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Deep transfer learning strategy 
for efficient domain generalisation 
in machine fault diagnosis
Supriya Asutkar 1,2 & Siddharth Tallur 2*

Automated fault diagnosis algorithms based on vibration sensor recordings play an important role 
in determining the state of health of the machines. Data-driven approaches demand a large amount 
of labelled data to build reliable models. The performance of such lab-trained models degrades when 
deployed in practical use cases in the presence of distinct distribution target domain datasets. In this 
work, we present a novel deep transfer learning strategy that fine-tunes the trainable parameters of 
the lower (convolutional) layers with respect to the changing target domain datasets and transfers the 
parameters of the deeper (dense) layers from the source domain for efficient domain generalisation 
and fault classification. The performance of this strategy is evaluated by considering two different 
target domain datasets and studying the sensitivity of fine-tuning individual layers in the networks 
using time-frequency representations of the vibration signals (scalograms) as inputs. We observe that 
the proposed transfer learning strategy yields near-perfect accuracy, even for use cases where low-
precision sensors are used for data collection and unlabelled run-to-failure data with a limited number 
of training samples.

Automated fault diagnosis in machines based on sensor data is an emerging area of interest in condition-based 
monitoring (CBM) and industrial internet of things (IIoT), that enables improved production efficiency and 
lower risk of accidents in complex mechanical  systems1. Unlike monitoring parameters such as surface tem-
perature, power consumption, and presence of wear particles in lubricants, vibration-based fault diagnosis is 
now a well-established method for identifying incipient  faults2. Methods for fault diagnosis can be divided into 
two broad categories: physics-based and data-driven approaches. Physics-based models require establishing a 
relationship between fault signatures in sensor parameters and progression of damage in mechanical parts of the 
machinery and typically encompass designing models based on dynamics, finite element method, and modal 
analysis e.g. parametric model for planetary gears developed by Xue et al.3. Implementation of such methods 
requires an in-depth understanding of the dynamics of the machinery, and customisation for every sensor instal-
lation, to account for variations in the ambient environment, mounting, and manufacturing parameters. Several 
data-driven algorithms have been reported for machine health monitoring, ranging from simple classifiers such 
as support vector machines (SVM)4–6, advanced classifiers like least square interactive support matrix machine 
(LSISMM)7, artificial neural network (ANN)8 to complex approaches based on variations of deep convolutional 
neural networks (CNNs)9–13.

Although significant improvement in fault classification accuracy is possible using deep learning techniques, 
their performance is contingent on two key requirements: (a) data used for training (source domain) and testing 
(target domain) should belong to the same distribution, and (b) the necessity of a large labelled training dataset 
for higher accuracy. This is impractical in real-world scenarios since data distribution is sensitive to changes in 
ambient environment and installation, variation in power and load, etc. This change in data distribution from 
the source domain dataset used for training the algorithm to the target domain dataset used for testing is labelled 
as domain shift. To mitigate the problem of domain shift in deep learning models, various transfer learning (TL) 
strategies are employed wherein knowledge gained from the source domain is leveraged to improve classification 
ability in the distinctly distributed target domain datasets. Among the various approaches, feature-based TL has 
shown good domain adaptation capability by reducing the distribution difference between the source and the 
target domain dataset. Xiao et al. have proposed a domain adaptive motor fault diagnosis technique that uses 
CNN to extract multi-level features from the raw vibration data and maximum mean discrepancy (MMD) is 
adopted in the training process to reduce the distribution difference between the source and the target domain 
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dataset. Thus, the knowledge learned from the source domain that possesses labelled motor vibration data under 
invariant working conditions is used to improve fault classification accuracy when the target domain belongs to 
the unlabelled data under constantly varying working  conditions14. Zhao et al. have proposed an intelligent gear-
box fault diagnosis method based on adaptive intraclass and interclass convolutional neural network (AIICNN) 
to improve generalisation under varying working  conditions15. In another study, a deep convolution transfer 
learning network (DCTLN) is proposed that comprises a condition recognition module along with a domain 
adaptation module to effectively learn domain-invariant features of the target domain datasets. The DCTLN 
trained with labelled data of the source domain dataset is able to effectively classify unlabelled data of the target 
domain  dataset16. Tong et al. have presented an unsupervised fault diagnosis approach incorporating feature 
TL to efficiently adapt to the varying working conditions of the target domain  dataset17. Qian et al. on the other 
hand, have proposed an improved joint distribution adaptation (IJDA) technique to align not only the marginal 
but conditional distributions of the source and the target domain datasets for effective domain generalisation 
when validated using bearing and gearbox vibration signal  datasets18. However, these techniques typically require 
training architectures from scratch and thus, can be computationally expensive.

