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Efficient low temperature Monte 
Carlo sampling using quantum 
annealing
Roland Sandt 1* & Robert Spatschek 1,2

Quantum annealing is an efficient technology to determine ground state configurations of discrete 
binary optimization problems, described through Ising Hamiltonians. Here we show that—at very low 
computational cost—finite temperature properties can be calculated. The approach is most efficient at 
low temperatures, where conventional approaches like Metropolis Monte Carlo sampling suffer from 
high rejection rates and therefore large statistical noise. To demonstrate the general approach, we 
apply it to spin glasses and Ising chains.

The recent advent of quantum annealing (QA) is an important step towards the development of quantum com-
puting in the future, which will significantly boost also statistical physics and materials science modeling. In 
general, QA, as implemented by the company D-Wave, allows to find efficiently ground state configurations of 
discrete optimization problems, with many possible applications in academia and  industry1–5. There are many 
problem types to which QA has been applied, like the demonstration of scaling or algorithmic advantages for 
QA in specific problem  classes6–8. So far, applications of QA in the field of materials science are still rare, and 
among them are the determination of equilibrium microstructures with long-range elastic  interactions9, phase 
transitions in the transverse field Ising  model10, the investigation of energy states of frustrated magnetic systems 
via the Shastry-Sutherland  model11 and the designing of  metamaterials12. Another example is the combined use 
of quantum annealers and Boltzmann machines to sample spin glasses and to predict molecular dynamics data 
of a MoS2  layer13.

The concept of QA is to initialize the system’s Hamiltonian at cryogenic temperatures in a well defined 
ground state, and then to smoothly convert the energy landscape such that it represents the desired optimization 
 problem14,15. If this adiabatic transformation is performed carefully, the system ends up in the ground state of 
the destination Hamiltonian. An explicit finite temperature modeling of this transition has been performed for 
the Sherrington-Kirkpatrick spin glass model,  see16,17 and references therein. However, apart from the stochastic 
nature of the approach itself, the preparation, transformation and readout process are not perfectly adiabatic, 
noise-free and decoupled from the environment, hence frequently states with higher energy are found, especially 
for Hamiltonians with small energy gaps. For a typical QA experiment, multiple repetitions and reads are used to 
determine the true ground state. In this paper we demonstrate that this deficit of the technology can actually be 
turned into a virtue, as it allows to determine finite temperature thermodynamic properties extremely efficiently. 
Related to that, the concept of using QA as (noisy) Gibbs sampler has been discussed  recently18,19, but it turns 
out that a tuning of the temperature for performing quantitative simulations is challenging. Moreover, it has 
been shown that at least for some machine architectures degenerate ground states are sampled unequally with an 
exponential bias, contrary to the thermodynamic equilibrium concept that equal energy states should be visited 
with the same probability in the canonical ensemble, therefore demanding special  attention20–24.

From a materials science perspective, the ground state configuration at temperature T = 0K is often only of 
limited interest for many practical applications. For example, for a ferromagnet, all spins are aligned in the ground 
state, whereas for finite temperatures thermal fluctuations lead to finite correlation lengths, phase transitions and 
temperature dependent magnetizations. A conventional approach for a statistical modeling of such properties is 
to use Monte Carlo (MC) sampling techniques, as an explicit computation of the partition function is typically 
not feasible due to the vast size of the phase space. The probably most prominent approach for such computations 
is the generation of discrete Markov chains using Metropolis transition probabilities, which generate a sequence 
of configurations which obey Boltzmann statistics, and therefore allow to express the ensemble average through 
the easier calculation of time averages along these Markov  chains25,26. In practise, a transition from one state to 
another is taking place with probabilities depending on the energy difference �E between two configurations 
according to a Boltzmann distribution p ∼ exp(−β�E) with β = 1/kT with the Boltzmann constant k. Usually, 
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such approaches are inefficient at low temperatures, as then the rejection rate for new configurations is very high, 
and hence an insufficient sampling of the phase space is achieved with trapping in local minima, resulting in 
noisy predictions of the desired thermodynamic properties. Another important sampling strategy was developed 
by Wang and Landau, using a non-Markovian algorithm to extract the density of states via a flat histogram tech-
nique, from which all desired thermodynamic properties can be  calculated27. Besides these major techniques, 
Dall et al. developed an algorithm to sample the Boltzmann distribution fast at low temperatures. However, this 
algorithm is most suitable for systems with short range  interactions28. Another possibility for the fair sampling 
of ground and degenerate states is the introduction of parallel tempering with isoenergetic cluster updates in 
Monte Carlo  methods29 or the combination with simulated annealing on a quantum  annealer30,31. We mention 
that Boltzmann machines, which can serve as a link between machine learning and statistical  thermodynamics32, 
are investigated in the context of  QA33–36 from a computer science perspective, but to the best of our knowledge, 
the direct application of QA for classical finite temperature modeling for statistical physics and materials science 
has not yet been accomplished and is the subject of the present paper.

