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Reduced efficiency 
of pelagic–benthic coupling 
in the Arctic deep sea during lower 
ice cover
Irina Zhulay 1*, Katrin Iken 2, Paul E. Renaud 3,4, Ksenia Kosobokova 5 & Bodil A. Bluhm 1

Pelagic–benthic coupling describes the connection between surface-water production and seafloor 
habitats via energy, nutrient and mass exchange. Massive ice loss and warming in the poorly studied 
Arctic Chukchi Borderland are hypothesized to affect this coupling. The strength of pelagic–benthic 
coupling was compared between 2 years varying in climate settings, 2005 and 2016, based on δ13C 
and δ15N stable isotopes of food-web end-members and pelagic and deep-sea benthic consumers. 
Considerably higher isotopic niche overlap and generally shorter isotopic distance were found 
between pelagic and benthic food web components in 2005 than in 2016, suggesting weaker coupling 
in the latter, low-ice year. δ15N values indicated more refractory food consumed by benthos in 2016 
and fresher food reaching the seafloor in 2005. Higher δ13C values of zooplankton indirectly suggested 
a higher contribution of ice algae in 2005 than 2016. The difference in pelagic–benthic coupling 
between these years is consistent with higher energy retention within the pelagic system, perhaps 
due to strong stratification in the Amerasian Basin in the recent decade. Weaker coupling to the 
benthos can be expected to continue with ice loss in the study area, perhaps reducing benthic biomass 
and remineralization capacity; monitoring of the area is needed to confirm this prediction.

The deep sea is considered the world’s largest sink for biogenic  carbon1. Important insights into the global carbon 
cycle can, therefore, be gained from understanding the processes connecting ocean surface and seafloor through 
dynamics of organic matter, nutrients and energy cycling, i.e. pelagic–benthic coupling, in deep-sea  ecosystems2,3. 
Pelagic–benthic coupling is considered to be tight when organic matter from surface production sinks to the 
seafloor with little reworking in the water column. Conversely, in weakly coupled systems, most of the energy 
is retained in the pelagic realm with low inputs to the benthos. Organic fluxes to the seafloor and strength of 
pelagic–benthic coupling vary in different ocean regions and largely depend on biological and physical processes 
in the water  column4–7. One of the least studied regions in terms of trophic structure and carbon flux is the Arctic 
Ocean Basin with its complex morphological features along the  perimeter8.

The Arctic Basin region is characterized by strong seasonality, with seasonal, and regionally multiyear, ice 
cover and the polar night lasting for up to 6 months, jointly constraining light availability needed for primary 
 production9,10. In addition, nutrient concentrations in the surface water are often low, mostly due to strong 
 stratification11. Therefore, the amount of pelagic primary production in the Arctic Basin is among the lowest 
recorded in the world, with average estimates of 1 to 25 g C  m−2  y−1 12,13. In addition to phytoplankton, sea-ice 
algae can contribute significantly to total primary production in this region. For example, ice algae have been 
previously reported to contribute more than 50% to the total primary production in the Arctic  Basin14, a fraction 
that is much higher than their contribution of 4–30% on seasonally ice-covered Arctic  shelves15,16. Other nutrient 
inputs, such as from advection of terrestrial matter and shelf  production17,18 or from large food  falls19,20, may be 
of local importance but are overall minor contributions for the Arctic Basin as a  whole11.

The combined primary production sources serve directly as food for ice-associated and pelagic fauna. 
Their grazing intensity, in turn, has a strong impact on the amount and composition of organic matter reach-
ing the  seafloor21,22. Specifically, high pelagic grazing efficiency leads to a decrease in sedimentation of fresh 
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phytoplankton, while little grazing facilitates higher sedimentation of intact phytoplankton cells and aggregates 
to the deeper water layers. The particulate organic matter (POM) can settle out in the form of intact cells, phy-
todetritus, fecal pellets, zooplankton carcasses, and marine  snow2,7,8. During the descent, the POM undergoes 
additional biodegradation by bacteria and  heterotrophs1,23. The amount and quality of material reaching the 
seafloor also depend on the water depth, as stronger vertical flux attenuation is expected in deeper areas of the 
Arctic  Ocean24. Indeed, only a very small portion of carbon produced at the surface is estimated to reach the 
bottom of the Arctic deep sea (1–10%)1,25–27. Thus, typically very little and largely reworked organic particles 
reach the benthic fauna in the central Arctic, although export of fresh ice algal production has occasionally 
been  observed28. Therefore, benthic trophic pathways in deeper areas of the Arctic Ocean have generally been 
described as longer than in shallower regions, with up to five trophic levels recorded for benthic species in the 
very few published studies from Arctic and sub-Arctic deep-sea  environments8,29.

