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Modeling, dynamical analysis 
and numerical simulation of a new 
3D cubic Lorenz‑like system
Haijun Wang 1, Guiyao Ke 2,3*, Jun Pan 4 & Qifang Su 1

Little seems to be considered about the globally exponentially asymptotical stability of parabolic 
type equilibria and the existence of heteroclinic orbits in the Lorenz‑like system with high‑order 
nonlinear terms. To achieve this target, by adding the nonlinear terms yz and x2y to the second 
equation of the system, this paper introduces the new 3D cubic Lorenz‑like system: ẋ = a(y − x) , 
ẏ = b1y + b2yz + b3xz + b4x

2
y , ż = −cz + y

2 , which does not belong to the generalized Lorenz 
systems family. In addition to giving rise to generic and degenerate pitchfork bifurcation, Hopf 
bifurcation, hidden Lorenz‑like attractors, singularly degenerate heteroclinic cycles with nearby 
chaotic attractors, etc., one still rigorously proves that not only the parabolic type equilibria 

Sx = {(x, x, x
2

c
)|x ∈ R, c �= 0} are globally exponentially asymptotically stable, but also there exists a 

pair of symmetrical heteroclinic orbits with respect to the z‑axis, as most other Lorenz‑like systems. 
This study may offer new insights into revealing some other novel dynamic characteristics of the 
Lorenz‑like system family.

In 1963, the introduction of the Lorenz  attractor1,2,3 motivated scholars to reveal the forming mechanism of it 
and other various strange  attractors2,4–22. Based on boundary problem and contraction map, Shilnikov et al.23 
developed an effective tool to study the existence of homoclinic and heteroclinic orbits. When detecting homo-
clinic and heteroclinic trajectories of Lorenz-like systems, by aid of Lyapunov function,  Leonov24 formulated 
another effective method, i.e., fishing principle, which also was applied to solve the Tricomi  problem25. Recently, 
Belykh et al.19 pioneered a new way and developed an elegant geometrical method of synthesizing a piecewise-
smooth ODE system that can switch between several linear systems with known exact solutions that can display a 
resembling the celebrated Lorenz attractor whose structure and bifurcations can be described rigorously without 
any computer assistance. Moreover, Belykh et al.20 performed a rigorous analysis of its homoclinic bifurcations 
that the emergence of sliding motions leads to novel bifurcation scenarios in which bifurcations of unstable 
homoclinic orbits of a saddle can yield stable limit cycles, which are in sharp contrast with their smooth analogs 
that can generate only unstable (saddle) dynamics. In addition, Gonchenko et al.21,22 studied geometrical and 
dynamical properties of the discrete Lorenz-like attractors and conjoined Lorenz twins in three-dimensional 
maps and flows. In contrast to self-excited Lorenz-like attractors, some hidden ones were coined in the Lorenz-
like  systems12–14. Meanwhile, Zhang and  Chen15, and Kuznetsov et al.26 generalized the second part of the cel-
ebrated Hilbert’s 16th  problem27 on the number and mutual disposition of attractors and repellers in the chaotic 
multidimensional dynamical systems, and, in particular, their dependence on the degree of polynomials in the 
model. From the point of view of boundedness and Lyapunov exponents, Liao et al.28,29 argued that the former 
attracts trajectories of the studied system with the way from outside to inside, and the latter pushes the trajec-
tories with the way from inside to outside, which are two basic sufficient conditions that guarantee the studied 
continuous system to exhibit chaotic motions.

With the presence of powerful computational tools, scientists shifted to computer-assisted proof for the 
Lorenz  attractor30–32. Dated back to 1999, based on the Lorenz system and the method of chaotification, Chen 
and  Ueta7 reported the finding of a new chaotic attractor in a new system, i.e., the Chen attractor. Following 
this thought, many researchers later proposed many other systems which exhibit various strange attractors, the 
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Lü  attractor8, Li  attractor9, Rabinovich  attractor10, Wang-Chen  attractor11, Sprott  attractor17, and  others2,18–22. 
Among these chaotic systems, a large number of  systems2,14,18,33–48 related to the Lorenz system, i.e., Lorenz-like/
type systems, have been intensively studied by researchers, which in turn might account for revealing the nature 
of the Lorenz system itself. For example, the broken version of coexisting pseudo and true singularly degenerate 
heteroclinic cycles, or explosion version of normally hyperbolic stable foci could create most of the Lorenz-like 
attractors, i.e., two-, three-, four-wing/scroll self-excited or hidden chaotic/hyperchaotic  attractors14,18,33–48, shed-
ding light on the forming mechanism of chaos.

