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Single‑trajectory map equation
Tatsuro Kawamoto 

Community detection, the process of identifying module structures in complex systems represented 
on networks, is an effective tool in various fields of science. The map equation, which is an 
information‑theoretic framework based on the random walk on a network, is a particularly popular 
community detection method. Despite its outstanding performance in many applications, the inner 
workings of the map equation have not been thoroughly studied. Herein, we revisit the original 
formulation of the map equation and address the existence of its “raw form,” which we refer to as 
the single‑trajectory map equation. This raw form sheds light on many details behind the principle of 
the map equation that are hidden in the steady‑state limit of the random walk. Most importantly, the 
single‑trajectory map equation provides a more balanced community structure, naturally reducing the 
tendency of the overfitting phenomenon in the map equation.

Community detection plays a vital role in various disciplines of science dealing with network data. It is an 
unsupervised learning task to classify the node set in a network into groups, or modules. Each subgraph that 
is identified as a module has no significant internal structure, while we expect each module to be structurally 
distinct. Thus, community detection provides a concise explanation of the dataset by ignoring detailed structures 
as noises within a module while preserving a significant macroscopic organisation as a module  structure1–4. 
Analogous to other machine-learning tasks, because it is often not apparent which parts of the dataset represent 
noise, community detection algorithms suffer from overfitting and underfitting  problems5.

The map  equation6 is a popular community detection method for networks and is formulated as a minimiza-
tion problem of an information-theoretic objective function describing the average code length of the random 
walk.  Infomap7—an implementation for a greedy optimisation of the map equation—has often been used to 
analyze real-world datasets. Furthermore, there are several extensions of the map equation  itself8–19, mainly 
focusing on incorporating higher-order network information. However, the map equation is prone to overfit-
ting, particularly for sparse networks. Despite the map equation providing an optimal module structure for the 
description of the random walk on a network, an excessively fine module structure may be obtained. For example, 
as illustrated in Fig. 1 (left), many small modules are often identified in addition to a few large modules. When 
too many modules consisting of only a few nodes are identified, we have difficulty interpreting it as a concise 
explanation of the dataset.

This study revisits the map equation and considers its raw form, which we refer to as the single-trajectory map 
equation. Its objective function is the average code length of (not necessarily random) walkers with finite path 
lengths. The concept of the single-trajectory map equation already appears in the original  paper6 for a schematic 
description of the map equation. Nevertheless, this raw form has never been actively studied or utilised although 
it is a valuable variant with a mechanism to prune small modules and prevent the map equation from overfitting 
(as depicted in Fig. 1 (right)).

The emergence of small or highly unbalanced modules has been discussed in various contexts in the com-
munity detection literature. It is often considered to be the nature of real-world  datasets20–22, or a phenomenon 
that occurs because of the implementation details of an  algorithm21,23. In the context of the inference problem, the 
emergence of small modules is interpreted as artefacts caused by overfitting. Optimization-based (or maximum 
likelihood-based) methods are typically prone to overfitting, whereas methods based on Bayesian formulations 
avoid partitioning a network or subgraph where there is no statistically significant internal  structure24,25, that is, 
they avoid generating small modules. The map equation also has a Bayesian  counterpart16,19. Regardless of the 
underlying mechanism, the pruning of small modules is sometimes preferred in practice because it provides a 
more concise explanation of the network. A similar issue can be found in the regression problem in supervised 
 learning26. Although the ridge regression is a principled method, many variables with extremely small coefficients 
are often assessed as significant. In contrast, the lasso regression prunes such variables and provides a concise 
description of the dataset.

The single-trajectory map equation is a variant of the map equation that achieves a partition of coarser-
resolution scale. Our approach differs from that of the hierarchical map  equation8 that achieves finer-resolution 
 partitions27. Although a high-resolution community detection method is useful when the network consists 
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of several small modules, a method with a coarser resolution is also needed when an algorithm suffers from 
overfitting. For bipartite  networks17, showed that a coarser resolution can be obtained by incorporating the 
bipartiteness property. A different resolution scale can also be obtained by introducing the “Markov time”12,28, 
which is an external parameter of the random walk. However, as shown in the following, the framework of the 
map equation can intrinsically prune small modules when formulated as the single-trajectory map equation and 
the balanced-size modules can be identified in a principled manner.