Parameter-based TL on the other hand is a commonly employed strategy, wherein only a few layers of large 
pre-trained networks (e.g. VGG-16, ResNet-50, etc.) are fine-tuned while freezing a large number of the layers, 
for domain generalisation to a diverse set of target image  datasets19. This approach is suitable for CBM applica-
tions that represent the vibration signals as encoded images through suitable time-frequency transforms e.g. 
spectrogram, scalogram, etc. Shao et al. have presented a novel deep TL framework comprising a pre-trained 
VGG-16 network that is trained on the ImageNet dataset which later is fine-tuned using the time-frequency 
images (scalograms) of the target machine vibration dataset. In the process, only the three highest-level blocks of 
the pre-trained VGG-16 network are fine-tuned while leaving the weights of the bottom blocks frozen to achieve 
state-of-the-art accuracy when validated against the three publicly available machine vibration  data20. Wen et al. 
proposed a TL strategy that includes the use of a pre-trained ResNet-50 network to identify fault by fine-tuning 
just the fully connected layer added on top of the ResNet-50 network with respect to the publicly available 
machine vibration  datasets21. Since these pre-trained networks are trained on the ImageNet dataset, consisting 
of images significantly different from the vibration encodings of the machines (spectrograms and scalograms), 
large networks are required for good adaptation ability. This results in a large number of trainable parameters 
and memory consumption along with additional post-processing on the target domain images. To address this 
challenge, recently, several reports for domain adaptation in vibration CBM using TL-CNNs operating on raw 
time-series vibration data have been reported, albeit with feature transfer and domain adversarial network or 
parameter transfer in dense layers of  CNN22–24. However, in most TL reports for CBM, high-precision sensors or 
publicly available high-resolution datasets are used in the target domain, and domain generalisation of TL models 
for vastly different target domain data with low-precision sensors has not been adequately explored. CBM with 
low-cost consumer-grade sensors is essential for scaling the benefits of predictive maintenance to large factories, 
wherein instrumenting every machine with multiple high precision and expensive piezoelectric vibration sensors 
is  impractical25,26. Another challenge in the deployment of deep learning techniques pertains to the acquisition 
of faulty data sets in the field, as machines may stop working abruptly and therefore result in a disproportionate 
amount of healthy data being collected over data in faulty operating  conditions27,28.

In order to overcome the shortcomings above, in this work, we have implemented a modified TL-based 
classification model wherein a significantly lesser number of layers are used compared to the conventional pre-
trained networks to address the challenges of domain shift and data insufficiency. An overview of the TL-CNN 
architecture proposed in this work is shown in Fig. 1. The work utilises the widely used Case Western Reserve 
University bearing dataset (CWRU)29 as the source domain dataset for training CNNs on time-frequency domain 
representations of the vibration signals, namely scalograms. Whereas, two different target domain datasets are 
considered as the test dataset to demonstrate the versatility of the proposed TL approach: data generated in the 
lab from a motor instrumented with low precision sensor (LPS), and run-to-failure unlabelled dataset from the 

Figure 1.  Overview of the TL-CNN architecture presented in this work.
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Center for Intelligent Maintenance Systems, University of Cincinnati (IMS)30. Measurements obtained with low 
precision sensors along with high variability (greater interquartile range about the mean) make it difficult to 
distinguish between distributions for healthy and faulty operating conditions. No additional processing of target 
domain data is required since the source and target data are subjected to the same time-frequency transform. 
We have evaluated the performance of deep TL models by transferring parameters of convolutional layers and 
dense layers and studied the sensitivity of retraining of each layer separately. The key contributions of this paper 
are as follows:

• Our observations indicate that TL using scalograms as input features yields higher accuracy even when the 
statistical distribution of data obtained with lower precision sensors is not sufficiently distinct for healthy 
and faulty classes.