Results
Spin glass. The key feature of the quantum annealer is that it finds preferentially configurations which are 
close to the global energy minimum of the phase space. As a first illustration how to determine the low tempera-
ture thermodynamics from these configurations, we use a spin  glass37,38 with random couplings, which is given 
by the Hamiltonian

with N = 20 spins si = ±1 and random values for the coupling constants, Jij , hi ∈ [−Jmax, Jmax] , Jmax = 1/2 . 
As the matrix Jij is fully populated, the model also includes long-range interactions. We point out that due to 
the random couplings, the energy landscape of the spin glass contains many states with nearby energy values 
without degeneracy, which avoids the issue of potentially unfair sampling of isoenergetic states. An example from 
materials science for such a spin glass are misfitting coherent grains in a polycrystalline solid, where the coupling 
constants result from elastic long-range interactions and external  forces9. We repeat the quantum annealing read 
out process 10,000 times to get an estimate of the distribution of identified states, as due to the above mentioned 
reasons also higher energy states are found in practise. Therefore, we obtain a (sub-)set of states S = {xi} , and 
each configuration consists of the value of spin variables, xi = (s

(i)
1 , . . . , s

(i)
N ) , for which the resulting probability 

distribution is illustrated in the inset of Fig. 1a.
The distribution of the states depends to good approximation only on the energy of the individual configura-

tions and follows (roughly) a Boltzmann distribution (with different effective temperatures), as has been dis-
cussed in the  literature18,19, although it should be noted that quantum fluctuations can lead to deviations from the 
purely thermal probability  distribution39. For the following steps it is important to mention that the explicit form 
of the distribution is not critical, and we only exploit the fact that states with low energies are found preferentially.

Additionally, a rescaling of the Hamiltonian H → aH by a factor 0 < a < 1 allows to sample regions of 
the phase space with higher energy (see inset in Fig. 1a), requiring to switch off the automatic rescaling of the 
coupling constants by the D-Wave framework. The smaller a is chosen, the more high energy configurations are 
sampled. Explicitly, for the N = 20 spin glass with a configuration space of size 2N ≈ 106 , we use 10,000 reads, 

(1)H =
∑

i<j

Jijsisj +
∑

i

hisi

Figure 1.  Mean magnetization and probability distribution of a spin glas and sampling strategy. (a) The plot 
shows the temperature dependent magnetization of an N = 20 random coupling spin glass. The QA sampled 
values coincide with the theoretical results in the low temperature regime, whereas for elevated temperatures the 
energy rescaling factor a affects the quality of the results. The probability for getting a state x, which is estimated 
using 10,000 repetitions of the sampling, depends to good approximation only on its energy E(x) and follows 
essentially a Boltzmann distribution, as shown as inset. Different rescaling factors a > 0 shift the distributions 
to higher or lower energies. (b) Illustration of the different sampling strategies. The blue trajectory illustrates 
the Markov chain generated by the Metropolis algorithm to generate a Boltzmann probability distribution (red 
shading). Alternatively, the Wang-Landau approach constructs the density of states, from which thermodynamic 
properties can be predicted. In contrast, the QA approach identifies low energy configurations (green shading), 
which are taken as most representative fraction of the phase space for low temperature expectation values.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6754  | https://doi.org/10.1038/s41598-023-33828-2

www.nature.com/scientificreports/

which lead to around 300 (for a = 1.0 ) to 5,000 (for a = 0.25 ) distinct configurations in the subset S (the actual 
numbers fluctuate due to the non-deterministic behavior). We note that the concept of the rescaling of coupling 
constants has been previously used to effectively change the temperature of the distribution generated by the 
quantum  annealer18,19, which is however not required here.

To obtain a numerical estimate of the canonical partition function using QA, we take the identified distinct 
low energy configuration set S and use the approximated canonical partition function

which obviously becomes more accurate for a better sampling of the low energy configurations. Notice that the 
desired (and given) inverse temperature β is typically not related to the effective one related to the probability 
distributions of the QA sampling. With the estimated Boltzmann probability pa(x) = exp(−βH(x))/Za of a state 
x we can obtain estimated expectation values of an observable A(x) according to

We emphasize that the set S is significantly smaller than the size 2N of the phase space, and therefore estimated 
values can be calculated efficiently also for large values of N, for which a direct computation of the partition 
function is no longer feasible. Furthermore, the same set is used for all temperatures, and therefore it is not neces-
sary to create new chains of configurations like for Metropolis sampling. In this sense, the proposed algorithm 
is comparable to multicanonical approaches employing Wang-Landau sampling. As S contains mainly the low 
energy configurations, we expect that the estimated expectation values get accurate for low temperatures, i.e. large 
values of the inverse temperature β = 1/kT.

This expectation is confirmed in Fig. 1a for the magnetization per spin, m = M/N = N−1�
∑N

i=1 si� . The 
results show that irrespective of the choice of the rescaling parameter a, the low temperature magnetization 
always coincides with the theoretical expectation, which is obtained from a brute force sampling of the partition 
function. Hence, a is here not used as a method to tune the effective temperature, as compared to the approaches 
mentioned  above18,19. As discussed above, a smaller value of a leads to sampling of more excited states, and con-
sequently the better the agreement with the theoretical prediction also for higher temperatures. We emphasize 
that a single value of the parameter a is sufficient to determine the low temperature behavior accurately, and the 
dependence on the choice of this parameter is weak, which is beneficial for applications, as no careful tuning of 
this degree of freedom is required.

In essence, we can consider the (imperfect) quantum annealing process as a way to find a representative set 
of states in the phase space which contribute strongest to the partition function from statistical mechanics due 
to their high Boltzmann weight. These selected configurations are used to estimate thermodynamic properties. 
This strategy, compared to conventional Boltzmann sampling approaches, is illustrated in Fig. 1b. The simple 
and robust concept is to identify potentially relevant low energy states, with no weighting according to the prob-
ability of appearance during the readout process. Instead, the proper Boltzmann weighting is then done in the 
approximated calculation of expectation values and the partition function, using directly the desired temperature.