Results
Revisiting the map equation. We proceed with the step-by-step formulation of the map equation. A 
prominent characteristic of the map equation is the hierarchical encoding scheme for the random walk using 
multiple codebooks that takes account of module structure in a network. As a specific example, let us con-
sider the encoding of a trajectory in a network as shown in Fig. 2a. We let ζ = {ζ0, . . . , ζT−1} be a trajectory 
of a walker, where ζt ∈ V  is the tth visited node. We also consider a partition σ = {σ1, . . . , σN } of node set V 
( |V | = N ), where σi ∈ {1, . . . ,K} is the module label of node i ∈ V  . K is the number of modules. A trajectory of 
a walker is encoded using two types of codebooks: inter-module and intra-module codebooks. The inter-module 
codebook describes the transitions of a walker moving into another module. In contrast, each intra-module 
codebook describes the walker transiting between nodes within the module or exiting the module.

Figure 1.  Community detection based on the map equation and the single-trajectory map equation applied to 
a synthetic network. The nodes in the same colour belong to the same module. See “Experiments” section for 
details.

Figure 2.  Trajectories (yellow solid lines) on a network and their encoding for a given node partition. Nodes in 
the same module have the same symbol and colour representations. The codewords in each codebook are listed 
on the right. Whereas there is only one trajectory in (a), another trajectory is added in (b). The average code 
length of each trajectory is shown at the bottom.
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The actual codewords for a trajectory based on the Huffman  coding29,30 are shown in Fig. 2a. Starting with 
the code “10” for the module that the walker has first visited, the trajectory is described by indicating the visited 
nodes. Every time the walker moves to a different module, the exiting code of the previous module and the 
entering code of the next module are consumed.

In general, given a trajectory ζ of length T and module assignments σ , the average code length L (ζ , σ ) is 
expressed as

Here, we denote ℓ0(i, σ) as the length of the code in an intra-module codebook, indicating that a walker visits 
node i ∈ V in module σ ; ℓ0(�, σ) as the length of the code in an intra-module codebook, indicating that a walker 
exits module σ ; and ℓ1(σ ) as the length of the code in an inter-module codebook, indicating that a walker enters 
module σ . In Eq. (1), the first summation represents the code length for visited nodes and the second summation 
represents the code length for transitions between modules. The last term is the code length for the module at the 
starting point, with a negligible contribution when T ≫ 1 . It is important that the codebooks are coupled; that 
is, because an exiting code from a module belongs to an intra-module codebook, transitions between modules 
affect the encoding of transitions within each module.

The principle of the map equation framework is that the compression of the average code length through 
the hierarchical coding reveals a module structure as an optimal partition σ . Readers might believe that the 
introduction of codewords for transitions between modules simply makes the code length longer. However, 
such a hierarchical encoding scheme can compress the average code length because it allows us to assign shorter 
codewords for visited nodes; for example, although the code “0” is assigned to two different nodes in Fig. 2a, 
they are distinguishable because they belong to different modules. Therefore, when a trajectory rarely consumes 
the codewords for transitions between modules, the average code length can be compressed more efficiently.

Equation (1) can also be expressed using visiting frequencies as follows:

where 
∑

i∈σ represents the sum over the node set in module σ . p̂i is the visiting frequency of node i ∈ V  and p̂σ ′σ 
is the joint transition frequency from module σ to module σ ′ , i.e.,

where δab represents the Kronecker delta. Hσ
0  and H1 are conditional average code lengths within the intra- and 

inter-module codebooks, respectively.
Recall that the random walk is a stochastic variable; there is no such thing as a single (finite-length) trajectory 

representing the random walk. Therefore, instead of a specific trajectory, we consider the expected average code 
length EZ

[

L (Z, σ )
]

 in the map equation, where Z is the stochastic variable representing the random walk; in 
other words, EZ [· · · ] is the ensemble average over all possible trajectories (say, from all possible starting points). 
We assume that the trajectory length T is sufficiently large that the random walk is in a steady state. When the 
network is strongly connected, the empirical frequencies are converted to the corresponding steady-state prob-
abilities. 

∑

σ p̂σ ′σ is converted to the entering probability into module σ ′ denoted by qσ ′
� ; 

∑

σ ′ p̂σ ′σ to the exit-
ing probability from module σ denoted by qσ� ; and p̂i to the visiting probability of node i denoted by qi . The 
conditional average code lengths Hσ

0  and H1 are also converted to the expectations. According to Shannon’s 
source coding  theorem30,31, these expectations are respectively bounded by the Shannon entropies,
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where q� =
∑K

σ=1 qσ� , pσ� = qσ� +
∑

i∈σ qi , and log is the logarithm with base 2. Then, the expected average 
code length of the random walk is bounded from below as follows:

Note here that the contribution from the starting points of the random walk is excluded. This lower bound 
asymptotically coincides with the expected average code length itself as T → ∞ . This is the objective function 
of the map equation and the node partition σ is optimised so that L(σ ) is minimised.