The presence or absence of sea ice may alter the strength of pelagic–benthic coupling in the Arctic marine 
ecosystems. Based on work on Arctic shelf systems, pelagic–benthic coupling is traditionally considered tighter 
in areas where sea ice is  present30, although extremely high particle flux to the seafloor has recently also been 
observed during low sea ice cover on the Chukchi Sea  shelf31. Ice algal production is mostly represented by 
large-sized diatoms that contribute significantly to a relatively fast transport of undisturbed organic matter to the 
 seafloor32,33. In areas where open-water conditions dominate, pelagic phytoplankton is often characterized by a 
higher proportion of dinoflagellates than present in the sea ice community that might be retained more efficiently 
in the upper water  column5,33. Similar connections between sea ice presence and stronger pelagic–benthic cou-
pling have been  observed28 or modeled for the Arctic deep  sea34. Knowledge of food webs and pelagic–benthic 
coupling in the Arctic deep sea is, however, very scarce (but  see8,27,35,36) due to logistical challenges related to 
sampling (e.g., remoteness of the area, great depth, ice cover, weather conditions, and the very low density of 
benthic fauna), leading to few observations mostly scattered over different Arctic deep-sea areas with the major-
ity of studies being a snapshot in time.

The Arctic sea ice cover, however, is undergoing significant thinning and decrease in  extent37–39. This decline is 
due to the Arctic currently experiencing strong warming of about four times the global average air  temperature40. 
Thinning of sea ice allows higher light  penetration41,42 and increases in primary production in several areas, 
primarily on shelves, of the Arctic  Ocean43,44. However, small-sized primary producers (e.g., flagellate species) 
are expected to dominate in warmer, fresher, and nutrient-poor  water45,46, like the Beaufort  Gyre47. Smaller phy-
toplankton cells are more resistant to  sinking46,48. In addition, pelagic grazing pressure can increase in response 
to increased primary  production49, as well as due to increased advection of zooplankton with Pacific and Atlantic 
water into the Arctic  Ocean50, leading to higher retention of organic matter in the water column. Thereby, physi-
cal and biological alterations related to climate change can lead to a weakening of pelagic–benthic coupling and 
carbon sequestration in deep-sea sediments, and, therefore, decrease in benthic food supply. However, it has not 
yet been evaluated whether the strength of the coupling in the central Arctic has been modified as a consequence 
of climate change since this is difficult or impossible to determine because few or no baseline data are available 
from former years (but  see36).

In this study, we aim to assess potential changes in pelagic–benthic coupling in the Arctic Chukchi Borderland 
within the Canada Basin, where only few benthic studies on the topic have been conducted  before8,51–53. While 
time series have been established on benthic biomass and food supplies, and coupling have been modeled on the 
adjacent Chukchi Sea  shelf54,55, temporal comparisons in adjacent deep waters are lacking. We here consider 2 
years characterized by different sea-ice settings—2005 and 2016 (Fig. 1), where we had the rare opportunity to 
perform repeat sampling at geographically close locations in the Arctic deep sea. While the Arctic system was 
already under the influence of lowered sea ice cover from climate change in 2005, signs of warming were much 
more pronounced by  201638 (Fig. 2). Average sea-ice extent for September was ~ 6.9 million  km2 until 2005, 
while it never exceeded 5.2 million  km2 in the following years, including in 2016 when the September sea-ice 
extent was 4.1 million  km2,38,56,57 (Figs. 1 and 2). In addition, a continuous decline in sea-ice thickness and, hence, 
increased dominance of first-year ice over multiyear ice, was registered over the last decades and including the 
period of our  study39,58. We tested the hypothesis that pelagic–benthic coupling was tighter in the early 2000s 
when more sea ice was present (represented here by 2005) compared to later, lower ice years (represented by 
2016). Following earlier studies on pelagic–benthic coupling in Arctic  regions8,59,60, we used stable nitrogen and 
carbon isotope analysis of POM endmembers and pelagic and benthic consumers to investigate pelagic-benthic 
coupling, specifically by comparing food source use and trophic niche space between the 2 years. This approach is 
based on the well-established concept that nitrogen stable isotope ratios indicate trophic position of organisms as 
tissues are progressively enriched in the heavier isotope with increasing trophic level in a reasonably predictable 
 manner61. Thus, lower δ15N values of benthic taxa can be expected in a food web where pelagic-benthic coupling 
is tight. Carbon stable isotope ratios in consumers are indicative of carbon endmember utilization based on dif-
ferent isotopic ratios of different primary producers or  habitats61,62. For example, sea-ice algae are often enriched 
in 13C compared to phytoplankton (on average by 4–5‰, though highly variable)63,64. Thus, higher consumer 
carbon isotope values can be found in areas where ice algae are a main food source. Both trophic markers (15N 
and 13C) combined describe trophic niches in isotope biplot  space65. A high overlap of isotopic niches of pelagic 
and benthic members in a given food web can indicate tight coupling between these two realms. Therefore, we 
hypothesized a decrease in pelagic-benthic coupling strength would be reflected in a lower overlap of pelagic 
and benthic isotopic niches, higher δ15N values of benthic organisms, as well as lower δ13C values in benthic 
consumers from reduced ice algal uptake associated with lower ice extent.  
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Results
Mean δ15N values of sPOM (sediment POM) and benthos (i.e., benthic invertebrates) collected in 2005 were 
significantly lower than those collected in 2016 (Fig. 3a, Table 1). The δ15N range of sPOM was 1.6‰ (4.5–6.2‰) 
in 2005 and over 2.5‰ (6.3–8.8‰) in 2016 (Tables S1, S3). The range of δ15N of benthic consumers was 9.1‰ 
(10.4–19.5 ‰) in 2005 and 8.1‰ (12.4–20.5‰) in 2016 (Tables S1, S3). Mean δ15N values of pPOM (pelagic 
POM), however, did not differ significantly between the 2 years, although mean δ15N of pPOM in 2005 was 
slightly lower than in 2016. The range of δ15N of pPOM was 3.7‰ (from 1.4 to 5.1‰) in 2005 and 5.7‰ (from 
1.9 to 7.6‰) in 2016 (Tables S1, S3). In contrast, for zooplankton, the mean δ15N was significantly higher in 
2005 than in 2016, with the range of δ15N of zooplankton values being 9.1‰ (between 8.1 and 17.2‰) in 2005 
and 6.4‰ (between 8.3 and 14.7‰) in 2016 (Fig. 3a, Tables 1, S1, S3).  