In 2006, Li et al. formulated a method for proving the existence of heteroclinic orbits to the origin and two 
nontrivial equilibria of the Chen system, i.e., combining Lyapunov function, the definitions of both α-limit set 
and ω-limit  set49. Later on, other  researchers14,37,38,42,43,47,48,50–60 applied it to other Lorenz-like systems one after 
another, which thus can be considered as a general dynamical property for the Lorenz system family. However, 
we find that this method is not applicable to the simple Lorenz-like system (1). Fortunately, performing a similar 
study as the method of chaotification and introducing the nonlinear terms yz and x2y to the second equation of it, 
we introduce a new 3D cubic Lorenz-like system, i.e., the one (2), and present its following dynamical properties:

(1)  The parabolic type equilibria are globally exponentially asymptotically stable.
(2)  The existence of a pair of heteroclinic orbits to the origin and a pair of symmetrical equilibria.

Our study outcome not only uncovers the interesting dynamics of the cubic Lorenz-like system family, but 
also provides a reference on predicting the similar dynamical behaviors of other models, especially the higher 
dimensional ones.

Therefore, in the ongoing pursuit to determine which experimental conditions may require a more com-
plicated model, the present work may offer characteristics of that 3D cubic Lorenz-like system which may be 
suitable for comparison with experimental data.

The rest of this paper is arranged as follows. Section "Preliminary" introduces some basic concepts. In Sec-
tion "The new 3D cubic Lorenz-like system", one formulates a new 3D cubic Lorenz-like system and presents 
some basic dynamical properties of it, i.e., the Chen-like attractor and Lyapunov exponents, bifurcation analysis, 
singularly degenerate heteroclinic cycles or normally hyperbolic stable foci with nearby chaotic attractors. Sec-
tion "Basic behaviors" studies the stability and bifurcation of equilibria by utilizing the center manifold theorem, 
Routh-Hurwitz criterion, the theory of pitchfork bifurcation, Hopf bifurcation and Lyapunov function. In Sec-
tion "Existence of heteroclinic orbit", combining concepts of α-limit set, ω-limit set and the theory of Lyapunov 
function, one proves the existence of heteroclinic orbits. Conclusion remarks are drawn in Section "Conclusions".

Preliminary
Consider the differential system ẋ = f (x, ξ), where x ∈ R

n and ξ ∈ R
m are vectors representing phase variables 

and control parameters respectively. Assume that f  is of class C∞ in Rn × R
m . Suppose that system has an equi-

librium point x = x0 at ξ = ξ0 . If at least one eigenvalue of the Jacobian matrix associated with linearized vector 
field about x0 is zero or has a zero real part, then x0 is said to be non-hyperbolic or semi-hyperbolic.

In this paper, system (2) has a line of semi-hyperbolic equilibria Sz = {(0, 0, z)|z ∈ R} , given by the z-axis. 
As the value of z varies, Sz are saddles, or foci or nodes normally hyperbolic to the z-axis.

In this paper, we define the set Sx = {(x, x, x2c )|x ∈ R, c �= 0} to the parabolic type equilibria.
Referring  to61, the generic pitchfork bifurcation is that the restriction of a system to the center manifold is 

locally topologically equivalent near the bifurcating equilibrium point to one of the following normal forms, 
ξ̇ = mξ ± ξ 3 . As stated  in18,47,48,51,52,62,63, for system (2), the degenerate pitchfork bifurcation is defined to be the 
symmetric bifurcation occurring as the certain parameter crosses the zero value, i.e., c = 0 , due to the line of 
equilibria existing for c = 0 . The main difference between the generic and degenerate pitchfork bifurcation is that, 
for c = 0 , the flow of the studied system restricted to the 1D center manifold coincides with the center manifold 
of the system at the origin, associated with the invariant z-axis, which is filled by equilibrium points if c = 0.

