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A theoretical approach 
to zero‑reflection toroidal curved 
metasurfaces
Hosein Allahverdizade 1, Sina Aghdasinia 1, Hemn Younesiraad 1,2 & Mohammad Bemani 1*

In this paper, we investigate the electromagnetic response of metasurfaces due to excitation of the 
toroidal moment. A toroidal curved metasurface analyzad using a novel theoretical solution based 
on the Fourier analysis to evaluate the localized fields. Analyzing localized near-field interactions are 
crucial in investigating the excited trapped modes and enables us to optimize the reflection properties 
of the proposed metasurface. Optimization is accomplished using graphene layer and resulted a 
hybrid dielectric-graphene structure with near-zero reflection properties.

Approaches for calculating scattered electromagnetic fields of metasurfaces have been proposed in the past, 
such as using periodic Green’s function (Floquet-Bloch) or the GSTC method1, but the fundamental issue with 
applying these methods is that the structures must have a minimum of periodicity in order to be employed and 
they are unsuitable for calculating near-field responses.

A zero-reflection structure is required to achieve transparency. This characteristic is present in the wings 
of the remarkable species of butterfly known as Greta oto Fig. 1a2,3. According to a recent study3, Greta Otto’s 
wings have asymmetrically dispersed nanostructures in the transparent areas Fig. 1b. It’s interesting that this 
aspect of the butterfly’s wings is what makes it transparent from different angles4. This observation motivates us 
to investigate analytical approaches of non-periodic nano-structures.

The electromagnetic response of metasurfaces can be related to traditional electric and magnetic dipoles or 
their complex combinations known as multipoles5. A toroidal dipole is the third member of localized electro-
magnetic excitations which is created by a current circulating on the surface of a torus and has been observed in 
solid-state physics6. The toroidal response of metasurfaces was experimentally observed in microwave regime7 
and then theoretically scaled to the THz regime8. The performances of these metasurfaces are usually limited by 
radiative and nonradiative losses where nonradiative losses can by reduced by employing materials of low loss 
such as dielectric9,10 likewise the solution employed in nontoroidal metasurfaces11.

Radiative losses can be regulated by designing the asymmetric all-dielectric unit cells to excite a high-quality 
factor resonant response known as Fano resonance in which the radiative damping can be efficiently suppressed 
by trapped mode and leads to the reduction of radiative losses12. Trapped modes that excited in such asymmetri-
cal structures are included in the the concept of bound states in the continuum (BIC)13. A strong link between the 
toroidal dipole resonance and the BIC was defined in the context of all-dielectric metasurfaces14. To construct a 
trapped mode supporting metasurface, we utilize a set of identical subwavelength unit cells with two asymmetric 
high-refractive index Silicon particles made in the form of modified nanodisks.

Trapped modes lead to a strong near-field enhancement where the located electromagnetic fields becomes 
notable. We utilize a novel theoretical approach to analytically evaluate localized electromagnetic fields near the 
all-dielectric unit cells of trapped mode supporting metasurface.

This evaluation provides the capability of manipulating the reflection coefficient for the surface. Our investiga-
tions should support every possible surface shape in the practical applications of such metasurfaces as sensing15,16. 
To accomplish a comprehensive solution, we consider a cylindrical surface where any arbitrary surface can be 
fitted on a cylindrical surface with a defined cross-section.

Since all-dielectric curved metasurfaces are composed of multi subwavelength cells, their optical properties 
are related to resonant features of each constitutive unit cell resonator and its mutual interaction with the other 
cells, trapped mode excitation does not merely satisfy the high-Q and zero-reflection properties which neces-
sitates computing the localized electromagnetic fields to optimize such curved multi-cell metasurfaces.
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The sampled curved metasurface was selected as ρ surface in Fig. 2 with complete ϕ angle which enables us 
to analyze the localized electromagnetic fields with Fourier series analysis in 2π interval which is discreted to 20 
individual values to easily manipulate the sections to reduce the overall reflectivity.

Graphene is selected to optimize the obtained reflectivity from evaluated electromagnetic fields. Optimization 
can be implemented by varying the graphene chemical potential when the graphene layer is integrated with the 
proposed dielectric structure.