• The novelty of the proposed deep TL algorithm is the improvement in prediction ability obtained with a 
significantly lesser number of trainable parameters (1320) by fine-tuning (retraining) the convolutional 
layers (i.e. freezing dense layers) to better capture domain-specific abstract information, as compared to the 
conventional approach of retraining dense layers (i.e. freezing convolutional layers).

• The improvement in accuracy is also observed for unlabelled data with the limited number of samples avail-
able for training (IMS).

Methodology
Time-frequency based representations of vibration signals. Various methods are used to represent 
vibration signals in the time and frequency domain. However, time-frequency imaging methods are efficient at 
capturing the non-stationary nature of the vibration  signals31–34. In this work, we have considered scalograms 
obtained using continuous wavelet transform (CWT) as a representation of the vibration signals. CWT provides 
a more flexible time-frequency resolution as compared to spectrograms obtained with short-time Fourier trans-
form (STFT), by using the mother wavelet function that can be scaled and shifted in correspondence to events 
in the signals. The scalogram is the absolute value of the CWT of a signal, plotted as a function of scale (s) and 
time translation (τ ):

where, ψ(t) denotes the mother wavelet, and the asterisk denotes the complex conjugate. Expanded wave-
lets (large values of s) capture the low-frequency components of the signal with bad time resolution whereas, 
shrunken wavelets (small values of s) capture high-frequency components with good time resolution.

Description of experimental datasets. Brief descriptions of the source and target domain vibration 
datasets used in this study are provided below:

 (i) CWRU data set Among various publicly available machine vibration datasets, CWRU is widely accepted 
as a standard reference labelled dataset that has been used to validate different fault diagnosis  models29. 
Vibration signals from a 2 hp Reliance Electric motor were acquired using high-precision accelerom-
eters with healthy and faulty bearings. Single point faults (inner race, ball bearing, outer race) ranging 
from 7 to 40 mil in diameter were introduced separately in the test bearings through electro-discharge 
machining. These faulty bearings were reinstalled into the motor at the drive end and fan end. Sensors 
were placed at these locations and also at the base end of the motor, and vibration data was recorded at 
a sampling rate of 12 kHz for motor speeds varying from 1797 to 1720 rpm.

 (ii) IMS data set The bearing dataset provided by IMS is available for download from the NASA Ames 
Prognostics Data  Repository30. The data set comprises of measurements from high-sensitivity quartz 
ICP® accelerometers, one each installed on four bearings on a shaft. Data from three run-to-failure 
experiments are provided. The rotation speed was 2000 rpm for a radial load of 6000 lb applied to the 
shaft. All failures occurred after exceeding 100 million revolutions. Each time series was recorded in an 
individual file, containing 20,480 data points obtained at 20 kHz sampling rate. Out of the three datasets, 
we have considered the dataset with the highest number of recordings: channel 3 from test number 3 
(culminating in outer race fault). For further details on the experimental setup, please refer report by 
Qiu et al.35. Since the IMS-bearing data set is an unlabelled dataset, the mean peak frequency (MPF) of 
the spectrogram was used to label the healthy and faulty data, in accordance with the strategy presented 
by Mukherjee et al.36.

 (iii) Lab generated data with low precision sensor (LPS) This dataset comprises vibration data acquired from a 
motor running at a speed of approximately 3000 rpm using STMicroelectronics STEVAL-STWINKT1B 
wireless industrial sensor node that includes an ultra-wide bandwidth (6 kHz), low-noise, 3-axis vibra-
tion sensor (STMicroelectronics IIS3DWB) with 26.7 kHz data rate. The dataset contains 650 files with 
15,000 samples (i.e. 560 ms duration) each for both the healthy and faulty operating conditions of the 
motor. The fault was introduced by coupling a bearing with a faulty ball bearing to the motor shaft.