Let the set of points: S (either connected or disconnected) be equilibria of ẋ = f (x, ξ) and D ⊂ R
n to be 

a domain containing S. Let V : D → R be a continuously differentiable function such that V(S) = 0 and 
V(x) > 0 in D\S , V̇(x) ≤ 0 in D. The derivative of V(x) along the trajectories of ẋ = f (x, ξ) , denoted by 
V̇(x) , is given by V̇(x) = �n

i=1
∂V
∂xi

ẋi = �n
i=1

∂V
∂xi

fi(x) . Then, S is stable. If V̇(x) < 0 in D\S , then S is asymptoti-
cally stable. Moreover, if D = R

n , then S is globally asymptotically stable. In addition, ∀ε > 0 , V0 = V(t0) , if 
V ≤ V0e

−2ε(t−t0) → 0, t → +∞ , then S is globally exponentially asymptotically stable.

The new 3D cubic Lorenz‑like system
Based on the Lorenz-like  system1:

one in this section proposes the following 3D autonomous chaotic system:

(1)







ẋ = a(y − x),
ẏ = −xz + cy, a, b, c ∈ R,

ż = −bz + y2,
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where a, c, bi ∈ R , i = 1, 2, 3, 4.

Remark 3.1 Referring  to1, the results on stability and Hopf bifurcation of P± = (±
√
bc,±

√
bc, c) of system (1) 

are erroneous. To this end, we firstly derive the right result by Routh-Hurwitz criterion and Projection Method. 
Secondly, that system undergoes Bautin bifurcation (generalized or degenerate Hopf bifurcation) at P± when 
parameters a, b, c satisfy the golden proportion a = 1+

√
5

2
c , b = −1+

√
5

2
c . Finally, a hidden Lorenz-like attractor 

coexisting with one saddle in the origin and two stable equilibria is coined based on bifurcation diagrams. The 
manuscript has been uploaded to the web site: “https://github.com/IjbcThree/Kim”, and the interested readers 
can download it.

Set X = (x, y, z)T , system (2) is rewritten as

Apparently, system (2) is not topologically equivalent to the generalized Lorenz systems  family2, and it shows a 
Chen-like attractor with three Lyapunov exponents: (�LE1 , �LE2 , �LE3) = (0.271306, 0.000084, −1.203645) when 
(a, b1, b2, b3, b4, c) = (3, 2.5,−7,−100, 8, 0.3) and (x10 , y

1
0 , z

1
0) = (0.1382, 0.1618, 0)× 1e−7 , as depicted in Fig. 1.

Furthermore, the chaotic dynamics are examined in the following two cases:
(1) (a, b2, b3, b4, c) = (3,−7,−50, 8, 0.3) , b1 ∈ [0, 4]
In this case, based on Proposition 4.1 and 4.7 in Section "Basic behaviors", the equilibria S± exist and are 

stable for b1 ∈ (0, 1.2210) . This coincides well with the bifurcation diagram in Fig. 2a. In particular, at b1 = 1 , 
trajectories of system (2) change from the stable S+ to the stable S− , which is a sign to chaos as the  ones14,38, 
especially the hidden one illustrated in Fig. 3. Particularly, when 1.180 ≤ b1 < 1.2210 , there exist chaotic attrac-
tors coexisting with stable S± and the saddle S0 . While 1.2210 < b1 < 2.869 , system (2) experiences chaotic 
behaviors coexisting with unstable S± and the saddle S0 . But there are periodic three windows in the chaotic 
band for 1.576 < b1 < 1.98 . When 2.869 < b1 < 4 , there is a period-doubling bifurcation window, which is an 
important route to chaos and is also similar to its special case  [1, Figure 4, p.1888].

(2) (a, b1, b2, b3, b4) = (3, 2.5,−7,−100, 8) , c ∈ [0, 2]
At this time, from Proposition 4.1, 4.2 and 4.7 in Sectipn "Basic behaviors", the non-isolated or line of semi-

hyperbolic equilibria Sz exist for c = 0 , and the equilibria S± also exist and are stable for c ∈ (3.0234, 10.8865) . 
For c = 0 , singularly degenerate heteroclinic cycles and normally hyperbolic stable foci Sz with nearby chaotic 
attractors exist, as shown in Fig. 2b, which is in accordance with Figs. 4 and 5, despite a little bit on the parameters 
b3 and b4 . When 0 < c < 0.6 , system (2) undergoes chaotic behaviors coexisting with unstable S± and the saddle 
S0 . While 0.6 < c < 0.2 , there is a period-doubling bifurcation window, foreboding a coming chaos.