Figure 1.  Comparison of sea ice concentration between the higher ice year, 2005 and the lower ice year, 
2016, for July (upper panel, covers most of the sampling period for both years) and September (bottom panel, 
minimum ice month). The study area is marked by yellow and red rectangles for 2005 and 2016, respectively. 
Lowest ice concentrations are indicated by dark blue and highest concentrations are in white. Average sea-ice 
concentration data were derived from the National Snow and Ice Data Centre (https:// nsidc. org/ data/ NSIDC- 
0051/ versi ons/1). The data were then imported into ESRI ArcGIS 10.5 software (http:// www. esri. com/ softw are/ 
arcgis/ arcgis- for- deskt op) and projected spatially.

https://nsidc.org/data/NSIDC-0051/versions/1
https://nsidc.org/data/NSIDC-0051/versions/1
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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Figure 2.  Arctic average September minimum sea ice extent (modified from  NASA Global Climate Change, 
NSIDC/NASA, clima te. nasa. gov). Sampling years are indicated by a white triangle (2005) and red circle (2016), 
numbers above the triangle and circle indicate mean sea ice extent in 2005 (in yellow) and 2016 (in red).

Figure 3.  Mean values of (a) δ15N and (b) δ13C (‰) per food web component (pPOM in green, pelagic in blue, 
sPOM in yellow, and benthos in brown) in 2005 (open boxplots) and 2016 (filled boxplots), collected in the 
Chukchi Borderland. pPOM and sPOM is pelagic and sediment particulate organic matter, respectively. Only 
comparable taxa were included (i.e., either the same or closely related taxa).

Table 1.  Comparison of δ15N and δ13C (‰) values from different food web components in the Chukchi 
Borderland between 2005 and 2016: results of parametric two sample t-test (t), Welch’s two sample t-test 
(t) and Wilcoxon rank sum test (W) (for choice of test see methods). Numbers in bold indicate statistically 
significant results (p values < 0.05). See Table 3 for pPOM and sPOM abbreviations. See Fig. 4 for graphical 
representation of means and error.