Results and methods
Theoretical formulation.  The toroidal moment T emerges from the multipole expansion of an arbitrary 
localized current distribution6. T is defined in terms of current density distribution j(r) , as follows

where c indicates the speed of light in free space. Equation (1) is satisfied by the following form of current density 
distribution

By decomposing current vector into longitudinal j‖ and transversal j⊥ parts, Eq. (1) can be recast into a more 
convenient form. j‖ does not contribute to the toroidal moment T6 but j⊥ can be written as the curl of the mag-
netization density j⊥ = c∇ × µ(r) and gives the toroidal moment in terms of magnetization density17

(1)T =
1

10c

∫

[

r(r.j)− 2r2j
]

d3r

(2)j(r) = c∇ × ∇ × δ(r)T.

Figure 1.   (a) Images of glasswing butterflies (Greta oto). (b) The image of the transparent area indicates that 
this area of the wing is covered in bristles or micro-hairs that are in nano scale4.

Figure 2.   The sampled curved ρ surface and top view of each modified unit cell with r1 = 16 µ m, r2 = 15.5 
µ m, d = 3.38 µ m and a = 80 µm.
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Equation (3) can be used to evaluate the toroidal moment for a finite system with known magnetization density. 
Representing the magnetization density by a distribution of localized magnetic moments mα at sites rα leads to 
the following equation for localized magnetization density µloc

hence the toroidal moment takes the following form simplified to localized magnetic moments

Figure 3 shows a toroidal construction made up of two cylinders of various sizes. Based on Eq. (5), this struc-
ture clearly illustrates how to distribute magnetic moments in two opposite directions and so form a toroidal 
moment. Because of the simplicity of modeling and the ability of application to different forms figure, we will 
utilize this structure in our investigations18.

Respectively the potential caused by the toroidal moment AT takes the following form due to the similarity 
of T and the electrical moment P19

The localized magnetic field at arbitrary sites, Hloc is equal to the field caused by an external source, Hext and 
integral of the indicated potential caused by toroidal moment

however the toroidal moment is itself affected by external source. We know that e
jk|r−r′|

4π |r−r′| term in Eq. (6) is the 
free-space Green function in the spherical coordinates20 which can be replaced with its equivalent in the cylin-
drical coordinates

(3)T =
1

2

∫

r × µ(r)d3r.

(4)µloc =
∑

α

mαδ(r − rα)

(5)T =
1

2

∑

α

rα ×mα .

(6)AT = j
Tejk|r−r′|

4π |r − r′|
.

(7)Hloc = Hext +

∫

∇′ × ATd�′

(8)AT = TG = T
1

4j
H2
0 (k

∣

∣ρ′ − ρ
∣

∣)

Figure 3.   (a) A diagram of an all-dielectric metasurface. (b) The metasurface’s unit cell. r1,2 denotes the radius 
of the constituent nanodisks, H is the height of the disks, D is the distance between two nanodisks in the unit 
cell, and P is the lattice constant. (c) Diagram of a TD moment. (d) and (e) Two metasurface eigenmodes having 
TD moments along the Y and Z axes18.
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 where H2
0 (ρ) is Hankel function of the second kind, zeroth order and by assuming Hext in the cylindrical coor-

dinates, the total localized magnetic field can be defined in cylindrical coordinates which enables us to analyze 
surfaces like ρ surface in Fig. 1 where ρ is dependent to ϕ angle.

The toroidal moment can be defined on each unit cell of ρ surface produced by non-directional magnetic 
moments of two nanodisks with d spacing

due to 2π period of ρ surface, Hloc can be expanded in the Fourier series with H loc,x′

l′  , H loc,y′

l′  and H loc,z′

l′  coef-
ficients as follows

evaluating the toroidal potential caused by this expanded localized H-field, leads to calculating overall Hloc 
in Eq. (7) by a novel approach in Methods. Another double Fourier series with Hs,x

l,l′  , H
s,y
l,l′  and Hs,z

l,l′  coefficients 
appears in calculated Hloc as follows

where αm produced as we used a linear relationship between the magnetic field and the resulting magnetization 
which can be obtained in structures similar to a cylinder with L length and 2r1 diameter as21 

 where ns = 3.88 is the index of refraction of the silicon nanodisk medium22. However our medium has been 
modified by embedding two extra 30◦ inclined nonodisks with respect to main nanodisk as Fig. 1 to make the 
response stable for oblique incidents which is compared for 2 different external incidents in Fig. 4.