(2)







ẋ = a(y − x),
ẏ = b1y + b2yz + b3xz + b4x

2y,
ż = −cz + y2,

(3)Ẋ =
�−a a 0

0 b1 0

0 0 − c

�

X + x

�

0 0 0

0 0 b3
0 0 0

�

X +





0

b2yz + b4x
2y

y2



.

Figure 1.  Phase portrait and Lyapunov exponents of system (2) with (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−100, 8, 0.3) 
and (x10 , y

1
0 , z

1
0) = (0.1382, 0.1618, 0)× 1e−7.
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Remark 3.2 In contrast with other Lorenz-like  systems12–14,51 and system (1) i.e., a special case of system (2), it 
is a difficult task to detect the hidden Lorenz-like attractors in system (2), which might contribute to the power 
of nonlinear terms and the number of parameters.

Further, based on the dynamics of Sz in Proposition 4.4 in Section "Existence of heteroclinic orbit" and 
through a detailed numerical study, we may state the following numerical result.

Numerical Result 3.1 If c = 0 and a[b1 + (b2 + b3)z1] > 0 for z1 ∈ R , then the 1D unstable manifolds 
Wu(S1z ) ( S1z = (0, 0, z1) ) of each normally hyperbolic saddle S1z given in Proposition 4.4 tend to one of the 
normally hyperbolic stable nodes (resp. foci) S2z = (0, 0, z2) as t → ∞ , where z2 satisfies b1 + b2z2 − a < 0 , 
a[b1 + (b2 + b3)z2] < 0 and (τ1)2 + 4ρ1 = (a− b1 − b2z)

2 + 4a[b1 + (b2 + b3)z] ≥ 0 (resp. < 0 ), which 
together with the line of equilibria between S1z and S2z forms singularly degenerate heteroclinic cycles. With a 
small perturbation of c > 0 , the broken version of singularly degenerate heteroclinic cycles, or explosions of 
normally hyperbolic stable nodes or foci creates chaotic attractors.

Take, for instance, (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−138, 9, 0) and (x1,20 , y1,20 ) = (±1.382,±1.618)× 10−6 , 
z2,1,3,4,5,6,7,8,90 = −0.05, 0, 0.01, 0.01701, 0.01715, 0.01719, 0.0173, 0.02, 0.035 . At this time, the dynamics of Sz are 
included in Table 1 when the value of z varies.

Figure 2.  Bifurcation diagrams of system (2) with (a) (a, b2, b3, b4, c) = (3,−7,−50, 8, 0.3) , b1 ∈ [0, 4] and (b) 
(a, b1, b2, b3, b4) = (3, 2.5,−7,−100, 8) , c ∈ [0, 2] , and initial value (x10 , y

1
0 , z

1
0) = (0.1382, 0.1618, 0)× 1e−7.

Figure 3.  (a) The hidden attractor with (a, b1, b2, b3, b4, c) = (3, 1.179,−7,−50, 8, 0.3) and initial conditions 
(±0.05,±0.03, 0.03) , (b) Lyapunov exponents. Outgoing separatrices of unstable zero equilibrium S0 with 
initial conditions (x1,20 , y1,20 , z10) = (±0.1382,±0.1618, 0)× 1e−7 tend to two symmetric stable equilibria 
S± = (±0.0805,±0.0805, 0.0216).
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The 1D Wu(S1,2,3z ) (resp. Wu(S4,5,6z ) ) of normally hyperbolic saddles S2,1,3z = (0, 0,−0.05) , (0, 0, 0), (0, 0, 0.01) 
(resp. S4,5,6z = (0, 0, 0.01701), (0, 0, 0.01715), (0, 0, 0.01719)) tend upward the normally hyperbolic stable foci 
(0, 0, 0.3814), (0, 0, 0.0839) and (0, 0, 0.0375) (resp. nodes (0, 0, 0.0175), (0, 0, 0.01734) and (0, 0, 0.01729)) in Sz 
as t → ∞ , forming singularly degenerate heteroclinic cycles, which further also collapse into Chen-like attractor 
depicted in Figs. 4, 5 and 7 when c = 0.08 . Moreover, as shown in Fig. 6, explosions of normally hyperbolic stable 
foci (0, 0, 0.0173), (0, 0, 0.02) and (0, 0, 0.035) also create Chen-like attractors. Figures 4, 5 and 6 only depict 
some of them. The existence of infinitely many Sz given in Proposition 4.3 suggests that there exists an infinite 
set of singularly degenerate heteroclinic cycles and normally hyperbolic stable nodes and foci.

