-3681-3p, hsa-miR-497-5p, hsa-miR-216a-3p were found differ significantly between the tumor tissues 
and normal in further analysis.

Generally speaking, identified miRNAs and target mRNAs show various expression patterns that are proving 
to be clinically relevant to LUSC’s lymph node metastasis. Such observations indicate that a subgroup of miRNAs 
play an important role in lung squamous cell carcinoma lymphatic progression.

Finally, CDK1, PLK1, PCNA, ZWINT and NDC80 identified as hub genes for underlying molecular mecha-
nisms of lung squamous cell carcinoma lymphatic metastasis. Among them, CDK1, ZWINT and NDC80 genes 
were identified for the first time to our knowledge in lymph node metastasis of LUSC. The ZW10 interacting 
kinetochore protein (ZWINT), encodes a protein involved in kinetochore function during mitotic cycle. Over-
expression of ZWINT often resulted in abnormal mitosis in human cancers, which is a common feature of most 
malignancies. In addition, nuclear division cycle 80 (NDC80) is another mitotic regulator highly expressed in 
various human malignancies. NDC80, participate in regulation of mitosis by spindle assembly  checkpoint47. 
NDC80 may interact with a kinase NEK2 and one of the centrosome proteins CEP250 to play a role in lymph 
node metastasis in  cancers48,49.

Cyclin dependent kinase 1 (CDK1) as a serine/threonine kinase, regulate the cell cycle by promoting the 
G2/M as well as G1/S transitions. Alteration in CDK1 activity due to upregulation of CDK1 is closely related to 
cell  proliferation50. In line with our results, CDK1 was one of the 20 key hub genes related to pancreatic cancer 
metastasis and prognosis. CDK1 and MYC can promote the formation of metastasis niches by regulating the 
activity of CD4 + T  cells51. Also, Chen et al. found that CDK1 promotes the EMT and migration of head and 
neck squamous cell carcinomas (HNSCCs) cells by inhibiting ∆Np63α52. In addition, CDK1 can bind to FGFR1, 
which leads to cell proliferation, invasion and migration and affects lymph node  metastasis48,53.

PCNA plays an important role in DNA replication, but is also associated with other functions such as chro-
matin remodeling, DNA repair, sister-chromatid cohesion and cell cycle  control54,55. It has been shown taht 
PCNA was significantly related to lymph node metastasis in gastric  cancer56. Interestingly, a preveoius study has 
shwon that PCNA as an oncogene can be involved in NSCLC progression through up-regulation of  STAT357.

Polo-like kinase 1 (PLK1) is a highly conserved serine/threonine kinase with important roles in mitosis and 
cell cycle  regulation58. PLK1 is highly expressed in multiple tumors and promotes tumor cell proliferation and 
cell transformation, and is associated with clinical stages and  invasion59. Previous studies have shown that PLK1 
can play a role invasion and metastasis through beta-1 integrin by vimentin phosphorylation in breast  cancer60 
or through CD44v6, matrix metalloproteinase (MMP)-2, and MMP-9 in thyroid  cancer61. Interestingly, con-
sistent with our results, in NSCLC, active PLK1 has been shown to upregulate the levels of p-Smad2, a TGF-β 
effector, leading to the promote metastasis and invasion thorough upregulates  TNFAIP662. Thus, it is reasonable 
that deregulation of identified hub genes is associated not only with tumorigenesis but also with lymph node 
metastasis.

Generally speaking, in the present work ROC curve analysis was used to evaluate diagnostic ability of DEGs 
which could be useful at the time of diagnosis of the initial stage in determining the course of a LUSC lesion (from 
tumor promotion, malignant conversion to lymphatic metastasis). The prognostic importance of DEGs is also 
assessed that provides information on the likely patient health outcome. Since the decision about treatment choice 
in the early-stage of cancer may be difficult for clinicians, LUSC drug resistance/sensitivity associated DEGs 
were also confirmed. Simply put, we performed a series of analyses to ensure whether our new expression profile 
(including, differentially expressed genes with significant differences not only between N + vs. normal and N0 vs. 
normal but also between N + vs. N0), could be functional at different phases of patient management. Besides, five 
identified hub genes were herald as underpin molecular mechanisms of lung squamous cell carcinoma lymphatic 
metastasis. Although, in the present study lymph node metastasis has been speculated as a result of disruption 
of normal regulation of the cell cycle caused by deregulation of these hub genes, it needs to be credible.

Conclusion
In summary, this study, by identifying lymph node metastasis predicting biomarkers and improving under-
standing of the less well-known genes of LUSC, hopes to address problems with poor prognosis of this subset 
of patients due to delayed diagnosis. The results of the present study should be interpreted with caution because 
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only bioinformatics techniques were used to identify biomarkers, and the results were not confirmed through 
in vitro study.

Data availability
Dataset analyzed during the current study (TCGA-LUSC dataset) were previously generated and are available 
from LinkedOmics (http:// linke domics. org/). Also, this study includes research data from UALCAN database 
(http:// ualcan. path. uab. edu) available in web link.
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