In our study, CWRU was chosen as the source domain dataset, and IMS and LPS datasets were used as the 
target domain datasets. The CWRU dataset consists of a vast collection of labelled vibration data obtained with 
high precision sensor corresponding to baseline (healthy) operation, and various types of bearing faults with 
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different fault depths obtained with different motor speeds, and is, therefore, a suitable choice for source domain 
to incorporate more variation and develop a robust deep CNN based fault classification algorithm. While the 
IMS dataset is also acquired using a high-precision vibration sensor, it is a run-to-failure dataset consisting of a 
limited number of vibration recordings in faulty operation (useful for studying the TL model performing with 
insufficient training data). The LPS dataset is altogether different from the CWRU dataset, consisting of data 
obtained on a different motor running at higher speed, with a low-cost albeit comparatively lower precision 
MEMS vibration sensor (useful for performance evaluation of domain adaptation of TL model).

Transfer learning for machine fault diagnosis. For generating scalograms, the following parameters 
were used—number of data samples used to generate scalogram: 500, scale factor: 128 , wavelet function: Mor-
let. This resulted in scalogram images of size 128 × 500. The generated scalograms were normalized using the 
StandardScaler normalisation method before using them as inputs for the CNN-based classification algorithm. 
To find the optimum CNN architecture for the training data (CWRU), RandomSearch algorithm was employed, 
wherein the best set of hyperparameters were obtained based on the maximum cross-validation score. Table 1 
presents the hyperparameter range used in the RandomSearch algorithm and the optimum parameter values 
obtained from the algorithm that yielded 100% accuracy for fivefold cross-validation with 10 iterations on the 
training data.

A detailed summary of the CNN architecture realised utilising the tuned hyperparameters is presented in 
Table 2. The CNN architecture comprises two convolutional layers and three dense layers. Max-pooling layers 
were used to reduce feature dimensions while retaining salient information of the inputs in the convolutional 
layers. The convolutional layers incorporated rectified linear unit (ReLU) activation functions to introduce non-
linearity, and zero padding was performed to ensure the same input and output image dimensions. The dropout 
rate of 0.2 was used to avoid over-fitting to the data. The CNN architecture was trained using Adam optimizer 
with learning rate = 0.01 for 30 epochs using binary cross-entropy as the loss function. We observed that the 
training accuracy and loss converged within 30 epochs. The predicted probabilities were assessed using a sigmoid 
function to determine the class to which the input data belongs.

Parameter-based TL allows the reuse of parameter weights to improve the accuracy when data distribu-
tion differs from the source domain to the target domain. Lower (convolutional) layers of CNNs capture more 
domain-specific information concealed within the image by convolving it with a kernel (or filter), while deeper 
(dense) layers are responsible for learning information that is relevant for making the  decision37,38. In the TL 
framework presented in this work, the source classifier CNN was trained on the CWRU dataset, and the target 
classifier (TL-CNN) was then allowed to leverage this learned information of decision-making by transferring 

Table 1.  Hyperparameter tuning of CNN architecture using RandomSearch algorithm.

Hyperparameter Range Optimal value

No. of conv layers [2, 3] 2

No. of dense layers [2, 3] 3

Filters (1st Conv layer) [32, 16, 8] 16

Filters (2nd Conv layer) [32, 16, 8] 8

Filters (1st Dense layer) [32, 16, 8] 16

Filters (2nd Dense layer) [32, 16, 8] 8

Learning rate [0.001, 0.01, 0.1] 0.01

Batch size [64, 128, 256] 64

No. of epochs [10, 20, 30] 30

Table 2.  Summary of CNN architecture for scalograms.

Layer name Layer (kernel size × no. of filters) Output shape Trainable parameters

L1 Conv (3 × 3 × 16) 128 × 500 × 16 160

L2 Maxpool (2 × 2) 64 × 250 × 16 0

L3 Conv (3 × 3 × 8) 64 × 250 × 8 1160

L4 Maxpool (2 × 2) 32 × 125 × 8 0

L5 Flatten 32,000 0

L6 Dropout (0.2) 32,000 0

L7 Dense (16) 16 512,016

L8 Dense (8) 8 136

L9 Dense (1) 1 9

Total trainable parameters 513,481
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weights of certain layers in the CNN, and retraining the remaining layers with data from the target domain. We 
explored transferring weights of individual convolutional and dense layers, to study the sensitivity of each layer to 
the model performance on the target domain. Separately, we also considered TL-CNNs with weights transferred 
for the dense layers (i.e. all dense layer weights frozen, and convolutional layers re-trained). We considered two 
different target domain cases for validation of the proposed deep TL architecture i.e., when the target domain 
dataset is derived from a different machine with low precision sensor (LPS) and when the target domain contains 
limited and unlabelled data (IMS).