Figure 4.  Chen-like attractor created through collapse of singularly degenerate heteroclinic cycles consisting 
of normally hyperbolic saddles S1,2,3z  and normally hyperbolic stable foci (0, 0, 0.3814), (0, 0, 0.0839) and 
(0, 0, 0.0375) when (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−138, 9, 0) and (x1,20 , y1,20 ) = (±1.382,±1.618)× 10−6 , 
z2,1,30 = −0.05, 0, 0.01.

Figure 5.  Chen-like attractor created through collapse of singularly degenerate heteroclinic cycles consisting 
of normally hyperbolic saddles S4,5,6z  and normally hyperbolic stable nodes (0, 0, 0.0175), (0, 0, 0.01734) and 
(0, 0, 0.01729) when (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−138, 9, 0) and (x1,20 , y1,20 ) = (±1.382,±1.618)× 10−6 , 
z4,5,60 = 0.01701, 0.01715, 0.01719.

Table 1.  The dynamics of Sz with (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−138, 9, 0) and z ∈ R.

z [35.3499,∞) (0.0175, 35.3499) (0.0172, 0.0175] 0.0172 (−∞, 0.0172)

Sz Stable node Stable focus Stable node a 1D Ws

loc
 and a 2D Wc

loc
Saddle
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Figure 6.  Chen-like attractor created through explosions of normally hyperbolic stable foci when 
(a, b1, b2, b3, b4) = (3, 2.5,−7,−138, 9) (x1,20 , y1,20 ) = (±1.382,±1.618)× 10−6 , z7,8,90 = 0.0173, 0.02, 0.035.

Figure 7.  Lyapunov exponents of the bifurcated Chen-like attractor when (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−138, 9, 0.08).

Figure 8.  Bifurcation diagrams of the system (2) with (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−138, 9, 0) and 
(x10 , y

1
0) = (1.382, 1.618)× 10−6 and (a) z0 ∈ [−1.5, 1] , (b) z0 ∈ [0.004, 0.02].
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Remark 3.3 Set (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−138, 9, 0).
(1) If z < 0.01701 , the trajectories of system (2) starting from the unstable manifold of Sz = (0, 0, z) ultimately 

toward the normally hyperbolic stable foci Sz with z > 0.0175 , forming singularly degenerate heteroclinic cycles, 
as depicted in Figs. 4a and 8.

(2) If 0.01701 ≤ z < 0.0172 , the trajectories of system (2) starting from the unstable manifold of Sz = (0, 0, z) 
ultimately toward the normally hyperbolic stable nodes Sz with 0.0172 < z ≤ 0.0175 , forming singularly degen-
erate heteroclinic cycles, as depicted in Figs. 5a and 8.

(3) If z > 0.0172 , all of Sz = (0, 0, z) are normally hyperbolic stable nodes or node-foci, as shown in Figs. 6a 
and 8.

Basic behaviors
In this section, the stability and bifurcation of equilibria of system (2) are studied by aid of the center manifold 
theorem, Routh-Hurwitz criterion, the theory of pitchfork bifurcation and Hopf bifurcation, Lyapunov func-
tion and so on.

Firstly, from the algebraic structure of system (2), one easily presents the distribution of equilibrium points 
in the following proposition.

Proposition 4.1 (i) When c = 0 , Sz = {(0, 0, z)|z ∈ R} is a line of semi-hyperbolic equilibria of system (2).

(ii) When b1 = 0 , c  = 0 and cb4 + b3 + b2 = 0 , Sx = {(x, x, x2c )|x ∈ R, c �= 0} is the parabolic type equilibria.

(iii) While cb1[cb4 + b3 + b2] < 0 , system (2) has three equilibria: S0 = (0, 0, 0) and a pair of symmetrical equilibria

Secondly, for the convenience of determining the stability and bifurcation of equilibria, one has to calculate 
Jacobian matrix associated vector field of system (2):

One can easily calculate the characteristic equations of points of Sz , S0 , Sx and S±:

(1) The one of each of Sz is

with �1 = 0 , �2,3 = (b1+b2z−a)±
√

(b1+b2z−a)2+4a(b1+(b2+b3)z)
2

.

(2) The one of S0 is

with �1 = −a , �2 = b1 and �3 = −c.