Methods.  This section describes how to compute a localized magnetic field using the previously mentioned 
potential formula (8). Since the localized magnetic field has a Fourier series form because of the 2π periodicity 
in our structure, we can use some basic Fourier series properties to solve the integral equation. Replacing Hankel 
part of G by double Fourier series with al,l′ coefficient and substituting Eq. (9) in (8), overall localized H-field 
equals

where ( ̂aϕ′ ×Hloc ) can be calculated as

and results with respect to Fourier properties

(9)T =
d

2
âϕ′ × αmH

loc

(10)Hloc =
∑

l′

[

H loc,x′

l′ âx +H
loc,y′

l′ ây +H loc,z′

l′ âz

]

ejl
′ϕ′

(11)Hloc = Hext +
d

8
αm

∑

l

[

∑

l′

l′
[

Hs,x
l,l′ âx +H

s,y
l,l′ ây +Hs,z

l,l′ âz

]]

e−jlϕ

(12a)αm =
1

(n2s − 1)gm + 1

(12b)gm =(S2 − 1)

[

1

2
S ln

(

S + 1

S − 1

)

− 1

]

(12c)S =

[

1−

(

L

2r1

)2
]− 1

2

(13)Hloc = Hext +
d

2
αm

∫

∇′ ×

[

(âϕ′ ×Hloc)×
1

4j

∑

l

∑

l′

[

al,l′e
j(l′ϕ′−lϕ)

]

]

d�′

(14)âϕ′ ×Hloc =
∑

l′

[

Hloc,z′

l′ cosϕ′âx +Hloc,z′

l′ sin ϕ′ây − (Hloc,x′
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Figure 4.   Overall reflection through wavelength for modified unit cell.
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where a simplified Fourier series expansion of ( ̂aϕ′ ×Hloc ) results with bx′l′  , b
y′

l′  and bz′l′  coefficients. Replacing the 
determined ( ̂aϕ′ ×Hloc ) in (13) results

Based on the Fourier series properties, multiplication of two periodic terms in (16) results in an integrated 
double Fourier series in which the coefficients are the convulsions of al,l′ with bl′s

summation on l is independant of ( ∇′× ) operator and d�′ integration. ( ∇′× ) operates on ejl′ϕ′ âx , ejl
′ϕ′ ây and 

ejl
′ϕ′ âz which can for example be calculated as ∇′ × (ejl

′ϕ′ âz) =
jl′

ρ′
ejl

′ϕ′ âρ′ where âρ′ will be replaced with equiva-
lent Cartesian unit vectors. Eventually (17) takes the following form

Due to the mentioned singularity in evaluating localized field, angular region of singularity �ϕ = �P/nd 
where nd is the approximate radial distance of unit cell and n is in the order of 1000, will be subtracted from the 
integration region so 

(

∏

(
ϕ′−2π
2π

)−
∏

(
ϕ′

�ϕ
)

)

∥

∥ds′
∥

∥dϕ′dz replaces d�′ . Another Fourier series with dl′ coefficient 
assumed as follows

 multiplying the mentioned Fourier series by the other items in (18) summarized to a single Fourier series where 
d′l′ replaces ( sin ϕ′dl′ ) and d′′l′ replaces ( cosϕ′dl′)

(al,l′ ∗ d′l′ ) simplified to a′l,l′ and ( al,l′ ∗ d′′l′  ) to a′′l,l′ . For the convolution operations we pursue the following 
approach23

which reduces all the convolutions to the multiplication of coefficients as follows

Now according to the Fourier series properties, following integral of ϕ′ in 2π interval reduces to a constant item 
of the corresponding series where u′ = 0 and we have

(15)

âϕ′ ×Hloc =
�

l′

�
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2
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]

eju
′ϕ′dϕ′dz

]

e−jlϕ



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6682  | https://doi.org/10.1038/s41598-023-33896-4

www.nature.com/scientificreports/

Analysis verification.  Excitation and surface reflectivity.  The theory presented in previous section can be 
used to calculate the localized field on surfaces like ρ in the presence of appropriate external field which leads to 
obtaining reflection coefficient on the surface.