t W df n p-value

δ15N

 pPOM 1.25 10 12 0.24

 sPOM 3.36 9 11 0.008

 Zooplankton 510 – 52 0.001

 Benthos 3.86 27 69  < 0.001

δ13C

 pPOM 3.95 10 12 0.003

 sPOM 2 – 11 0.029

 Zooplankton 630 52  < 0.001

 Benthos 1.32 67 69 0.191

https://climate.nasa.gov/
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Mean δ13C values of pPOM and zooplankton in 2005 were significantly higher than those in 2016 (Fig. 3b, 
Table 1). The δ13C range of pPOM was 3.7‰ (from − 24.0 to − 27.7‰) in 2005 and 2.9‰ (from − 28.9 to − 26.0‰) 
in 2016. The δ13C range of zooplankton comprised 8.1‰ (from − 27.8 to − 19.7‰) in 2005 and 6.9‰ (from − 28.6 
to − 21.7‰) in 2016 (Tables S1, S3). Conversely, mean δ13C of sPOM was significantly lower in 2005 compared to 
2016 (Fig. 3b, Table 1) and ranged 2.5‰ (from − 25.6 to − 23.1‰) in 2005 and 0.7‰ (from − 21.2 to 21.9‰) in 
2016 (Tables S1, S3). There was no significant difference between the years for mean δ13C of benthic organisms 
(Fig. 3b, Table 1), and the δ13C values ranged over 8.2‰ (− 24.8 to − 16.6‰) and over 8.4‰ (− 24.6 to − 16.2‰) 
in 2005 and 2016, respectively (Tables S1, S3).

Isotopic niche size, measured as standard ellipse area (SEAc), of the benthic component differed between 2005 
and 2016 with a wider niche in 2005 (Fig. 4a, b, Table S3). This difference was confirmed by high probability of 
difference (96%) between posterior Bayesian estimates of standard ellipse areas  (SEAB) for the benthos compo-
nents between years. Compared to the benthos, the isotopic niche size of zooplankton was more similar between 
years, with an 86% probability of difference; as this probability was below the threshold of 95%, zooplankton 
niche sizes were not considered statistically different (Fig. 4a, b, Table S3).

SEAc overlap between consumer groups and between endmembers was also different for the 2 years. Specifi-
cally, overlap between benthos and zooplankton was considerably higher in 2005 (57.9%) than in 2016 (5.5%). 
The SEAc overlap between sPOM and pPOM was generally low, but also higher in 2005 (4.8%) than in 2016, 
when the two SEAc did not overlap (Fig. 4a, Table S4).

δ15N isotopic distances between pairs of food web components were mostly smaller in 2005 compared to those 
in 2016 (Table 2). The exception was the isotopic distance between pPOM and zooplankton, which was higher 
in 2005 compared to 2016 (Table 2). For δ13C, the same trend of shorter isotopic distances between the food web 
components in 2005 versus 2016 was also evident between the following pairs: pPOM and sPOM, pPOM and 
benthos, zooplankton and benthos (Table 2). Conversely, δ13C isotopic distance was higher between pPOM and 
zooplankton, and sPOM and benthos in 2005 compared to 2016 (Table 2).

Discussion
The degree to which water column and benthic processes are coupled influences benthic community composition, 
production, trophic structure, and elemental cycling  rates7,66,67. This is particularly true in the energy-limited 
deep sea, where benthos is largely sustained by production originating in the surface-water  layers68. Based 
on stable isotope data collected in the poorly studied Arctic Chukchi Borderland, we evaluated differences in 
pelagic-benthic coupling between 2 years characterized by different climate settings. In 2005, the ice cover was 
still comparatively high despite some evidence of regional  warming56, while by 2016 the Arctic had experienced 
a series of very low sea ice years and undergone transformations due to climate  change38. Results of our study 
suggested tighter pelagic-benthic coupling in 2005 than 2016, which generally supported our hypothesis. This 
difference was reflected in much higher overlap of zooplankton and benthic isotopic niches in 2005 than in 2016. 
Similarly, pelagic and benthic food-web endmembers slightly overlapped in 2005, while no overlap was observed 
in 2016. These findings are consistent with shorter δ15N and δ13C isotopic distances between pPOM and sPOM, 
pPOM and benthos, and zooplankton and benthos in 2005 compared to 2016.

Multiple mechanisms could underlie the patterns we found. Lower surface primary production in 2016 
relative to  200569,70 could explain pelagic-benthic coupling differences between the sampling years, as the 
level of primary production in part determines how much organic matter will eventually reach the seafloor. 
Although increased primary production has been observed in many areas of the Arctic Ocean over the last two 
 decades43,71,72, low and in part declining values of primary production and/or Chl a concentration have, in fact, 
been  documented36,43,69,70 or  modeled69,73 in the Beaufort gyre zone and adjacent waters, including the Chukchi 
Borderland, during the last few years. The reduced primary production was primarily attributed to exception-
ally high freshening of the Canada  Basin74,75, resulting in strengthened stratification and inhibition of nutrient 
renewal in the euphotic  zone76,77.