(3) For b1 = 0 , c  = 0 and cb4 + b3 + b2 = 0 , the one of each of Sx is

with �1 = 0 , �2,3 =
−(a+c+ b3x

2

c )±
√

(a+c+ b3x
2

c )2−4x2(ac+b3+2cb4)

2
.

(4) The one of S± is:

Proposition 4.2 (1) A generic pitchfork bifurcation happens at S0 when b1 crosses the null value and 
cb1(cb4 + b3 + b2) < 0 . (2) If c passes through the null value and cb1(cb4 + b3 + b2) < 0 , then system (2) under-
goes a degenerate pitchfork bifurcation at Sz.

S± = (±

√

−
cb1

cb4 + b3 + b2
,±

√

−
cb1

cb4 + b3 + b2
,−

b1

cb4 + b3 + b2
).

J =





−a a 0

[3pt]b3z + 2b4xy b1 + b2z + b4x
2 b2y + b3x

[3pt]0 2y − c



.

�[�2 − (b1 + b2z − a)�− a(b1 + (b2 + b3)z)] = 0

(�+ a)(�− b1)(�+ c) = 0

�[�2 + (a+ c +
b3x

2

c
)�+ ac + x2(b3 + 2cb4)] = 0

(4)�
3 + (a+ c − b1b3

cb4+b3+b2
)�2 + c(a+ b1(2b2+b3+2ab4)

cb4+b3+b2
)�+ 2acb1 = 0.
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Proof (1) Assume c(cb4 + b3 + b2) �= 0 , c  = 0 and b1 = 0 . The matrix associated with the vector field (2) lin-
earized about S0 has the eigenvalues: �1 = −a , �2 = b1 = 0 and �3 = −c with the corresponding eigenvectors

Set b̄1 = b1 − 0 . System (2) becomes

Next, the following transformation

converts system (5) into

Based on the center manifold theorem, one can study the two-parameter family of first-order ordinary differential 
equations on the center manifold of S0:

to determine the stability of S0 near b̄1 = 0.
Therefore, one arrives at

 through substituting the expanded expressions of V(u, b̄1) and S(u, b̄1):

into system (6).
Further, the restricted vector field of system (6) on its center manifold

is obtained by substituting those expressions in (7) into system (6).
Since U(0, 0) = 0, ∂U

∂u

∣

∣

u=0,b̄1=0
= 0 and

a generic pitchfork bifurcation happens at S0 according to the pitchfork bifurcation  theory23,64–66.
(2) When the parameter c crosses the zero value, the family of this vector field crosses this degenerate situa-

tion transversally. More precisely speaking, for cb1[cb4 + b3 + b2] < 0 , the line of equilibria Sz existing for c = 0 
disappears and equilibria S0 and S± appear in system (2).

The proof is over.   �

Proposition 4.3 Assume a > 0 , b1 > 0 and c > 0 . The saddle S0 has a 1D Wu
loc(S0) that is locally characterized by

(ξ1, ξ2, ξ3) =
(

1 1 0

0 1 0

0 0 1

)

.

(5)







ẋ = a(y − x),

ẏ = b̄1y + b2yz + b3xz + b4x
2y,

ż = −cz + y2.

(x, y, z)T = (ξ2, ξ1, ξ3)(u, v, s)
T ,

(6)

�

u̇
v̇
ṡ

�

=
�

0 0 0

0 − a 0

0 0 − c

��

u
v
s

�

+





b̄1u+ b2us + b3(u+ v)s + b4(u+ v)2u

−(b̄1u+ b2us + b3(u+ v)s + b4(u+ v)2u)
−cs + u2



.

W
c

loc
(S0) ={(u, b̄1, v, s) ∈ R

4|v = V(u, b̄1), s = S(u, b̄1),

V(0, 0) = S(0, 0) = 0, DV(0, 0) = DS(0, 0) = 0}

(7)
V(u, b̄1) = − b2+cb4

ac u3 + O(� (u, b̄1) �3),
S(u, b̄1) = 1

c u
2 + O(� (u, b̄1) �3),

V(u, b1) = �∞
i+j=2viju

ib1
j
,

S(u, b1) = �∞
i+j=2siju

ib1
j
,

(8)

{

u̇ = b̄1u+ cb4+b3+b2
c u3 + O(� (u, b̄1) �4)

�=U(u, b̄1),
˙̄b1 = 0,



































∂U

∂ b̄1
|
u=0,b̄1=0

= 0,

∂2U
∂u2

|
u=0,b̄1=0

= 0,

∂2U

∂u∂ b̄1
|
u=0,b̄1=0

= 1,

∂3U
∂u3

|
u=0,b̄1=0

= cb4+b3+b2
c

�= 0,

(9)Wu
loc(S0) =











�

x
y
z

�

�

�

�

�

|x| ≪ 1,

y = a+b1
a x + O(x2),

z = (a+b1)
2

2b1a2
x2 + O(x3),
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and a 2D Ws
loc(S0) containing the z-axis.