1D Ising model. To investigate the performance of the approach also for larger systems, we consider the 1D 
Ising model, as in this case an analytical solution is known and allows also for comparisons in situations, where 
a brute force sampling of the phase space is no longer feasible. Moreover, the example differs from the previous 
one by having a sparse interaction matrix Jij and the existence of degenerate states. Therefore, these two cases 
cover a wide range of typical situations.

Explicitly, we use a one-dimensional Ising model with nearest neighbor ferromagnetic coupling to illustrate 
the calculation of thermodynamic properties using the set of states S sampled in analogy to the demonstration 
above. The model is described by the Hamiltonian ( J < 0)

with periodic boundary conditions ( sN+1 = s1 ), and has a simple analytical solution also for finite values of N, 
which serves as benchmark for the procedure. In fact, the canonical partition function  is40

with the eigenvalues

from which e.g. the Helmholtz free energy F = −kT lnZ and the magnetization per spin m = M/N = (∂F/∂B)/N 
can be calculated.

Again, the comparison between the exact solution and the QA sampling shows an excellent agreement of the 
magnetization for low temperatures, as shown in Fig. 2 for N = 20 and N = 50 spin systems.
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For low temperatures the quantum annealing sampling is indeed in perfect agreement with the exact solution, 
already even for a low number of sampled configurations, which are typically generated anyway for QA applica-
tions. For higher temperatures deviations are visible, and the estimated magnetization saturates at unphysical 
finite values. This is an expected result, as for high temperatures all states contribute to the partition function, and 
then the pre-selection advantage by the QA is lost. The deviations decrease with increasing number of samples 
and increase with higher numbers of spins.

It is known that slight asymmetries in the quantum annealer can lead to favoring of specific spin alignments, 
and therefore spin reversal transformations, which change signs of the coupling constants without changing 
the physical results (see "Methods" section), can be  beneficial41. We indeed observe a better agreement with the 
theoretical prediction if this feature is used. Figure 3a shows the influence of different number of spin reversal 
transforms on resulting magnetization and computational demand.

An increasing number of transforms lead to better results, compared to the exact analytical solution at the 
expense of an increase of the needed annealing time. However, quantum annealing sampling needs only a frac-
tion of time compared to other algorithms, and therefore this increase will not be critical for many applications.

An additional analysis of the magnetic field term of the Ising Hamiltonian in Fig. 3b shows the expected 
alignment of spins for varying external magnetic field B. All curves show the expected low temperature agree-
ment with theory, depicted as dotted lines. Surprisingly, for low magnetic fields, where the asymmetry between 

Figure 2.  Magnetization of the 1D Ising model with periodic boundary conditions. The graphs show the 
magnetization per spin as function of temperature for (a) N = 20 and (b) N = 50 spin systems, comparing the 
exact analytical solution with the results from the quantum annealer. In the low temperature regime there is a 
perfect match, which becomes worse for higher values of kT/J. In the high temperature limit, where we expect 
the average magnetization to vanish, the annealer prediction saturates at finite values, as high energy states 
are not sampled properly. An increase of the number of annealing cycles leads to more accurate predictions, 
which is further enhanced by spin flip reversals. The parameters for coupling constants are B/J = 0.01 . Ten spin 
reversal transformations are considered for each sampling, while for 100, 000 samples in the N = 50 system 
1, 000 spin flip transformations are used. The shading illustrates the error bars of the calculations, as estimated 
from repeated simulations (see "Methods" section).

Figure 3.  Influence of different number of spin-reversal gauge transforms and varying magnetic fields. ( a) 
Different amounts of spin-reversal transformations (SRT) during the annealing change the sampling outcomes. 
For QA of the N=20 spin system with B/J = 0.01 and altogether 100 samples no, 10 and 100 SRT are used. 
A higher fraction of spin flips leads to more accurate predictions of the magnetization, as compared to the 
analytical solution (black curve). The inset shows the increasing computational demand of additional SRT. On 
the vertical axis, the measured QPU access time including corresponding overhead is shown as function of the 
number of spins in a logarithmic representation. ( b) Magnetization as function of temperature for different 
external magnetic fields B. The dotted lines show the exact analytical solution for the corresponding magnetic 
fields.
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spin up and down configurations is lower, and where usually thermodynamic sampling is most difficult, the best 
agreement between simulation and theoretical prediction is reached even for elevated temperatures.

The D-Wave frontend Leap also provides functionality to influence the transformation from the transverse to 
the desired Hamiltonian. Usually, the associated parameters can be used to obtain the true ground state in a more 
reliable way. In this spirit, also reverse  annealing42 is useful for a successful ground state search and consequently 
to suppress the appearance of excited states. In general, a pause in the annealing process leads to a interrup-
tion of the quantum fluctuations induced by the transverse field and allows for thermal  relaxations43. Here, we 
have checked whether these features can also be used to achieve the opposite goal of the usual improved global 
minimization, namely a better sampling of low energy states above the ground state. It turns out that a pause 
in the annealing procedure has only minor influence on the expectation value of the magnetization, whereas 
quenching improves the chance of finding low energy states. Therefore, we have modified the annealing schedule 
up to the maximum possible duration of 2000µ s, including a quench step. With such a customized annealing 
schedule, a better prediction of the magnetization at low temperatures is found already for just 100 samples in an 
N = 50 spin system, compared to the standard schedule. Therefore, a change of the annealing protocol can lead 
to additional improvements for the thermodynamic predictions, although typically the effect is less pronounced 
than the use of the spin reversal transformations mentioned above, and therefore the standard 20 µ s annealing 
schedule is used for all shown plots.