Line source I0 at (ρ0,ϕ0) with ω = 2π × 2.67 THz considered as an external source24 proved that this source 
produces a TMz wave in ρ ≪ ρo with the following E-field

which is in the form of (8) and can be expanded in the Fourier series, Hankel part of Eextz  replaced by a Fourier 
series with fl coefficient

and the corresponding transverse H-field components can be calculated as24

which results

by substituting cosϕ
ρ

 by a series with g ′l  coefficient and sin ϕ
ρ

 by a series with g ′′l  , we have the x component of 
external H-field as

The normalized x component of external H-field is obtained as another Fourier series with Hext,x
l  coefficient

which can be evaluated at 20 discrete values of ϕ on ρ surface where the surface was selected as an elliptical 
cylinder with cross-section equation ρ = 2/

√

3 cos2 ϕ + 1 . The evaluated Fourier series at each determined 
discrete value using MATLAB software demonstrated in Fig. 5.

The overall x component of localized H-field in the presence of proposed external source is obtained using 
(11) as

 and demonstrated in Fig. 6 at the same 20 discrete values of ϕ angle. Same procedure could be used to evaluate 
another series for H loc

y  respectively, but the selected external source causes H loc
y ≪ H loc

x  at ρ ≪ ρo and makes 
the y component of reflection coefficient less important.

(23)

Hloc −Hext =
d

8j
αm

∑

l

[

∑

l′

jl′
[

(bz
′

l′ a
′′
l,−l′)âx + (bz
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Figure 5.   Real and imaginary part of evaluated Fourier series in Eq. (29) at each discreted ϕ angle.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6682  | https://doi.org/10.1038/s41598-023-33896-4

www.nature.com/scientificreports/

On the one hand, it is obvious in Fig. 7 that the Fourier series coefficients number l in (30) converges to the 
obtained results for distributed H loc

x  from CST Microwave Studio at l = 33.
After calculating localized wave, we need to achieve reflected wave from structure.The x component of 

reflected field Href
x  is calculated on each unit cell of proposed cylindrical surface with a2 area according to25

(31)Href
x =

−jω

2η0a2
αmH

loc
x

Figure 6.   Real and imaginary part of evaluated Fourier series in Eq. (30) at each discreted ϕ angle.
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Figure 7.   Real parts of distributed H loc
x  at 10 discreted ϕ angle which is compared to evaluated Fourier series for 

two different l in Eq.  (30).

Figure 8.   Real and imaginary part of evaluated Rx at each discreted value of ϕ angle.
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hence the x component of reflection coefficient, Rx is the ratio of obtained Href
x  and proposed Hext

x  which is dem-
onstrated in Fig. 8 at the same 20 discrete values of ϕ angle. Zx can also be achieved directly from obtained Rx.

Graphene strip lines.  Graphene Strip Lines are added as patch arrays to reduce the overall reflectivity of pro-
posed metasurface which is examined for a unit cell in Fig. 9. It is clearly obvious that strip lines reduces overall 
reflectivity of our structure and eliminates the real part of impedance. Focusing on eliminating the imaginary 
part of impedance is beneficial in achieving the zero-reflection properties for the surface in the following. The 
impedance of this layer for TM-polarized incident field is determined as26

where k0 is the wave number in free space. Host medium incident wave number keff  and wave impedance of 
that ηeff  are obtained from relative effective permittivity εeff = εr+1

2
 where εr in the desired graphene medium 

is defined as27

where the scalar surface conductivity of layer is σg = σintra + σinter in which the former term is due to the intra-
band contributions and the latter term is due to the interband contributions. In mid-infrared frequencies where 
ω is below 2µc/� , the interband term is negligible and the intraband term is dominant and equals28

where Ŵ is a phenomenological scattering rate, kB is Boltzmann’s constant, � is the reduced Planck constant and 
T is the temperature.

θ in Eq. (32) is the angle of incident vector with ρ surface which can be written in the terms of ϕ angle as 
follows

and the grid parameter α in Eq. (32) is defined as25

where the strip width and their spacing are selected as W = 2.58 µm , D = 5.16 µm for 2.67 THz frequency. It is 
crucial to note that every optimization involves making a trade-off. For instance, the use of strip lines can reduce 
reflectivity, but it also induces capacitive and inductive effects on the structure29, leading to undesired outcomes 
like frequency shifts in the main frequency.

Graphene ribbons.  In this section, we employ a knock-out technique to achieve our ultimate goal of zero-
reflection. By applying different potentials to graphene ribbons, we can attain the desired surface impedance, 
which can be manipulated to achieve zero-reflection properties.