The source of primary production can also influence pelagic-benthic coupling. Based on the higher sea ice 
cover in 2005, we might assume that the abundance of ice algae was also higher in that year, though ice-algal 
biomass was not measured in the present study. In the adjacent northeastern Chukchi Sea, however, the ice algal 
signal at the seafloor, assessed by the isoprenoid trophic marker  IP25, had declined between 2012 and  201778. 
Consistent with this observation, our results showed significantly higher δ13C values of pPOM in 2005 than in 

Table 2.  Isotopic distances between means of δ15N and δ13C (‰) of endmembers (pPOM, sPOM) and 
consumers (zooplankton, benthos) from the Chukchi Borderland in 2005 and 2016. See Table 3 for pPOM and 
sPOM abbreviations.

Distance between

pPOM and sPOM pPOM and zooplankton pPOM and benthos zooplankton and benthos sPOM and benthos

δ15N

 2005 2.1 9.6 10.5 0.9 8.4

 2016 3.3 6.9 12.1 5.2 8.9

δ13C

 2005 1.7 3.5 4.7 1.3 3.0

 2016 6.2 2.6 7.5 4.9 1.3
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2016, which might indicate higher contribution of ice algae in 2005, as sea-ice algae are often enriched in 13C 
compared to  phytoplankton63,64. However, δ13C values of ice POM from samples taken during the 2005 expedi-
tion did, for the most part, not differ from those of  pPOM79 at the time of sampling. This absence of an isotopic 
difference may be due to high  CO2 exchange between water, ice, and atmosphere when ice becomes more porous 
towards the  summer8,80,81. Instead, the significantly higher δ13C values of zooplankton in 2005 compared to 
2016 might be an indicator of consumption of ice POM produced earlier in the year during the ice-algal bloom 
when ice structure still restricted  CO2 exchange. The isotopic turnover time between food and consumer of 
about three weeks for copepods in the  Arctic82 makes it feasible that an earlier, enriched carbon isotope ice algal 
signal might be present in the zooplankton at our time of sampling in 2005. The potentially higher ice POM 
contribution in 2005 was, however, not reflected in the sediment and benthic tissue samples, unlike observed 
in other  studies64,80. δ13C values of benthos did in fact not differ significantly between years, and δ13C of sPOM 
was significantly lower in 2005 than in 2016, though the sample size of sPOM was low for both years. Our data 
cannot resolve whether ice POM did not reach the seafloor (because it was consumed in transit), was too patchy 
to be captured by our sampling, or in fact was not isotopically enriched enough to be visible in benthic taxa and 
sPOM. In summary, some evidence points to the possibility of ice algae playing a role in the apparent difference 

Figure 4.  Isotopic niches of compared food web components in the study area. (a) Biplot of δ13C and δ15N 
isotope values (‰) for assemblages in the Chukchi Borderland in 2005 and 2016; outer ovals are sample size 
corrected standard ellipses  (SEAC) containing 95% of the data. Inner small ovals indicate 95% confidence 
intervals around the bivariate means. Open triangles are means of samples collected in 2005 and filled circles 
in 2016. Food web endmembers and consumers are indicated by colors: green (pPOM), yellow (sPOM), blue 
(zooplankton), and brown (benthos). See Table 3 for pPOM and sPOM abbreviations. (b) Standard ellipse areas 
Bayesian estimations  (SEAB) presented as credible intervals for each of the community components for the two 
sampling years; black dots are the mode of the  SEAB (‰2), the shaded boxes represent the 50% (dark grey), 75% 
(lighter grey) and 95% (lightest grey) credible intervals. Dotted outlines enclose assemblages collected in 2005 
and solid lines represent those collected in 2016. Total amount of zooplankton taxa consisted five for both years, 
and total amount of benthic taxa consisted 13 in 2005 and 32 in 2016. Only comparable taxa were included (i.e., 
either the same or closely related taxa).
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in pelagic-benthic coupling between the study years, but unequivocal conclusions are difficult based on a single 
sampling period in each year.

Besides the amount and sources of primary production, freshness and, hence, quality of food has an effect on 
benthic trophic  structure23. Mean δ15N values of sPOM and benthos were significantly lower in 2005 compared 
to 2016, which indicates that organic matter available to the benthos was generally less reworked in 2005 than 
in 2016. In addition, the isotopic niche of benthos was significantly wider in 2005 than in 2016, even though 
fewer benthic samples were available in 2005 (Tables S1, S2). The difference in isotopic niche of the benthos was 
essentially driven by a larger δ15N range in 2005 compared to mainly high δ15N values in 2016. This upper range 
of consumer values in 2016 is also included in the benthic niche in 2005, suggesting that the same carbon was 
available for food in 2005, along with a ’fresher’ source characterized by benthic consumers with a lower δ15N 
ratio. Potential differences in food quality might be related to decreased relative contribution of large phyto-
plankton and ice algae (diatoms) and increased contribution of small cells (such as flagellates) in 2016 related to 
sea ice  loss38,83, freshening of the  area48,70, and strengthened stratification in recent  years11. As a result, vertical 
organic matter export flux would have been dominated by faster sinking and, thus, fresher food  sources28,84,85 
for benthic consumers in 2005 than 2016. While we lack direct evidence for this hypothesis from our region, 
a study from deep Arctic Fram Strait indeed supplies indirect evidence in that the authors documented higher 
organic matter export efficiency in regions with than without seasonal sea  ice86.