The assumption that the network is strongly connected plays a vital role in the aforementioned derivation. If 
this is not the case, the trajectory length T cannot be sufficiently large. Then, the contribution from the starting 
points of the random walk may not be negligible in EZ

[

L (Z, σ )
]

 . Therefore, we can say that the map equation 
evaluates the code length of the “flow.” It is a stochastic variable representing the ensemble of transitions, and it 
has no information about the starting points of the random walk by definition (as discussed below, this distinc-
tion becomes more prominent when we consider the - -flow-model rawdir option in Infomap). The only 
input for the map equation is a network because the connectivity of nodes fully characterises the flow. By the 
introduction of so-called  teleportation32 to the random walk that moves the walker to another node randomly 
with a certain probability, we can always let the trajectory length T be infinitely large and make the flow  ergodic6. 
Therefore, the map equation is not essentially limited to strongly-connected networks.

Single‑trajectory map equation. The average code length L (ζ , σ ) of a trajectory is the raw form of the 
objective function in the map equation. When we have multiple trajectories {ζ a} := {ζ 1, . . . , ζM} on a common 
node set, analogous to the expected average code length EZ

[

L (Z, σ )
]

 , we consider the following mean average 
code length:

Each trajectory may have different lengths. Similar to the L(σ ) , this mean average code length can be used as 
a minimization function to determine the optimal module assignments of nodes. We refer to such an optimisa-
tion method as the single-trajectory map equation. Note that the trajectories {ζ a} are provided as inputs in Eq. 
(9); unlike the map equation, there is no need to assume that they are generated (or simulated) from random 
walks, although one can consider simulated walks as trajectories.

The average code lengths in the summation of Eq. (9) are not independent because they share codebooks. 
To illustrate this, let us consider two trajectories as shown in Fig. 2b. Although the trajectory ζ 1 is identical to ζ 
in Fig. 2a, the codes describing them are different because we must assign codewords for the nodes that ζ 1 does 
not go through due to the existence of trajectory ζ 2 . In contrast, the nodes where no trajectories go through do 
not contribute to the average code lengths, reflecting the fact that the trajectories of finite lengths are considered. 
Those nodes should not have any module labels because there is no information based on the trajectories.

As we have seen, L(σ ) and L
(

σ ; {ζ a}
)

 are conceptually different. In the map equation, L(σ ) is the expected 
average code length for the flow that is completely specified by the transition probabilities. We can also modify the 
transitions using teleportation to make the random walk ergodic. By contrast, L

(

σ ; {ζ a}
)

 does not have such a 
stochasticity. It is the mean of the actual average code lengths, where each element corresponds to a single trajec-
tory. Furthermore, L

(

σ ; {ζ a}
)

 depends explicitly on the coding scheme applied, e.g., the Huffman coding, Shan-
non–Fano  coding30, etc. Quantitatively, the contribution from the last term in Eq. (1) mainly makes the minimiza-
tion of L

(

σ ; {ζ a}
)

 distinct from that of L(σ ) . The codeword for the module that is required to specify the starting 
point of a trajectory makes the coding using multiple codebooks less efficient. Recall that an efficient compression 
is achieved when the inter-module codebook is not frequently used. This implies that the introduction of module 
labels is more costly in L

(

σ ; {ζ a}
)

 and the single-trajectory map equation avoids generating many small modules.
The single-trajectory map equation searches for the node partition σ that achieves the optimal compression 

for the description of trajectories under a certain coding scheme. The optimality of the coding scheme itself is 
not required for the effectiveness of the method. Therefore, we can use different types of coding for the intra-
module and inter-module codebooks. For example, we can introduce a heterogeneous coding where the code 
lengths are multiplied by a constant factor � > 0 for the codewords in the inter-module codebook. That is, given 
a trajectory ζ and a partition σ , Eq. (1) is modified to

Here, � is a hyperparameter that penalises the emergence of modules when such modules are relatively inef-
ficient for the compression of the code length.
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p̂σ ′σ as the true probabilities for the stochastic variables indicating the codewords and the concatenated code 
as the expected code length. Then, the conditional average code lengths in Eq. (3) are bounded from below by 
the Shannon  entropies30 with the empirical frequencies. Therefore, the average code length of the concatenated 
code is bounded as follows:

where

We regard L
(

σ ; {ζ a}
)

 as an alternative objective function for the single-trajectory map equation. L
(

σ ; {ζ a}
)

 
is independent of the coding scheme and its minimization is computationally more efficient than that of 
L

(
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)

 because we do not need to construct the codebooks explicitly. Note that q̂σ� and q̂σ� may not 
coincide in Eq. (12), whereas qσ� = qσ� for any module in L(σ ) owing to the detailed balance condition of 
the random walk in the steady state. Analogous to L�(ζ , σ ) in Eq. (10), we can also consider a heterogeneous 
coding in L
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 , i.e.,