Graphene ribbons with tg = 10 nm thickness and distinct values of chemical potential µc are added to each 
interval of ϕ angle, n. Zg is caused by this layer

(32)ZTM
sl = jα

ηeff

2

(

1−
k20
k2
eff

sin2 θ

2

)

(33)εr =
1+ jσg

ωε0tg

(34)σintra = j
e2kBT

π�2(ω − j2Ŵ)

(

µc

kBT
+ 2 ln

(

exp(−µc/kBT)+ 1

))

(35)θ = cos−1

[

ρ(ϕ) cosϕ + dρ(ϕ)
dϕ sin ϕ

√

ρ(ϕ)2 + 1

]

(36)α =
keffD

π
ln

(

1

sin πW
2D

)

Figure 9.   A unit cell reflectivity properties with applying graphene strip lines and without utilizing it.
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The overall total impedance of designed 3-layer hybrid structure is30

the total reflectivity of the structure Rt , obtained from the overall total impedance, is dependant to µc of the 
selected ribbons in each interval of ϕ angle, n. The selection procedure will done by observing the imaginary 
part of Rt in the presence of 11 different quantities of µc in [0, 1] interval of it, denoted by n′ . The imaginary 

(37)Zg =
tg

σg

(38)Zt =
1

1
Zx

+ 1
Zg

+ 1

ZTM
sl

Figure 10.   The imaginary part of Rt in 4 different intervals of ϕ angle.

Table 1.   Optimized graphene chemical potential ( n′ ) selections.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n
′ 2 2 10 1 2 11 11 7 1 11 11 8 1 2 10 11 2 2 11 3

Figure 11.   Proposed 3-layer hybrid structure.
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part of conductivity plays an important role in the propagation of surface waves guided by the graphene sheet31 
so the optimizing procedure is restricted to cancelling the imaginary part of Rt . Figure 10 shows the imaginary 
part of Rt in 4 different intervals of ϕ angle, n for 11 possible selections of µc , n′ . All the optimized µc selections 
are shown in Table 1.

Finally a reasonable segment of the optimized 3-layer hybrid structure involving five intervals of ϕ angle 
from n = 8 to n = 12 as Fig. 11 is simulated in CST Microwave Studio to validate the accomplished optimiza-
tion procedure. In non-optimized case all the graphene ribbons are simulated with µc = 0 . Excited modes are 
obtained due to the Eigenmode Solver for both optimized and non-optimized structures and the reflectivity |R| 
in corresponding wavelengths are compared in each mode as Fig. 12.

By applying different chemical potentials to graphene ribbons and achieving varying conductivities, excitation 
modes may be formed with slight shifts in their frequencies. For instance, the second mode of the non-optimized 
structure appears at 2.64 THz with an equivalent reflectivity of approximately 0.4, while the second mode of the 
optimized structure appears at 2.67 THz with an equivalent reflectivity near to zero. The S-parameter and the 
reflectivity |R| are showed in details as Fig. 13.

Discussion
In summary, we introduced a novel approach to determine the electromagnetic response of dielectric-graphene 
hybrid curved metasurfaces due to excitation of the toroidal moment. Analyzed metasurface with asymmetric 
unit cells designed for exciting the well-known trapped mode whereas they show a robust response for oblique 
incidents. Trapped mode excitation and the concept of bound states in the continuum (BIC) do not merely pro-
vide the high quality properties for proposed curved structure and accentuates our introduced novel approach 
for determining localized electromagnetic fields. Consequently, any practical surface with random and arbitrary 
curve can be optimized by utilizing the near-field responses. To figure out the functionality of the procedure, 
a reasonable segment of the designed Silicon metasurface is optimized using graphene ribbons and strip lines 
which results near-zero reflectivity properties for the structure. To bias graphene sheets empirically, one can 
apply an external voltage to the sheets using a voltage source or bias tee. Graphene can be indirectly stimulated 
by applying thin gold electrodes on the side borders of the structure and mounting the graphene layers onto 
them. By applying stimulation to the metal electrodes, the graphene layers can be activated or manipulated to 
achieve the desired conductivity or impedance properties. It is important to note that the exact procedure for 
mounting and stimulating graphene layers may depend on the specific experimental setup and conditions, and 
may require careful calibration and optimization to achieve the desired results32. In a more advanced approach, 
tension-sensitive resistors can be utilized in a way that allows the change of curvature to result in a variable 

Figure 12.   Reflection in each excited mode.

Figure 13.   Results for 2nd excited mode where optimization details are marked.
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voltage. This can enable the structure to self-adjust, as the resistors can dynamically respond to changes in the 
curvature or deformation of the structure.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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