Further, the strength of pelagic-benthic coupling is affected by grazing efficiency of zooplankton, which 
largely depends on the density, species composition, and developmental stages of herbivorous zooplankton 
present at the time of primary production. At high zooplankton densities and grazing rates, downward carbon 
flux can be  reduced34 which might be expected if zooplankton densities increased with stronger advection of 
Pacific species into the basin or perhaps by locally increased reproductive  output35,50. The few available inter-
annual zooplankton studies from the Canada Basin  region87,88, however, do not suggest a trend for increasing 
zooplankton populations between 2007 and 2017, nor do Abe et al.’s88 model results imply zooplankton increases 
in the region in the study period.

Summary and conclusion
Evaluation of climate change effects on pelagic-benthic coupling in the deep Arctic Ocean is difficult due to 
limited availability of long-term data  sets36. In the present study, we compared pelagic-benthic coupling in 2005, 
at the end of a decade with only early signs of  warming56, and 2016, when years of intense climate warming had 
been documented and impacts on system drivers were observed. Our results suggest stronger coupling of benthic 
and pelagic realms in 2005 compared to 2016 and may indicate that ice-algal contribution was potentially higher 
in zooplankton diets in 2005 compared to 2016. This inference is consistent with observations from the nearby 
NE Chukchi Sea shelf and comparisons of vertical carbon export in ice-covered versus open water areas in deep 
Fram Strait, yet seasonal sampling in our study area would have been needed to provide firm evidence. Benthic 
communities received fresher organic material in 2005 than in 2016, as evidenced by δ15N values of benthic con-
sumers and sPOM. The inferred decoupling in 2016 is consistent with physical and biological changes that were 
observed in the region in recent years. Specifically, a shift from perennial to seasonal sea  ice38,39 may have resulted 
in an overall shift in primary producer composition and vertical carbon export within this system. Strengthening 
of the halocline within this  region89 has resulted in a decrease in primary production in the  area69 and a shift to 
small-celled  phytoplankton70. We propose that these changes likely lead to a longer residence time of organic 
matter in the water column, a higher level of organic matter biodegradation before it reaches the seafloor, and, 
thus, a decrease in overall organic matter flux to the seafloor. This situation would reduce carbon storage in deep-
sea Arctic benthos. Since ecosystem responses to climate change varies depending on local environmental and 
biological settings, it is recommended that time-series observations, similar to those on the adjacent Chukchi 
Sea  shelf54, be extended into the deep Arctic Ocean basin.

Materials and methods
Sea ice situation. To illustrate the difference in sea-ice cover between the sampling years, we plotted aver-
age sea-ice concentration data derived from satellite Nimbus‐7 SMMR and DMSP SSM/I‐SSMIS Passive Micro-
wave at a grid cell size of 25 × 25  km90 for both study years. The concentration is defined as the fraction of the area 
of the grid cell covered by sea ice and is given in percentage from 0 (no ice) to 100 (fully covered by ice) percent 
ice (https:// nsidc. org/ cryos phere/ seaice/ data/ termi nology. html). Average sea ice concentration for July and Sep-
tember (minimum ice month) was downloaded from the National Snow and Ice Data Centre (https:// nsidc. org/ 
data/ NSIDC- 0051/ versi ons/1). The data were then imported into ArcGIS 10.591 software and projected spatially.

Sample collection. To assess pelagic-benthic coupling, samples were collected during the “Hidden Ocean” 
expeditions onboard the US Coastguard icebreaker  HEALY between 28 June and 25 July 2005 (expedition 
HLY05-02) and 2 July and 10 August 2016 (expedition HLY16-01) (Table 3). Sampling stations were located 
between 74–76°N and 158–163°W (Fig. 5, generated using  ArcGIS91). In 2005, five stations were sampled at 
depths ranging from 621 to 2090 m (Table 3, Fig. 5). In 2016, eight stations were sampled at depth varying 
between 486 and 2107 m (Table 3, Fig. 5).