Results and discussion
Since IMS data contains an outer race (OR) fault and the LPS dataset contains a ball bearing (BB) fault, both 
these fault conditions were chosen from the CWRU dataset for training CNNs for binary classification of faults. 
For evaluating the CNNs, we generated 5000 scalograms from each dataset (CWRU, IMS, LPS): 2500 each for 
healthy and faulty classes. We have used the hold-out cross-validation technique to split the 5000 scalograms from 
each dataset in the ratio of 50%:20%:30% for training, validation and testing of the CNNs, respectively. Table 3 
shows a summary of the results thus obtained. The first four cases in Table 3 i.e., cases (a)–(d), show the model 
performance when training and test data belong to the same distribution (i.e., same data set). As expected, the 
accuracy of the CNN models for CWRU and IMS datasets was greater than 99%, owing to the superior perfor-
mance of CNNs for binary classification of faults in CBM. However, classification accuracy for the LPS dataset 
i.e., case (d), was lower than CWRU and IMS datasets, which comprise data collected with high-precision sensors. 
Apart from sensor precision, another factor that contributes to the low classification accuracy in case (d) is the 
significant overlap in mean peak frequency (MPF) for healthy (H) and ball bearing fault (BB), as seen in Fig. 2. 
MPF is a key time-frequency domain feature that increases sharply with advancing defects in  machines36. The 
MPF for healthy and faulty classes is well-separated in CWRU and IMS datasets. Therefore, it is not surprising 
that the accuracy and F1 score is lower for case (d) as compared to cases (a)–(c) in Table 3.

Table 3.  CNN performance results on various data sets using scalograms as inputs.

Case Train data Test data Trainable parameters Accuracy (%) F1 score (%)

Training and testing on same data set

 (a) CWRU (H,BB) CWRU (H,BB) 513,481 100 100

 (b) CWRU (H,OR) CWRU (H,OR) 513,481 100 100

 (c) IMS (H,OR) IMS (H,OR) 513,481 99.6 99.6

 (d) LPS (H,BB) LPS (H,BB) 513,481 89.73 88.04

Training and testing on different data sets without TL

 (e) CWRU (H,OR) IMS (H,OR) 513,481 50 0

 (f) CWRU (H,BB) LPS (H,BB) 513,481 50 0

Training and testing on different data sets with TL (TL-CNN)

 (g) CWRU (H,OR) IMS (H,OR) 1320 98 98

 (h) CWRU (H,BB) LPS (H,BB) 1320 96.6 96.6

Figure 2.  Mean peak frequency (MPF) for vibration data in the three data sets (CWRU, IMS, LPS) 
corresponding to various operating conditions (H healthy, BB ball bearing fault, OR outer race fault).
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Impact of retraining individual TL-CNN layers on accuracy. For parameter-based TL, the appropri-
ate transfer of weights from the source to the target domain is critical for improving model performance. The 
lower (convolutional) layers in CNNs capture domain-specific information, and the deeper (dense) layers con-
tribute to the effective learning required for data  classification37,38. Since the source and target domain datasets 
vary concerning the environment and load conditions, we hypothesise that the CNN architecture can be adapted 
to these changes by retraining the weights in only the lower layers, while weights in the deeper layers weights can 
be transferred unmodified for effective fault classification. To validate this hypothesis, we examined the sensitiv-
ity of retraining individual convolutional and dense layers in the CNNs, while keeping the weights of other layers 
frozen (parameter transfer). The impact of retraining weights of individual layers for IMS and LPS target domain 
datasets is shown in Fig. 3. We observed that the classification accuracy obtained by retraining lower layers was 
greater than the conventional method of retraining deeper layers in the model. Along with the improvement 
in accuracy compared to the conventional approach, the number of retrainable parameters is also significantly 
smaller, which can certainly contribute to improving the training time for the model.