We compare the preceding QA results to conventional MC sampling using the Metropolis algorithm 
(see "Methods" section). For each temperature, a separate Markov chain is generated for the sampling. The 
comparison of both approaches is shown in Fig. 4 for the magnetization m and the heat capacity per spin, 
c = kβ2(�H2� − �H�2)/N.The generic and frequently used Metropolis MC approach suffers from low accept-
ance rates for proposed configurations at low temperatures, and therefore an accurate sampling in this regime is 
difficult. Exactly in this low temperature regime the quantum annealer approach plays its strength as it accesses 
directly the low energy configurations, which give the highest contribution to the partition function. The same set 
of generated configurations is used for all temperatures, like for multicanonical sampling techniques. We note that 
for the Monte Carlo sampling typically many more samples are necessary than for QA to get comparable results 
in the low temperature regime, and this number increases significantly for larger spin systems. Due to the focus 
on the QA approach, we refrain from further MC code optimization, Wang-Landau sampling and a comparison 
to other algorithms, which can perform well also for low temperatures. The presently suggested approach can 
become most relevant in situations, where QA is anyway used for identifying ground state configurations, as 
then at almost no additional computational cost also thermodynamic properties can be obtained. Altogether, 
we find that the different approaches complement each other very well, in particular since the QA approach is 
most suitable in the low temperature regime.

Discussion
Quantum annealing is an efficient approach to determine global minima of complex energy landscapes, which 
are described by Ising Hamiltonians or, equivalently, quadratic unconstrained binary optimization (QUBO) 
problems. Due to machine imperfections and the stochastic nature of quantum annealing, typically several repeti-
tions of the annealing process have to be performed, in order to find reliably the true ground state(s). Whereas 
for many applications the excited, higher energy states are ignored in the end, we have demonstrated here that 
they can be used for an efficient Monte Carlo Boltzmann sampling to obtain thermodynamic properties above 
absolute zero. These additional results are obtained essentially for free or at low computational cost, since in 

Figure 4.  Comparison to Metropolis Monte Carlo sampling. (a) Comparison of the analytical theory, 
Metropolis Monte Carlo sampling and quantum annealing sampling for the 1D Ising model with N = 20 spins 
and B/J = 0.01 . Whereas the Metropolis algorithm performs well in the high temperature regime, the results 
get noisy for low temperatures due to the high rejection rate of proposed states. Notice that the used 108 random 
trial configurations correspond to more than the 2N configurations of the phase space, while only 100 samples 
with 10 spin flip transformations are necessary for the quantum annealing sampling. The exact analytical 
solution is depicted as black solid line. The inset shows the magnification of the low temperature regime using 
a logarithmic representation of M/N + 1 . (b) Heat capacity per spin for the same parameter set as in panel (a). 
The plot compares the analytical solution (black curve) to the Metropolis MC sampling (grey curve) and QA 
predictions for different number of reads. The inset shows the magnification of the low temperature regime.
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the low temperature regime often only very few configurations with energies slightly above the ground state are 
required to predict the low temperature thermodynamics.

The shown simulations do not exhibit artifacts which could indicate an improper sampling of energeti-
cally equivalent states, although such configurations exist in particular in the considered Ising model already 
due to translation invariance. In principle, e.g. an exponential bias of degenerate ground or low energy state 
 configurations20 could be expected to lead to inappropriate low temperature predictions, but the current results 
do not show such discrepancies. We believe that the robustness of the approach relies on the fact that it is suffi-
cient to identify each low energy configuration x once to be included into the set S, and therefore unfair sampling 
artifacts are screened if the number of reads is high enough. It is conceivable that for larger system sizes N such 
effects become more pronounced, and we observe that for sizes N ≈ 80 on the used machine (Advantage sys-
tem 4.1 with Pegasus topology) indeed more reads are required to obtain reliable results, and then the required 
computing time increases significantly. A good indication for such a need of more reads is that the identified low 
energy states have only a low number of realizations, as then the chances for missing relevant states is increased. 
In general, we note that the considered examples are not adjusted to the machine topology, and we therefore do 
not expect a strong machine type dependence of the prediction quality.

Let us briefly discuss limitations of the proposed sampling approach: First, the system sizes, which can be 
considered with QA, are currently limited due to the available machine sizes. However, the development of 
quantum annealing is still at its beginning and progressing fast, hence it can be expected that in the future faster 
and highly connected machines, especially with a higher number of accessible qubits, will be available, which 
will allow to study also models in higher dimensions with first and second order phase transitions also at finite 
temperatures. In the meantime, also the use of hybrid  approaches44, which combine QA and classical minimiza-
tion methods, may turn out to be useful also for finite temperature sampling. Such approaches are in general 
already provided by D-Wave, but they currently require manual repeated sampling due to the lower efficiency 
compared to pure QA. Also, overriding the automatic coupling constant renormalization is not possible, as the 
focus of the approach is to find most efficiently the true ground state. Nevertheless, the use of hybrid methods 
allows to study significantly larger system sizes than with pure  QA9.