Interestingly, the method using L
(
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 is also related to a variant of the map equation that is imple-
mented in Infomap as an option named - -flow-model rawdir. In this variant of the map equation, we 
consider the flow based on the set of transition probabilities induced by the edges (i.e., not the random walk on 
the network). The corresponding objective function is in fact equivalent to L
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)

 where we ignore the 
codewords for the initial module and the initial node in each trajectory (consequently, the total length of tra-
jectories 
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Supplementary Table 1 (Section S1).
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Figure 3.  Average code lengths for a trajectory on a path (illustrated at the top) obtained by minimising 
L (σ ; ζ ) (“Huffman”: Huffman coding, “Shannon–Fano”: Shannon–Fano coding) and L (σ ; ζ ) (“lower 
bound”). The expected average code length L(σ ) (“map equation”) based on the set of transition probabilities 
induced by the edges, i.e., the - -flow-model rawdir option, is also shown. The number of detected 
modules in each method is indicated at the top of each bar.
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the results obtained through the exact minimization of the objective functions. It quantifies how the average 
code lengths approach a common value as N increases, because the contribution from the starting point of the 
trajectory becomes negligible. L (σ ; ζ ) and L (σ ; ζ ) quickly approach to each other, whereas L(σ ) converges 
relatively slowly, implying that the contribution from the codeword of the initial module can be considerable. We 
also confirmed that the single-trajectory map equation indeed tends to identify a smaller number of modules, 
and the resulting partitions can vary depending on the coding scheme applied.

The exact minimization of the (expected) average code length is not computationally feasible unless a dataset 
is extremely small, and thus, we must rely on approximate heuristics in practice. The greedy heuristic imple-
mented in Infomap is commonly used for the map equation. Therefore, we implemented the optimisation for 
the single-trajectory map equation as a wrapper of Infomap. That is, we first run Infomap as the initial state of 
the node partition, and then, reduce overfitting by pruning small modules based on L (σ ; {ζ a}) or L (σ ; ζ ) 
as a fine-tuning process; our fine-tuning algorithm is also a greedy heuristic. In the following, we refer to this 
algorithm as Infomap+, and the implementation code is publicly  available33. Further details of the algorithm are 
described in Methods section.

Experiments. This section demonstrates that the single-trajectory map equation prevents overfitting using 
datasets represented as networks and a real-world dataset as a set of trajectories. A network is a special case of 
trajectory datasets because each directed edge can be regarded as a trajectory with length T = 2 . We treat each 
edge as a pair of directed edges in both directions for an undirected network. All networks considered are weakly 
connected.

For the network datasets, we can also consider simulated walks on the underlying network as the input tra-
jectories. In this setting, we would need to specify the type of simulated walks and choose the values of T and 
M as hyperparameters. Herein, however, we do not consider the simulated walks and treat the edges set directly 
as the set of trajectories.

Network datasets. We first consider synthetic networks that are generated by the stochastic block model 
(SBM)25,37–39, which is a random graph model having a planted (pre-assigned) module structure. This is a canon-
ical model that is used for analyses in community detection. We particularly consider the so-called symmetric 
SBM that has two equally-sized planted modules. Each pair of nodes in the same planted module is connected 
with probability pin and each pair of nodes in different planted modules is connected with probability pout . The 
symmetric SBM is commonly parameterized by the average degree c and the fuzziness of module structure 
ǫ = pout/pin instead of pin and pout . The detection of planted modules is easier when ǫ is small because the mod-
ule structure is clearer. Even when ǫ < 1 , there exists a critical value of ǫ above which it becomes impossible to 
identify the planted module structure better than by chance; this is known as the detectability  limit24,34–36,39,40 (in 
N → ∞ ). For these networks, the single-trajectory map equation cannot be the best method, as the Bayesian 
inference methods based on the SBM can avoid overfitting at all.

Figure 4 shows the results of community detection based on the map equation and the single-trajectory map 
equation applied to the SBM. Each point represents the relative module size, which is defined as 

∑N
i=1 δσi ,σ /N 

for module σ . The results based on modularity maximization (the  Louvain41 and  Leiden42 algorithms) are also 
shown for comparison. The - -two-level option in Infomap indicates that it is the method introduced in 
the original paper for the map equation.