Performance evaluation of TL-CNN for domain generalisation. The domain generalisation ability 
of the CNNs trained on the CWRU dataset was abysmal in absence of transfer learning, resulting in poor accu-
racy and F1 score: cases (e) and (f) in Table 3. Utilising TL-CNN with weights retrained for convolutional layers 
L1 and L3 (and frozen for dense layers L7, L8, and L9) resulted in significant improvement in domain adapt-
ability, and high accuracy and F1 score for cases (g) and (h). For instance, the accuracy and F1 score improved 
from 50% and 0% (i.e. case (e) in Table 3) to 98% and 98% (i.e. case (g) in Table 3), respectively; and from 50% 
and 0% (i.e. case (f) in Table 3) to 96.6% and 96.6% (i.e. case (h) in Table 3), respectively. The number of train-
able parameters for cases (g) and (h) were mere 1320 , corresponding to the sum total of the number of trainable 
parameters in convolutional layers in Table 2.

Impact of the size of target domain data set. As previously mentioned, practical installations of vibra-
tion CBM systems result in the generation of a disproportionate amount of healthy data as compared to data in 
faulty operating conditions due to the abrupt and sudden failure of machines, unlike lab-generated datasets with 
artificially engineered and controllably introduced faults. Thus, the TL-CNNs may have to be retrained with a 
small number of samples from healthy and faulty operating conditions. To emulate this scenario, we utilised the 
TL model performance on the run-to-failure IMS dataset that possesses a large number of healthy samples as 
compared to faulty samples and used MPF as the signature for assigning labels, using the method described by 
Mukherjee et al.36. Figure 4 presents the accuracy of the deep TL-CNN for a varying number of samples used 
for retraining the convolutional layers. When the model was retrained using 2800 samples (i.e. scalograms), the 
accuracy obtained was greater than 95%. When half the number of samples were used for retraining (i.e. 1400), 
the accuracy was still in excess of 95%, thus highlighting the utility of the TL-CNN for target datasets of limited 
size and significantly different distribution from the source domain dataset. Note that the TL-CNN showed 
accuracy in excess of 95% even with as low as 700 samples used for retraining, while the performance of the TL-
CNN with scalograms degraded significantly below 700 samples.

Table 4 compares various recent parameter-based TL techniques used for domain generalisation for efficient 
machine fault diagnosis. He et al. have proposed an improved deep transfer autoencoder-based TL method to 
enhance classification accuracy in diagnosing gearbox faults even in the presence of significant change in the 
working condition but when the source and target domain data belong to the same  dataset39. Lu et al. have 
used an AlexNet-based pre-trained network to automatically identify and classify distinct bearing faults with 
improved accuracy for varying load conditions utilising the time-frequency features (spectrograms) generated 
from the raw time-series vibration  signals40. Yet in another study, a pre-trained VGG19 network has shown 
adequate prediction to diagnose different types of bearing faults even when the network is trained on the non-
manufacturing specific data (ImageNet dataset)41. However, as the source domain data used for training the 

Figure 3.  Impact of retraining individual layers in deep TL-CNNs for parameter transfer (while keeping 
weights of other layers frozen) for scalograms (layer names as per Table 2) used as inputs.
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network are significantly different from the target domain vibration encodings of the machines (spectrograms 
and scalograms), a large number of trainable parameters are required for domain adaptation thus, increasing 
computation cost. A joint diagnostic model comprising a CNN wherein the knowledge learned on one fault 
(bearing) is applied to efficiently predict another fault (gearbox) has been successfully demonstrated by Li et al.42. 
Chen et al. have presented a CNN-based TL model utilising raw vibration data that has shown improved domain 
generalisation capability when the source and target domain dataset belongs to different machinery and even 
with varying working  conditions43. Although a significant improvement in domain generalisation is achieved 
using the parameter-based TL techniques, in most of the reports, a publicly available vibration dataset acquired 
using high-precision sensors is used to validate the effectiveness of the models which limits the deployment of 
most of the models in a real-world scenario of limited access to resource utilisation.

Conclusion and future work
In summary, in the proposed work we have presented a deep TL-based model for efficient domain generalisation 
of CNNs trained on a widely accepted benchmark-bearing fault dataset, for high classification accuracy when 
tested to different distribution target domain vibration CBM datasets obtained from different machines and oper-
ating conditions. We studied the performance of the model using a scalogram (time-frequency representation of 

Figure 4.  Classification accuracy of TL-CNNs (trained on CWRU, followed by re-training and testing on IMS) 
for the various number of training samples from the target domain used for retraining the convolutional layers.