The second limitation is that QA requires to express the problem in terms of an Ising or QUBO formulation. 
We emphasize that the 1D Ising model was mainly used here to have an exact solution for benchmarking the 
results. Nevertheless, the methodology is applicable also to other problems where thermal excitations can play 
a role, e.g. for (weak) coherency strains in microstructures with long range elastic  interactions9. In general, the 
Ising or QUBO limitation can actually be less severe as it may appear. To illustrate this, let us consider a simple 
three state system, k = 1, 2, 3 with discrete states xk and energy levels Ek . This case can be represented through 
the Ising Hamiltonian H =

∑N
i<j Jijsisj +

∑N
i hisi with N = 2 spins. The three parameters J12 , h1 and h2 can be 

uniquely determined via a linear system of equations from the given energy values Ek by identifying the states 
xk with spin pair configurations (s1, s2) . As the Ising model leads to 2N configurations, there is one undesired 
state in this example, which can simply be omitted in the calculation of the thermodynamic properties. This way 
illustrates how the approach for obtaining low temperature data can be extended to general problems beyond 
the Ising or QUBO model.

Finally, it is not a priori clear up to which temperature the QA approach can deliver quantitative results. As 
demonstrated in this work, the use of more samples can improve the results, and a convergence study could be 
performed to extrapolate to the limit of infinite sample sizes. However, in practise such an approach will probably 
less useful, as it effectively leads to a sampling of the entire phase space, and then conventional approaches can be 
used more efficiently. Therefore, we believe that the QA sampling approach will be most useful to complement 
classical methods like Metropolis or Wang-Landau sampling, and will play its strengths in the low temperature 
limit at low computational overhead, where the other approaches are less suitable, in particular if anyway QA 
minimization is employed.

Methods
Quantum annealing. Like general purpose quantum computers, quantum annealers use qubits to process 
and store information, physically realized via superconducting loops, which represents different spin states via 
clockwise or anticlockwise circulating  currents45. The interaction of these superconducting loops with external 
flux biases allows the construction of an energy landscape, where energy difference and barrier height are con-
trolled via these  fluxes45. At the start of the computation, the system is initialized in the ground state of a known 
Hamiltonian H0 ∼ −

∑

i σ
x
i  with Pauli matrices σi , i.e. a strong transverse magnetic  field46,47. During the anneal-

ing process, the Hamiltonian is turned into the desired one based on an Ising  model48 Hp =
∑

i hisi +
∑

i<j Jijsisj 
with spin states si = ±1 , bias hi and couplings Jij between spins si and sj , for which an energetic minimum is 
sought, min{si=±1} Hp.

The annealing process follows the time  dependence49 H(s) = 1
2A(s)H0 +

1
2B(s)Hp with normalized anneal 

parameter s ∈ [0, 1] and annealing evolution functions A(s) and B(s). For s = 0 , A(0) ≫ B(0) , the initial, well 
known ground state is present, while for s = 1 , A(1) ≪ B(1) , the system is expressed through the desired problem 
 Hamiltonian43. In a standard annealing schedule the annealing parameter increases linearly, where varying this 
curve via pauses and quenches leads to a freezing of the system at an intermediate point with excited energy 
 states50. This allows the sampling of the quantum Boltzmann distribution and a comparison towards classical 
estimators shows performance advantages of the quantum annealer for increasing system  sizes50. Also, reverse 
annealing is possible, where qubits are initialized in a classical state and local minima are then searched around 
this  state51.

The Hamiltonians H0 and Hp do not  commute48, and the time of the initial Hamiltonian to adopt the low 
energy state is sufficiently large to ensure the validity of the adiabatic theorem of quantum  mechanics52, which 
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states that a system remains in its eigenstate, if changes occur adiabatically. Nevertheless, the machines are not 
perfect and do not always adopt the corresponding low energy state of the system. Therefore, also higher energy 
states are found, which differ from the ground state, especially if energetically close low energy states exist, a 
suitable number of repetitions is made and the annealing process is repeated according to a specified number 
of reads.

In our work the application of spin flip reversals is beneficial and improves the sampling further. This fea-
ture reflects that the machine is technically not absolutely invariant under an inversion of spins due to slight 
asymmetries. To overcome an artificial bias, the annealer can automatically transform the couplings according 
to hi → higi and Jij → Jijgigj with random gauges gi ∈ {−1,+1} , which leave the physical problem invariant.

We use the D-Wave framework  Leap53, as it allows to directly formulate the problem in terms of an Ising 
Hamiltonian. The standard embedding composite EmbeddingComposite, which automatically minor-embeds54 a 
problem into a sampler, is used in this work. Depending on the problem size, the given number of reads (samples) 
is distributed over several backend calls due to time limits of individual calls.

All quantum annealing calculations are repeated n = 10 times to determine the standard deviation 
σ = ±

√

1
n−1

∑n
i=1(xi − x̄)2  , which is presented as shaded area in the plots. Here, n refers to the number of 

experiment repetitions, and for each of them, the given total number of reads is used.

Metropolis Monte Carlo. Starting point of the Metropolis Monte Carlo sampling is the generation of ran-
dom spin configurations. In each iteration all spins are flipped and this new configuration is accepted, if the 
energy is lower than the previous one, i.e. �E < 0 . If the new energy is higher, the configuration is accepted with 
a probability given by the Boltzmann factor exp(−�E/kT) . For each configuration in particular the magnetiza-
tion M =

∑N
i=1 si is calculated and averaged along the generated trajectory. These calculations are repeated for 

each temperature.

Data availability
Data that was obtained during this project will be made available by the corresponding author upon request.