The Infomap (incorrectly) identifies several small modules even when the module structure is relatively 
clear, whereas Infomap+ prunes such small modules and identifies the equally-sized modules. The network 
plots in Fig. 1 are the results of the same experiment but with the SBM parameters N = 300 , c = 8 , and ǫ = 0.1 . 
Although the modularity-based algorithms also identify small modules, Infomap is more prone to overfitting 
in the region where ǫ is small. This phenomenon can be described by the map equation having a finer resolu-
tion  limit27 compared with that of the  modularity43, i.e., the map equation can identify smaller modules. Note, 
however, that the analysis of the resolution limit is based on an extreme-case example that has a well-defined 
module structure; it does not describe the whole behaviour in Fig. 4. In the region of ǫ above the detectability 
limit ( ǫ ≈ 0.1540), the modularity-based algorithms subdivide the planted modules into a number of smaller-
sized modules. This is problematic because a practitioner can hardly realise when the resulting partition is due 
to overfitting. In contrast, most of the map equation-based algorithms do not partition a network in that region, 
implying that they avoid overfitting.

Although we showed the relative module sizes obtained by the algorithms, readers might wonder whether 
the identified modules are actually consistent with the planted ones. In Supplementary Fig. 1 (Section S2), we 
confirmed that the inferred and planted module structures are indeed highly consistent when the number of 
modules is correctly estimated. Note also that community detection algorithms generally suffer from overfitting 
and underfitting more severely when the average degree c is smaller. Therefore, all the methods considered here 
are expected to perform less accurately when c is extremely small.

The experiments here can be conducted for larger networks. In that case, however, some of the plots in Fig. 4 
would be unnecessarily difficult to read because we would have many more points due to ovefitting. Moreover, 
the comparison with the previously known result on the detectability limit may be difficult for larger networks, 
because it is observed  in40 that algorithmic detectability limits of greedy algorithms can be size-dependent.

We then apply the algorithms for the single-trajectory map equation to real-world networks. Figure 5 shows 
the relative module sizes obtained using Infomap and Infomap+. It shows that small modules are pruned, yet 
larger modules remain identified in most of the cases with Infomap+. Although all variants of Infomap+ often 
provide similar partitions, empirically, the Huffman coding method finds a good balance of module sizes in 
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real-world networks. The datasets considered here are often analyzed in the literature on community detection. 
For example, readers can compare the results here with those of Bayesian inference methods reported  in5,44–47.

In Fig. 5, the value of the hyperparameter � , which acts as a resolution parameter, is adjusted for each net-
work so that the size of the smallest module is not less than min{3,N/100} (this adjustment can be performed 
automatically). The selected values of � and the details of experimental settings and datasets are provided in 
Supplementary Table 2 (Section S3). We also examined the �-dependency in Fig. 6, and we found that the 
number of modules varies within 1 ≤ � < 2 in many datasets; in the Method section, we show that � = 2 is a 
practical upper bound according to the resolution limit. Note that the threshold min{3,N/100} is only a refer-
ence to determine a reasonable value of � ; when Infomap+ excessively prunes modules, one can directly tune � 
to resolve the underfitting problem.

Bike-sharing dataset: application to a set of trajectories. Finally, we compare the methods using a dataset of 
a bike-sharing service in  London48,49, which is a dataset consisting of trajectories (sequences of bike stations 
visited) that individual bikes have travelled in a day (see Supplementary Information (Section S4) for the details 
of the dataset); thus, Ta is the number of stations that bike a has visited. Figure 7a illustrates trajectories of three 
bikes in the dataset. Community detection of the trajectories identifies the area within which a bike is often used. 
Figure 7b shows the partition obtained by minimising L(σ ) using Infomap; here, we constructed a network by 
decomposing each trajectory into a set of edges between successive pairs of stations. As a result, we obtained 
eight modules; in addition to four large modules, several modules consisting of only a few stations are also 
identified. In Fig. 7c which shows the partitions obtained by minimising L (σ ; {ζ a}) , we no longer observe the 
small modules. Although Fig. 7c is of the Huffman coding method ( � = 1 ), we obtain the same partition with the 
Shannon–Fano coding method ( � = 1 ) and with the method minimising L (σ ; {ζ a}) ( � = 1.8).

(Shannon-Fano)

(Huffman)

Figure 4.  Performance of modularity maximization methods (the Louvain and Leiden algorithms), 
Infomap (- -two-level), and algorithms for the single-trajectory map equation based on L (σ ; {ζ a}) 
and L

(

σ ; {ζ a}
)

 (“Infomap+”) on the symmetric SBM ( N = 1, 000 , c = 12 ). We generated five instances of 
the SBM for various fuzziness of the module structure ǫ and plotted the distribution of the resulting relative 
module sizes. Herein, we set � = 1 . The performances of all algorithms change around the algorithmic 
detectability limit ǫ ≈ 0.15 , which is distinct from the information-theoretic detectability limit located at 
ǫ = (

√
c − 1)/(

√
c + 1) ≃ 0.5534–36.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6597  | https://doi.org/10.1038/s41598-023-33880-y

www.nature.com/scientificreports/

Figure 5.  Relative module sizes obtained by Infomap and Infomap+ for real-world networks. The number of 
identified modules is depicted at the top of each result. The dashed line represents 0.01.