Table 4.  Comparison of the proposed work with other parameter-based transfer learning methods used for 
domain generalisation for efficient machine fault diagnosis.

References Method Input features Dataset Application scenarios Performance remarks

He et al.39 Improved deep transfer 
autoencoder Raw time-series vibration data Gearbox fault dataset

Same source and target domain 
datasets but with varying 
operating condition

90% accuracy when target 
domain has significant changes 
in operating conditions

Lu et al.40 AlexNet Spectrograms Bearing dataset (CWRU)
Source domain: non-manu-
facturing data (ImageNet), 
target domain: manufacturing 
(bearing data)

99.7% accuracy when target 
domain has significant changes 
in operating conditions

Wang et al.41 VGG19 Scalograms Bearing dataset (CWRU)
Source domain: non-manu-
facturing data (ImageNet), 
target domain: manufacturing 
(bearing data)

93% accuracy when target 
domain comprises different 
fault types and severities

Li et al.42 CNN Raw time-series vibration data Bearing dataset (CWRU), 
gearbox fault dataset

Source and target domain 
datasets with variour operating 
conditions and distinct fault 
components

> 90 % accuracy when all 
CNN layers are fine-tuned 
with target domain data (lower 
accuracy when only last layer 
is fine-tuned)

Chen et al.43 CNN Raw time-series vibration data
Bearing dataset (CWRU), 
gearbox fault dataset, and lab 
generated bearing data

Source and target domain 
datasets across different 
machines and varying operat-
ing conditions

99% accuracy with all training 
samples (accuracy number 
drops with reduced number of 
training samples)

This work Light-weight CNN Scalograms
Bearing dataset (CWRU), run-
to-failure bearing data (IMS), 
lab generated data with low 
precision sensor (LPS)

Source and target domain 
datasets across different 
machines and sensors of differ-
ent precision

98% accuracy for high preci-
sion, unlabelled sensor data 
in target domain and 96.6% 
accuracy with labelled, low 
precision sensor data in target 
domain, > 95 % accuracy even 
with halving number of sam-
ples used for retraining
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vibration signal) as input due to its flexible time-frequency resolution, which offers superior classification results. 
Besides, the TL-CNNs for scalogram presented in this work utilize only 1320 trainable parameters and are thus 
suitable candidates for edge-implementation and re-training of these models for autonomous inference at the 
sensor node e.g. Raspberry Pi single board computer. Additionally, we have demonstrated that deep TL-CNNs 
can be helpful to improve the accuracy of fault classification for unlabelled datasets with few samples available 
for training. In future work, we aim to explore methods for data fusion from multiple source domains to enable 
learning of diverse operating conditions to improve domain generalisation further and mitigate negative transfer, 
a common drawback of TL models, wherein the performance of the model on older data is compromised when 
retrained on newer data that may have different distribution due to concept  drift44. The proposed technique 
of transfer learning allows attaining efficient generalisation capability for distinctly distributed target domain 
datasets with a lesser number of trainable parameters and even with a lesser number of training samples albeit 
the training on the source domain should include the fault class of the target domain dataset for effective super-
vised fault classification. While the time-frequency representations explored in this work yield high classification 
accuracy with self-learned features, they require computing resources for inference, that may be beyond the 
reach of low-cost edge devices such as microcontrollers. We shall also explore feature engineering strategies to 
capture the variance in such diverse data sets for developing edge-based compact  models45, which could truly 
make a huge impact on vibration CBM. Along with that, we also aim to study and incorporate explainability 
into such machine learning models, for providing automated and actionable feedback with limited intervention 
from domain experts.

Data availability
The CWRU and IMS datasets analysed in the current study are available at https:// engin eering. case. edu/ beari 
ngdat acent er and https:// www. nasa. gov/ conte nt/ progn ostics- center- of- excel lence- data- set- repos itory, respec-
tively. The LPS dataset analysed in the current study is available from the corresponding author upon reasonable 
request.
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