Pelagic POM (pPOM) was collected at each station in both years from the chlorophyll maximum layer from 
Niskin bottles attached to a SBE9/11 + CTD rosette equipped with an in-situ fluorometer. The chlorophyll maxi-
mum layer varied from 30 to 60 m depth in 2005 and from 50 to 70 m in 2016. Two to three water samples per 
station were collected from different bottles of the same CTD cast, totaling 13 pPOM samples in 2005 and 21 
pPOM samples in 2016 (Table 3, Table S1). The collected water samples were then filtered onto pre-combusted, 
25 mm diameter GF/F filters. Large organisms visible by eye on the filters (e.g., meso-zooplankton) were removed.

https://nsidc.org/cryosphere/seaice/data/terminology.html
https://nsidc.org/data/NSIDC-0051/versions/1
https://nsidc.org/data/NSIDC-0051/versions/1
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Sediment POM (sPOM) was collected into a sterile plastic bag from the top ~ 1 cm sediment from 0.06  m2 box 
core samples at 3 stations in 2005 and from 0.25  m2 box core samples at each of the 7 stations in 2016 (Table 3). 
One replicate sediment sample per station was collected per year (Table S1).

Zooplankton consumers were collected at 5 stations with a multi-net (Midi, Hydrobios, 150 μm) in 2005 and 
at 6 stations with the same Multinet in 2016 (Table S1). Five zooplankton species common to the upper water 
column in the Arctic Basin and representing different taxonomic groups with different food preferences were 
chosen for the analysis: the copepods Calanus glacialis (grazer), Calanus hyperboreus (grazer), Paraeuchaeta gla-
cialis (predator), the amphipod Themisto abyssorum (predator/omnivore), and the chaetognath Eukrohnia hamata 
(predator, but  see92). Often, mass of individual zooplankton organisms was insufficient for isotopic analysis; thus, 
several individuals of the same species were pooled by station. A total of 71 zooplankton samples were collected 
in 2005 and 66 in 2016. Replication varied from 1 to 3 samples of each zooplankton species per station (Table S1).

Epifaunal benthic consumers, including some demersal fish, were sampled with a 7 mm mesh (4 mm cod end) 
beam trawl and a Remotely Operated Vehicle (ROV Global Explorer, Deep-Sea Systems Inc. in 2005, and Ocea-
neering International in 2016) in both years. The ROVs were equipped with a suction hose and a manipulator 

Table 3.  Station locations, depth and sample types collected for stable isotope analysis in 2005 and 2016 in the 
Chukchi Borderland of the Arctic Ocean. pPOM and sPOM is pelagic and sediment particulate organic matter, 
respectively.

Year Station Depth (m) Latitude (°N) Longitude (°W) Zooplankton Benthos pPOM sPOM

2005

10 621 75.46 158.32 X X

11 1,374 76.01 160.41 X X X X

12 937 76.26 163.29 X X X X

13 2,090 75.16 161.13 X X X X

14 749 74.18 159.54 X X

2016

1 853 74.37 159.53 X X X X

2 1,059 74.66 158.38 X X X X

3 746 75.68 158.53 X X X X

9 508 76.51 163.78 X X X

10 873 76.41 163.56 X X X X

12 2,107 75.73 161.24 X X X X

13 2,091 75.23 160.38 X X X X

Figure 5.  Study area and stations sampled in the Arctic Chukchi Borderland. Stations sampled in 2005 and 
2016 are indicated by yellow circles and red triangles, respectively. Numbers in bold print are station numbers; 
small numbers along isobaths indicate water depth. The map was created using ESRI ArcGIS 10.5 software 
(http:// www. esri. com/ softw are/ arcgis/ arcgis- for- deskt op).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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arm enabling targeted sample collection. Infaunal benthic consumers were collected with a 0.25  m2 box core in 
both years. All benthic samples were washed to remove sediments (2 mm mesh size for beam trawl, 0.3 mm for 
box core samples) and fauna were identified to the lowest taxonomic level possible. Vouchers of invertebrate 
taxa were collected when identification was uncertain and identified later by experts (see acknowledgments). 
Taxon names were verified with WoRMS (www. marin espec ies. org, 30.12.2022). Benthic consumers were then 
subsampled for muscle tissue, where possible, to represent a tissue with slow turnover  rate93. Where muscle tis-
sue was not distinguishable or unavailable, tissue was sampled from body walls (e.g., anemones), tube feet (e.g., 
asteroids), and entire organisms were collected when body mass was small (e.g., some worms, small amphipods). 
A total of 29 and 85 benthic organism samples were collected in 2005 and 2016, respectively, with replication 
varying from 1 to 3 per species per station (Table S1). All samples collected for isotope analysis were frozen at 
− 20 °C immediately after collection until laboratory analyses.