Received: 24 February 2023; Accepted: 19 April 2023

References
 1. Irbäck, A., Knuthson, L., Mohanty, S. & Peterson, C. Folding lattice proteins with quantum annealing. Phys. Rev. Res. 4, 043013. 

https:// doi. org/ 10. 1103/ PhysR evRes earch.4. 043013 (2022).
 2. Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G. & Aspuru-Guzik, A. Finding low-energy conformations of lattice 

protein models by quantum annealing. Sci. Rep. 2, 571. https:// doi. org/ 10. 1038/ srep0 0571 (2012).
 3. Boyda, E. et al. Deploying a quantum annealing processor to detect tree cover in aerial imagery of California. PLoS Onehttps:// 

doi. org/ 10. 1371/ journ al. pone. 01725 05 (2017).
 4. Neukart, F. et al. Traffic flow optimization using a quantum annealer. Front. ICT 4, 55. https:// doi. org/ 10. 3389/ fict. 2017. 00029 

(2017).
 5. Ohzeki, M., Miki, A., Miyama, M. & Terabe, M. Control of automated guided vehicles without collision by qantum annealer and 

digital devices. Front. Comput. Sci.https:// doi. org/ 10. 3389/ fcomp. 2019. 00009 (2019).
 6. Albash, T. & Lidar, D. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8, 

031016. https:// doi. org/ 10. 1103/ PhysR evX.8. 031016 (2018).
 7. King, A. et al. Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets. Nat. 

Commun. 12, 1113. https:// doi. org/ 10. 1038/ s41467- 021- 20901-5 (2021).
 8. Tasseff, B. et al. On the emerging potential of quantum annealing hardware for combinatorial optimization. Preprint at https:// 

doi. org/ 10. 48550/ arXiv. 2210. 04291 (2022).
 9. Sandt, R., Le Bouar, Y. & Spatschek, R. Quantum annealing for microstructure equilibration with long-range elastic interactions. 

Sci. Rep. 13, 6036. https:// doi. org/ 10. 1038/ s41598- 023- 33232-w (2023).
 10. Harris, R. et al. Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165. https:// doi. org/ 10. 1126/ 

scien ce. aat20 25 (2018).
 11. Kairys, P. et al. Simulating the Shastry-Sutherland ising model using quantum annealing. PRX Quantum 1, 020320. https:// doi. 

org/ 10. 1103/ PRXQu antum.1. 020320 (2020).
 12. Kitai, K. et al. Designing metamaterials with quantum annealing and factorization machines. Phys. Rev. Res. 2, 013319. https:// 

doi. org/ 10. 1103/ PhysR evRes earch.2. 013319 (2020).
 13. Liu, J. et al. Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer. Comput. Mater. Sci. 173, 109429. 

https:// doi. org/ 10. 1016/j. comma tsci. 2019. 109429 (2020).
 14. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355. https:// doi. org/ 10. 1103/ 

PhysR evE. 58. 5355 (1998).
 15. Morita, S. & Nishimori, H. Mathematical foundation of quantum annealing. J. Math. Phys. 49, 125210. https:// doi. org/ 10. 1063/1. 

29958 37 (2008).
 16. Mukherjee, S. & Chakrabarti, B. K. On the question of ergodicity in quantum spin glass phase and its role in quantum annealing. 

J. Phys. Soc. Jpn. 88, 061004. https:// doi. org/ 10. 7566/ JPSJ. 88. 061004 (2019).
 17. Chakrabarti, B. K. & Mukherjee, S. Quantum annealing and computation. In Reference Module in Materials Science and Materials 

Engineering. https:// doi. org/ 10. 1016/ B978-0- 323- 90800-9. 00057-3 (Elsevier, 2023).
 18. Nelson, J., Vuffray, M., Lokhov, A., Albash, T. & Coffrin, C. High-quality thermal Gibbs sampling with quantum annealing hard-

ware. Phys. Rev. Appl. 17, 044046. https:// doi. org/ 10. 1103/ PhysR evApp lied. 17. 044046 (2022).
 19. Vuffray, M., Coffrin, C., Kharkov, Y. & Lokhov, A. Programmable quantum annealers as noisy Gibbs samplers. PRX Quantum 3, 

020317. https:// doi. org/ 10. 1103/ PRXQu antum.3. 020317 (2022).
 20. Mandrà, S., Zhu, Z. & Katzgraber, H. Exponentially biased ground-state sampling of quantum annealing machines with transverse-

field driving hamiltonians. Phys. Rev. Lett. 118, 070502. https:// doi. org/ 10. 1103/ PhysR evLett. 118. 070502 (2017).
 21. Könz, M., Mazzola, G., Ochoa, A., Katzgraber, H. & Troyer, M. Uncertain fate of fair sampling in quantum annealing. Phys. Rev. 