Figure 6.  Number of modules identified for each value of the hyperparameter � in Infomap+.
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Discussion
This study revisited the formulation of the map equation and shed light on many details hidden in its principle. 
We addressed the fact that the encoding of trajectories is qualitatively distinct from the encoding of the flow on 
a network and proposed the single-trajectory map equation. Importantly, the proposed method can prune small 
modules and prevent overfitting.

The single-trajectory map equation provides a more balanced community structure compared with the map 
equation. Whereas balanced partitions may not always be desirable, it is often beneficial because we can prune 
spurious modules due to overfitting as demonstrated in Fig. 1. Furthermore, the analysis in the Method section 
implies that the single-trajectory map equation is not prone to underfitting compared with the map equation 
because their resolution limits are almost the same when � = 1.

Readers might wonder if the present approach is distinct from other variants of the map equation, such as 
the one with the Markov-time  parameter12,28 and the Bayesian formulation of the map  equation16,19 which is 
an improved teleportation  method50. To clarify this point, we also conducted experiments analogous to those 
described in Experiments section using these methods in Supplementary Information (Section S5). In some cases, 
these methods also exhibit similar partitions as in Figs. 4 and 5. However, they are apparently not particularly 
suitable for pruning small modules because these methods are more sensitive/insensitive to the choices of the 
hyperparameters that we need to search for the optimal values in a finer scale/wider range, while balanced par-
titions are often obtained without tuning the hyperparameter � in the single-trajectory map equation. We also 
emphasise that the single-trajectory map equation is not a generalisation of the map equation, but its raw form, 
and overfitting is avoided using the principle of the map equation itself.

The bootstrapping  method51 is another approach for avoiding overfitting. However, this approach is com-
putationally  expensive19 and a comparison with the present approach is not very clear because the output is a 
population of partitions. A more detailed study of the qualitative and quantitative relationships between the 
single-trajectory map equation and other variants of the map equation is left for future work. Furthermore, 
because the single-trajectory map equation is a trajectory-based approach, the relationship between the memory-
network  extension10,13 of the map equation is another potential research direction because both take a set of 
trajectories as the input.

The time complexity of the optimisation algorithm is a major issue in the single-trajectory map equation. 
Whereas the lower bound L

(

σ ; {ζ a}
)

 can be optimised as efficiently as Infomap, explicit construction of the 
codebooks is required for the actual average code length L

(

σ ; {ζ a}
)

 . Although our implementations of Info-
map+ run within a reasonable amount of time for fairly large datasets as demonstrated in Supplementary Infor-
mation Fig. 6, an improved implementation is also left for future work.

Methods
Optimisation algorithm. Herein, we explain the implementation details of the greedy heuristic. A typi-
cal greedy heuristic for community detection, including Infomap, iteratively merges two or more modules that 
improve the value of an objective  function41,42,52 and equally-sized modules are often preferentially  merged23. 
Such an update rule does not effectively compress the average code length at the stage of fine-tuning. This is not 
surprising because the initial partition is located at a local or global minimum of the objective function in the 
map equation, which may also be a local minimum in the single-trajectory map equation. Moreover, there is no 
reason that equally-sized modules should be preferentially merged. Although we typically have a few large and 
many small modules as the initial partition, it is unlikely that merging those small modules provides better com-
pression of the average code length. Therefore, instead, we iteratively merge the smallest module and its most 
tightly-connected module regardless of the resulting value of the average code length until only one module is 
left; among the partitions that form with this merging process, we accept the partition that achieves the mini-
mum average code length. Given an initial partition, this algorithm is deterministic. Although this algorithm 

Belgrove Street,
King’s Cross

Triangle Car Park,
Hyde Park

Vicarage Gate,
Kensington Hyde Park Corner,

Hyde Park

Tavistock Street,
Covent Garden Strand,

Strand

Waterloo Station 3,
Waterloo

Jewry Street,
Aldgate

(a) (b)

(c)

(Huffman coding)

Figure 7.  Community detection of the bike-sharing dataset. (a) Three trajectories in the dataset, where each 
point (node) represents the location of a bike station. The partitions of the stations are obtained by minimising 
(b) L(σ ) (detected 8 modules) and (c) L (σ ; {ζ a}) based on the Huffman coding (detected 4 modules). The 
stations in the same module are indicated in the same colour.
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is straightforward and the resulting partition may not be the global optimum, an improved compression of the 
average code length can be achieved by pruning small modules without being trapped into the local minima of 
the objective function.