Laboratory analysis. pPOM filters were fumed with concentrated hydrochloric acid (HCl) vapor for 48 h 
and dried before analysis. sPOM samples were thawed and each sample was homogenized by mixing. Approxi-
mately 1 ml of the sediment was treated with 1 N HCl until bubbling stopped and then rinsed with distilled water 
until pH of the sediments was close to neutral, after which the samples were freeze-dried before  analysis18,60. All 
organism tissue samples were dried at 60 °C for 24 h prior to the laboratory analysis. Lipids in zooplankton tissue 
samples were removed with repeated use of a 2:1 ratio of chloroform:methanol to avoid interpretation bias in 
lipid-rich  zooplankton94. The samples were then re-dried at 60 °C for 24 h. Tissue samples that contained high 
carbonate concentrations were acidified with 1 N HCl for carbon isotope analyses to prevent the bias introduced 
by inorganic carbon in δ13C values. The acid was removed by rinsing with distilled water after bubbling had 
ceased; then, samples were dried again at 60 °C for 24 h.

All carbon and nitrogen stable isotope analyses were performed at the Alaska Stable Isotope Facility at the 
University of Alaska Fairbanks on a Thermo Finnigan Delta Isotope Ratio Mass-Spectrometer with Vienna PDB 
as standard for carbon and atmospheric  N2 as standard for nitrogen. Instrument error was < 0.2 ‰ for δ 13C 
and < 0.4 ‰ for δ 15N in 2005, and < 0.2 ‰ for both δ 13C and δ 15N in 2016. Sample isotopic ratios were expressed 
in the conventional δ notation as parts per thousand (‰) according to the following equation:

where X is 13C or 15N of the sample, and R is the corresponding ratio of 13C/12C or 15N/14N.

Statistical analysis of stable isotope data. For the analysis of potential differences in benthic–pelagic 
coupling between sampling years, we included only station pairs that were geographically close to each other 
and located in similar bathymetric features (e.g., basin/ridge) (Fig. 5, Table 3), and contained either the same 
or closely related taxa (Table S2) in both years. To provide a general overview of the difference in isotopic niche 
structure between the two sampling years, bi-plots of δ13C versus δ15N were generated based on station-averaged 
values of each of the two carbon end-members (pPOM, sPOM) and each of the consumer groups (zooplankton 
and benthos). The isotopic niche widths of these four food web components (pPOM, sPOM, zooplankton, and 
benthos) were then calculated as Standard Ellipse Areas corrected for small size  (SEAc)97. To compare the iso-
topic niches of food web components between years statistically, we used a Bayesian approach to calculate 100 
000 posterior iterations of  SEA96,97 that produced a range of probable SEAs (Bayesian SEA =  SEAB) for each of the 
food web component from each year. This enabled robust statistical comparison of  SEAB between the sampling 
years by calculating the probability of difference between  them95,97.  Following97  and98, we considered a probabil-
ity higher than 95% a meaningful difference. In addition, the overlap of SEAc of different food web components 
was calculated as the percentage of ellipse area shared by two components in order to test the hypothesis that 
benthic–pelagic coupling (expressed here as isotopic niche proximity) was tighter (= stronger overlap in SEAc) 
in 2005 than 2016. These analyses were conducted using the SIBER package (Stable Isotope Bayesian Ellipses in 
R;95) in R 4.0.3. statistical  software99.

Isotopic distances of δ15N and δ13C between different food web components as a measure of pelagic-benthic 
coupling were calculated by subtracting the mean δ15N (δ13C) of one food web component from the mean δ15N 
(δ13C) of another food web component. This metric was used to test the hypothesis that distance between food 
web components was lower in 2005 than in 2016.

To test the hypothesis that δ15N was overall lower in benthos (reflecting fresher food reaching the sea-
floor through tighter pelagic-benthic coupling) and δ13C was higher (reflecting higher input of generally more 
13C-enriched ice algae) in 2005 than in 2016, the means of δ15N and δ13C of each food web component were 
compared between the 2 years. The following tests were used for the comparison: a two-sample t-test (if distribu-
tion was normal and variances were equal), a Welch’s two sample t-test (if the distribution was normal, but the 
variances were not equal), and a Wilcoxon rank sum test (if the distribution was not normal). The Shapiro–Wilk 
test was applied to test for normality, followed by the Bartlett-test to verify the equality of variances. Values are 
presented as mean ± standard error (SE) in the text and tables. The analysis was conducted in  R99.

 Data availability
The datasets generated and analyzed for this study can be found in the https:// mbon. ioos. us/# metad ata/ edc23 
2ee- 8582- 4059- 9c4c- 7018b 5af66 a0/ proje ct.
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