Proof The proof is similar to the ones  in37,52,54,56. One only sketches it. For a > 0 , b1 > 0 and c > 0 , the eigenvalues 
of S0 are �1 = −a < 0 , �2 = b1 > 0 and �3 = −c < 0 . Thus S0 has a 2D Ws

loc containing z–axis, and 1D Wu
loc(S0) 

whose appropriate expression is

with A1 =
(

−a a
0 b1

)

. Assuming that y = H(x) = H1x +H2x
2 + O(x3) and z = K(x) = K1x + K2x

2 + O(x3) , 

and substituting them into system (2), one obtains the following first-order differential equation 
K ′(x)[a(H(x)− x)] = −cK(x)+ (H(x))2, and

In addition, the matrix equation 
(

−a a
0 b1

)(

1

H ′(0)

)

= �2

(

1

H ′(0)

)

 suggests H1 = H ′(0) = a+b1
a  . Hence, from 

Eq. (10), one has K1 = 0 , H2 = 0 and K2 = (a+b1)
2

2b1a2
 . The proposition is thus proved.   �

Proposition 4.4 (1)  When c = 0 ,  a, b1, b2, b3, b4, z ∈ R ,  the local dynamical behaviors of Sz 
are totally summarized in Table  2,  where ρ1 = a[b1 + (b2 + b3)z] ,  τ1 = −(a− b1 − b2z) ,  and 
σ1 = (τ1)

2 + 4ρ1 = (a− b1 − b2z)
2 + 4a[b1 + (b2 + b3)z] . While b1 = 0 , c  = 0 , cb4 + b3 + b2 = 0 and 

z ∈ R , Table  3 lists the local dynamics of Sx , where ρ2 = ac + x2(b3 + 2cb4) , τ2 = −[a+ c + b3x
2

c ] , and 
σ2 = (τ2)

2 − 4ρ2 = (a+ c + b3x
2

c )2 − 4[ac + x2(b3 + 2cb4)].

(2) Moreover, for c = 2a > 0 , b1 = b3 = 0 and b2 = −cb4 < 0 , each point of Sx is globally exponentially asymp-
totically stable.

Wu
loc(S0) =







�

x
y
z

�

�

�

�

�

|x| ≪ 1,

y = H(x),
z = K(x),

A1

�

1

H ′(0)

�

= �2

�

1

H ′(0)

�

,

H(0) = K(0) = 0,







(10)











b1H1 = H1a(H1 − 1),
b1H2 + b2K1H1 + b3K1 = 2H2a(H1 − 1)+H1H2a,
cK1 = K1a(H1 − 1),

H2
1 = 2K2a(H1 − 1)+ aK1H2.

Table 2.  The local dynamical behaviors of points of Sz.

ρ1 τ1 σ1 Property of Sz

< 0

< 0 < 0 Stable foci normally hyperbolic to Sz
< 0 ≥ 0 Stable nodes normally hyperbolic to Sz
= 0 < 0 Fold-Hopf bifurcation may occur

> 0 < 0 Unstable foci normally hyperbolic to Sz
> 0 ≥ 0 Unstable nodes normally hyperbolic to Sz
< 0 A 1D Ws

loc
 and a 2D Wc

loc

= 0
= 0 A 3D Wc

loc

> 0 A 2D Wc

loc
 and a 1D Wu

loc

> 0 Saddles normally hyperbolic to Sz

Table 3.  The dynamical behaviors of points of Sx.