When we use the lower bound L
�

(

σ ; {ζ a}
)

 as the objective function, the greedy update can be performed 
as done in Infomap. The expanded form of L

�

(

σ ; {ζ a}
)

 is

The last term in Eq. (14) is independent of partition. Therefore, when we merge two modules, we only need 
to keep track of changes in q̂σ� , q̂σ� , and p̂σ� , which are defined in Eq. (12). In these quantities, 

∑M
a=1 δσ ′ ,σζa0

 is 
the population of the starting-point nodes in module σ , 

∑

σ q̂σ ′σ and 
∑

σ ′ q̂σ ′σ are the sums of the populations 
of the transitions across modules in the set of trajectories, and 

∑

i∈σ q̂i is the sum of the node-visiting frequen-
cies in module σ . They are O(K) quantities, such that we can efficiently compute the change in L

�

(

σ ; {ζ a}
)

 
when two modules are merged.

When we use the actual average code length L
�

(

σ ; {ζ a}
)

 as the objective function, the greedy update can-
not be computed as efficiently as for L

�

(

σ ; {ζ a}
)

 . When two modules are merged, we need to reconstruct the 
intra-module codebook of the target module as well as the inter-module codebook to compute the updated 
code length. The time complexity of constructing a codebook depends on the specific coding scheme applied. 
In Supplementary Fig. 6, we show the running times of Infomap and Infomap+ on the SBM; herein, we used 
the Infomap  API53 (a C++-based implementation with a Python wrapper) for Infomap and our Python-based 
 implementation33 for Infomap+.

Resolution limit. Readers might consider that the pruning effect implies that the proposed method is prone 
to underfitting. To examine this issue, we derive the resolution limit of the single-trajectory map equation focus-
ing on L

�

(

σ ; {ζ a}
)

 and network datasets. The resolution limit is the smallest module size that the method can 
identify given a network size such as the total number of edges.

The following analysis shows that, although the method has a relatively coarser-resolution scale compared 
with the standard or hierarchical map equation, it is still a high-resolution method. The analysis also provides 
a theoretical explanation of some of the empirical results we obtained through the experiments in Experiments 
section and an implication to the range that the hyperparameter � should take.

General form. We closely follow the derivation  in27, which is applied to undirected networks. The present 
resolution limit is for directed networks and the considered objective function is L

�

(

σ ; {ζ a}
)

 instead of L(σ ).
We first rewrite the empirical frequencies of the walkers and the objective function in the single-trajectory 

map equation in terms of network statistics. When the input trajectories are the edges in a directed network (i.e., 
the number of trajectories M is the number of directed edges), we have

where ℓσ is the number of directed edges within module σ ; ℓinσ  and ℓoutσ  are the numbers of in-coming and out-
going edges of module σ , respectively; dini  and douti  are the in- and out-degrees of node i; and C is the cut size 
of the network, i.e., the total number of directed edges that are crossing different modules. Using Eq. (15), the 
objective function is recast as

where

In the resolution-limit analysis, we consider two well-defined modules and derive the condition under which 
their merging is favoured (i.e., the modules are not resolved) for better optimisation of the objective function. 
Thus, we evaluate the condition such that the difference in the objective function �L

σ

�
 becomes negative when 

two modules are merged. We denote the labels of two well-defined modules as A and B and the merged module 
as AB. We also denote the change in 

∑

σ L
σ

�
 through the update as R, i.e.,

(14)

L
�

(

σ ; {ζ a}
)

= �q̂
�

log q̂
�

− �

∑

σ

q̂σ� log q̂σ� +
∑

σ

p̂
σ
� log p̂

σ
� −

∑

σ

q̂σ� log q̂σ� −

N
∑

i=1

q̂i log q̂i .

(15)
q̂σ� =

ℓoutσ

2M
, q̂σ� =

ℓσ + ℓoutσ

2M
+

ℓinσ

2M
, q̂

�
=

M + C

2M
,

p̂
σ
� =

ℓoutσ

2M
+

2ℓσ + ℓoutσ + ℓinσ

2M
, q̂i =

dini + douti

2M
,

(16)

L
�

(

σ ; {ζ a}
)

=
1

2M

(

�(M + C) log(M + C)+ C +
∑

σ

L
σ

�
+ 2M

−

N
∑

i=1

(

dini + douti

)

log
(

dini + douti

)

)

,

(17)
L

σ

�
= −�

(

ℓσ + ℓoutσ + ℓinσ
)

log
(

ℓσ + ℓoutσ + ℓinσ
)

+ 2

(

ℓσ + ℓoutσ +
1

2
ℓinσ

)

log

(

ℓσ + ℓoutσ +
1

2
ℓinσ

)

− ℓoutσ log ℓoutσ .
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Here, R is a local quantity that depends only on the variables within/around modules A and B. When two 
well-defined modules are merged, the cut size is decreased by a small δ ( δ ≪ M + C ). The difference in the 
objective function based on the update is

where e is the basis of the natural logarithm. Therefore, the resolution limit is generally expressed as

In the map equation, the cut size C is the only global term that is responsible for the resolution limit (see equa-
tion (11)  in27). By contrast, the single-trajectory map equation has the total number of directed edges M as 
another global term in Eq. (20). Note, however, that the contribution from M is logarithmic, implying that the 
single-trajectory map equation is still a high-resolution method. Next, we will derive a more explicit scaling.