A 100, 030303. https:// doi. org/ 10. 1103/ PhysR evA. 100. 030303 (2019).

https://doi.org/10.1103/PhysRevResearch.4.043013
https://doi.org/10.1038/srep00571
https://doi.org/10.1371/journal.pone.0172505
https://doi.org/10.1371/journal.pone.0172505
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fcomp.2019.00009
https://doi.org/10.1103/PhysRevX.8.031016
https://doi.org/10.1038/s41467-021-20901-5
https://doi.org/10.48550/arXiv.2210.04291
https://doi.org/10.48550/arXiv.2210.04291
https://doi.org/10.1038/s41598-023-33232-w
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1126/science.aat2025
https://doi.org/10.1103/PRXQuantum.1.020320
https://doi.org/10.1103/PRXQuantum.1.020320
https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.1016/j.commatsci.2019.109429
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1063/1.2995837
https://doi.org/10.1063/1.2995837
https://doi.org/10.7566/JPSJ.88.061004
https://doi.org/10.1016/B978-0-323-90800-9.00057-3
https://doi.org/10.1103/PhysRevApplied.17.044046
https://doi.org/10.1103/PRXQuantum.3.020317
https://doi.org/10.1103/PhysRevLett.118.070502
https://doi.org/10.1103/PhysRevA.100.030303


8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6754  | https://doi.org/10.1038/s41598-023-33828-2

www.nature.com/scientificreports/

 22. Pelofske, E., Golden, J., Bärtschi, A., O’Malley, D. & Eidenbenz, S. Sampling on NISQ Devices: “Who’s the Fairest One of All?” in 
2021 IEEE International Conference on Quantum Computing and Engineering (QCE), 207–217, https:// doi. org/ 10. 1109/ QCE52 
317. 2021. 00038 (2021).

 23. Ochoa, A., Jacob, D., Mandrà, S. & Katzgraber, H. Feeding the multitude: A polynomial-time algorithm to improve sampling. Phys. 
Rev. E 99, 043306. https:// doi. org/ 10. 1103/ PhysR evE. 99. 043306 (2019).

 24. Kumar, V., Tomlin, C., Nehrkorn, C., O’Malley, D. & Dulny III, J. Achieving fair sampling in quantum annealing. Preprint at https:// 
doi. org/ 10. 48550/ arXiv. 2007. 08487 (2020).

 25. Metropolis, N., Rosenbluth, A., Rosenbluth, M. & Teller, A. Equation of state calculations by fast computing machines. J. Chem. 
Phys. 21, 1087–1092. https:// doi. org/ 10. 1063/1. 16991 14 (1953).

 26. Landau, D. & Binder, K. A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, 2021).
 27. Wang, F. & Landau, D. P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 

2050–2053. https:// doi. org/ 10. 1103/ PhysR evLett. 86. 2050 (2001).
 28. Dall, J. & Sibani, P. Faster Monte Carlo simulations at low temperatures. The waiting time method. Comput. Phys. Commun. 141, 

260–267. https:// doi. org/ 10. 1016/ S0010- 4655(01) 00412-X (2001).
 29. Zhu, Z., Ochoa, A. & Katzgraber, H. Fair sampling of ground-state configurations of binary optimization problems. Phys. Rev. E 

99, 063314. https:// doi. org/ 10. 1103/ PhysR evE. 99. 063314 (2019).
 30. Somma, R., Batista, C. & Ortiz, G. Quantum approach to classical statistical mechanics. Phys. Rev. Lett. 99, 030603. https:// doi. 

org/ 10. 1103/ PhysR evLett. 99. 030603 (2007).
 31. Yamamoto, M., Ohzeki, M. & Tanaka, K. Fair sampling by simulated annealing on quantum annealer. J. Phys. Soc. Jpn. 89, 025002. 

https:// doi. org/ 10. 7566/ JPSJ. 89. 025002 (2020).
 32. Torlai, G. & Melko, R. Learning thermodynamics with Boltzmann machines. Phys. Rev. B 94, 165134. https:// doi. org/ 10. 1103/ 

PhysR evB. 94. 165134 (2016).
 33. Xu, G. & Oates, W. Adaptive hyperparameter updating for training restricted Boltzmann machines on quantum annealers. Sci. 

Rep. 11, 2727. https:// doi. org/ 10. 1038/ s41598- 021- 82197-1 (2021).
 34. Sato, T., Ohzeki, M. & Tanaka, K. Assessment of image generation by quantum annealer. Sci. Rep. 11, 13523. https:// doi. org/ 10. 

1038/ s41598- 021- 92295-9 (2021).
 35. Li, R., Albash, T. & Lidar, D. Limitations of error corrected quantum annealing in improving the performance of Boltzmann 

machines. Quantum Sci. Technol. 5, 045010. https:// doi. org/ 10. 1088/ 2058- 9565/ ab9aab (2020).
 36. Goto, H., Lin, Z. & Nakamura, Y. Boltzmann sampling from the Ising model using quantum heating of coupled nonlinear oscil-

lators. Sci. Rep. 8, 7154. https:// doi. org/ 10. 1038/ s41598- 018- 25492-8 (2018).
 37. Edwards, S. & Anderson, P. Theory of spin glasses. J. Phys. F Met. Phys. 5, 965–974. https:// doi. org/ 10. 1088/ 0305- 4608/5/ 5/ 017 

(1975).
 38. Sherrington, D. & Kirkpatrick, S. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 1792–1795. https:// doi. org/ 10. 1103/ PhysR 

evLett. 35. 1792 (1975).
 39. Zhang, B., Wagenbreth, G., Martin-Mayor, V. & Hen, I. Advantages of unfair quantum ground-state sampling. Sci. Rep. 7, 1044. 

https:// doi. org/ 10. 1038/ s41598- 017- 01096-6 (2017).
 40. Huang, K. Statistical Mechanics (Wiley, 1987).
 41. Pelofske, E., Hahn, G. & Djidjev, H. Optimizing the Spin Reversal Transform on the D-Wave 2000Q in 2019 IEEE International 

Conference on Rebooting Computing (ICRC), 1–8, https:// doi. org/ 10. 1109/ ICRC. 2019. 89147 19 (2019).
 42. D-Wave Systems Inc. Reverse Quantum Annealing for Local Refinement of Solutions [Whitepaper]. https:// www. dwave sys. com/ 

resou rces/ white- paper/ rever se- quant um- annea ling- for- local- refin ement- of- solut ions (2017).
 43. Kadowaki, T. & Ohzeki, M. Experimental and theoretical study of thermodynamic effects in a quantum annealer. J. Phys. Soc. Jpn. 