Ring of cliques. It is common to consider a “ring of cliques” in a resolution-limit analysis, as illustrated in 
Fig. 8a. We consider m cliques (each of which consists of n nodes) and connect each with a single edge to form 
a ring. This is an undirected network. Again, we treat each undirected edge as a pair of directed edges in both 
directions. We regard each clique as a module, and using this example, derive the resolution limit in a more 
explicit form.

When we merge two of these cliques, the cut size is decreased by 2. We denote ℓσ = n(n− 1) = ℓ for an 
arbitrary module. Assuming that ℓ ≫ 1 , we have

Substituting Eq. (21) into Eq. (20), we obtain

Each clique is resolved as a module unless (M + C)� is larger than the left-hand side of Eq. (22), which is an 
exponentially growing function with respect to the clique size ℓ.

Figure 8b depicts the resolution limits of the single-trajectory map equation, together with those of the map 
 equation27 and  modularity43. Although n and m are integers, we treat them as real numbers to highlight the 
scaling of each resolution limit. The resolution limit with � = 1 is extremely close to that of the map equation. 
Therefore, the single-trajectory map equation is not prone to underfitting compared with the map equation.

When � is large, modules with a small n are not resolved for any network size. However, the limit rapidly 
disappears as n becomes larger, whereas the resolution limit of the modularity disappears relatively slowly. This 
dependency of the resolution limit partially explains the favourable behaviour of the single-trajectory map 

(18)R = L
AB

�
−L

A

�
−L

B

�
.

(19)
�L

�

(

σ ; {ζ a}
)

=
1

2M

(

�(M + C − δ) log(M + C − δ)− �(M + C) log(M + C)− δ + R

)

≃
1

2M

(

−δ� log (e(M + C))− δ + R

)

,

(20)R � δ

(

1+ � log (e(M + C))

)

.

(21)R ≃ −2(�− 2)(ℓ+ 3)+ 2(�− 1)
(

log(eℓ)
)

.

(22)ℓ�−12(2−�)(ℓ+3)−1

e
� (M + C)�.

n = 5

m = 8

Clique size 

Rign size 

(a) (b)

Figure 8.  Ring of cliques and its resolution limit. (a) Network plot with n = 5 and m = 8 , and (b) the resolution 
limits of the map equation (light blue line), the single-trajectory map equation with � = (1, 1.25, 1.5) (dark blue 
lines), and the modularity (dashed grey line). Each line represents the phase boundary above which a clique is 
not resolved as a module because the network is too large (e.g., the marked region represents the undetectable 
region in the map equation).
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equation, i.e., small modules are pruned yet large modules continue to be identified. However, as pointed out in 
the main text, the resolution limit does not describe the full behaviour of the single-trajectory map equation; it 
is not � that plays a critical role in the method and � = 1 is often sufficient to avoid overfitting.

In the left-hand side of Eq. (22), the leading coefficient in the exponent becomes negative at � = 2 . In this 
case, a clique will not be resolved as a module for any network size regardless of its size n, i.e., the ability as a 
community detection method will be completely lost. This transition implies that the optimal value of � is usually 
located within 1 ≤ � < 2 , which is indeed consistent with our experimental results in Fig. 6.

Data availability
The karate club, Les Miserables, political books, football, and power grid datasets were downloaded from http:// 
www- perso nal. umich. edu/ ~mejn/ netda ta/. The C-elegans-frontal, email-Eu-core, and wiki-Vote datasets were 
downloaded from http:// konect. cc/ netwo rks/. The political blogs dataset was downloaded from https:// snap. 
stanf ord. edu/ data/. The E. coli transcription dataset was downloaded from https:// www. weizm ann. ac. il/ mcb/ 
UriAl on/e- coli- trans cript ion- netwo rk. The bike-sharing dataset was downloaded from https:// github. com/ konst 
antin klemm er/ bikec ommcl ust.

Code availability
The codes for the single-trajectory map equation are available at https:// github. com/ tatsu ro- kawam oto/ single- 
traje ctory_ map_ equat ion.
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