88, 061008. https:// doi. org/ 10. 7566/ JPSJ. 88. 061008 (2019).
 44. Raymond, J. et al. Hybrid quantum annealing for larger-than-QPU lattice-structured problems. ACM Trans. Quantum 

Comput.https:// doi. org/ 10. 1145/ 35793 68 (2023).
 45. Johnson, M. et al. Quantum annealing with manufactured spins. Nature 473, 194–198. https:// doi. org/ 10. 1038/ natur e10012 (2011).
 46. Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224. https:// doi. org/ 10. 

1038/ nphys 2900 (2014).
 47. Rønnow, T. et al. Defining and detecting quantum speedup. Science 345, 420–423. https:// doi. org/ 10. 1126/ scien ce. 12523 19 (2014).
 48. Warren, R. Mathematical methods for a quantum annealing computer. J. Adv. Appl. Math. 3, 82–90. https:// doi. org/ 10. 22606/ jaam. 

2018. 33002 (2018).
 49. Berwald, J. The mathematics of quantum-enabled applications on the D-wave quantum computer. Not. Am. Math. Soc. 66, 832–841. 

https:// doi. org/ 10. 1090/ noti1 893 (2019).
 50. D-Wave Systems Inc. Performance advantage in quantum Boltzmann sampling [Whitepaper]. https:// www. dwave sys. com/ resou 

rces/ white- paper/ perfo rmance- advan tage- in- quant um- boltz mann- sampl ing (2017).
 51. Golden, J. & O’Malley, D. Reverse annealing for nonnegative/binary matrix factorization. PLoS One 16, e0244026. https:// doi. org/ 

10. 1371/ journ al. pone. 02440 26 (2021).
 52. Lucas, A. Ising formulations of many NP problems. Front. Phys.https:// doi. org/ 10. 3389/ fphy. 2014. 00005 (2014).
 53. D-Wave Leap quantum cloud service. https:// cloud. dwave sys. com. Accessed 24 Feb 2023.
 54. Choi, V. Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10, 343–

353. https:// doi. org/ 10. 1007/ s11128- 010- 0200-3 (2011).

Acknowledgements
This research was funded by the German Federal Ministry of Education and Research (BMBF) via the project 
ALANO and the Helmholtz project ZeDaBase. Open access was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - 491111487. The authors gratefully acknowledge the Jülich Super-
computing Centre (https://www.fz-juelich.de/ias/jsc) for funding this project by providing computing time on 
the D-Wave AdvantageTM System JUPSI through the Jülich UNified Infrastructure for Quantum computing 
(JUNIQ).

Author contributions
R.S. and R.S. contributed to analytical and numerical calculations, methodology, visualization and analysis. Both 
authors contributed to the writing of the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

https://doi.org/10.1109/QCE52317.2021.00038
https://doi.org/10.1109/QCE52317.2021.00038
https://doi.org/10.1103/PhysRevE.99.043306
https://doi.org/10.48550/arXiv.2007.08487
https://doi.org/10.48550/arXiv.2007.08487
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevLett.86.2050
https://doi.org/10.1016/S0010-4655(01)00412-X
https://doi.org/10.1103/PhysRevE.99.063314
https://doi.org/10.1103/PhysRevLett.99.030603
https://doi.org/10.1103/PhysRevLett.99.030603
https://doi.org/10.7566/JPSJ.89.025002
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1038/s41598-021-82197-1
https://doi.org/10.1038/s41598-021-92295-9
https://doi.org/10.1038/s41598-021-92295-9
https://doi.org/10.1088/2058-9565/ab9aab
https://doi.org/10.1038/s41598-018-25492-8
https://doi.org/10.1088/0305-4608/5/5/017
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1038/s41598-017-01096-6
https://doi.org/10.1109/ICRC.2019.8914719
https://www.dwavesys.com/resources/white-paper/reverse-quantum-annealing-for-local-refinement-of-solutions
https://www.dwavesys.com/resources/white-paper/reverse-quantum-annealing-for-local-refinement-of-solutions
https://doi.org/10.7566/JPSJ.88.061008
https://doi.org/10.1145/3579368
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1126/science.1252319
https://doi.org/10.22606/jaam.2018.33002
https://doi.org/10.22606/jaam.2018.33002
https://doi.org/10.1090/noti1893
https://www.dwavesys.com/resources/white-paper/performance-advantage-in-quantum-boltzmann-sampling
https://www.dwavesys.com/resources/white-paper/performance-advantage-in-quantum-boltzmann-sampling
https://doi.org/10.1371/journal.pone.0244026
https://doi.org/10.1371/journal.pone.0244026
https://doi.org/10.3389/fphy.2014.00005
https://cloud.dwavesys.com
https://doi.org/10.1007/s11128-010-0200-3


9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6754  | https://doi.org/10.1038/s41598-023-33828-2

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Efficient low temperature Monte Carlo sampling using quantum annealing
	Results
	Spin glass. 
	1D Ising model. 

	Discussion
	Methods
	Quantum annealing. 
	Metropolis Monte Carlo. 

	References
	Acknowledgements