ρ2 τ2 σ2 Property of Sx

> 0

< 0 < 0 Stable foci normally hyperbolic to Sx
< 0 ≥ 0 Stable nodes normally hyperbolic to Sx
= 0 < 0 Fold-Hopf bifurcation may occur

> 0 < 0 Unstable foci normally hyperbolic to Sx
> 0 ≥ 0 Unstable nodes normally hyperbolic to Sx
< 0 A 1D Ws

loc
 and a 2D Wc

loc

= 0
= 0 A 3D Wc

loc

> 0 A 2D Wc

loc
 and a 1D Wu

loc

< 0 Saddles normally hyperbolic to Sx
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Proof (1) Firstly, the local stability of points of Sz and Sx easily follows from the linear analysis and is omitted here.
(2) Secondly, we discuss the global stability of points of Sx , i.e., each point of Sx is globally exponentially 

asymptotically stable. For c = 2a > 0 , b1 = b3 = 0 and b2 = −cb4 < 0 , set the following Lyapunov function:

with

which yields

Namely, points of Sx are globally exponentially asymptotically stable. The proof is finished.   �

Remark 4.5 In contrast with other Lorenz-like  systems14,37,38,42,43,47–60 and the special case of system (2), it follows 
from Proposition 4.4 that system (1) has no globally exponentially asymptotically stable parabolic type equilibria.

Proposition 4.6 (1) If a < 0 or b1 > 0 or c < 0 , then S0 is unstable. If a > 0 , b1 < 0 and c > 0 , then S0 is stable.

(2) If c = 0 , then the dynamics of S0 are the same to the ones of Sz with z = 0 and listed in Table 2.

Proof The local stability of S0 easily follows from the linear analysis and is omitted here.   �

Proposition 4.7  Denote W = {(a, b1, b2, b3, b4, c) ∈ R
6|a > 0, cb1[cb4 + b3 + b2] < 0} ,  W2 = W\W1 , 

W1 = {(a, b1, b2, b3, b4, c) ∈ W : a+c−
b1b3

cb4 + b3 + b2
> 0, c(a+

b1(2b2 + b3 + 2ab4)

cb4 + b3 + b2
) > 0, 2acb1 > 0}.

w h e r e  Ŵ = c[(a+ c − b1b3
cb4+b3+b2

)(a+ b1(2b2+b3+2ab4)
cb4+b3+b2

)− 2ab1]  .  S±  a r e  u n s t a b l e  w h e n 
(a, b1, b2, b3, b4, c) ∈ W1

1 ∪W2 whereas S± are asymptotically stable when (a, b1, b2, b3, b4, c) ∈ W3
1  . When 

(a, b1, b2, b3, b4, c) ∈ W2
1 , system (2) undergoes Hopf bifurcation at S± respectively.

Proof According to Routh-Hurwitz criterion and Eq. (4), S± are unstable when (a, b1, b2, b3, b4, c) ∈ W1
1 ∪W2 

whereas S± are asymptotically stable when (a, b1, b2, b3, b4, c) ∈ W3
1.

While (a, b1, b2, b3, b4, c) ∈ W2
1  , Eq. (4) has one negative real root �1 = −(a+ c − b∗1b3

cb4+b3+b2
) < 0 and 

a pair of conjugate purely imaginary roots �2,3 = ±ωi , where ω =
√

c(a+ b∗1(2b2+b3+2ab4)
cb4+b3+b2

) and b∗1 satisfies 

(a+ c − b∗1b3
cb4+b3+b2

)(a+ b∗1(2b2+b3+2ab4)
cb4+b3+b2

)− 2ab∗1 = 0 . Then calculating the derivatives on both sides of Eq. (4) 
with respect to the parameter b1 and substituting �2 and b1 with ωi and b∗1 into the derivative yield

Hence, the transversal condition holds. So, the Hopf bifurcations happen at S± . Figure 9 illustrates that the 
numerical simulation agrees with the theoretical analysis. The proof is finished.   �

In the following Section "Conclusions", one studies the existence of heteroclinic orbits of system (2). For the 
convenience of discussion in the sequel, the following notations are introduced.

Denote by φt(q0) = (x(t; x0), y(t; y0), z(t; z0)) a solution of system (2) with the initial con-
dition q0 = (x0, y0, z0) . Let γ+ (resp. γ− ) be the positive (resp. negative) branch of the unsta-
ble manifold Wu(S0) corresponding to x+ > 0 (resp. x+ < 0 )  for large negative t ,  i .e. , 
γ± = {φ±

t (q0)|φ±
t (q0) = (±x+(t; x0),±y+(t; y0), z+(t; z0)) ∈ Wu

±, t ∈ R}.

Existence of heteroclinic orbit
Combining the Lyapunov function, concepts of both α-limit set and ω-limit  set14,37,38,42,43,47–60, one in this section 
rigorously proves the existence of a pair of heteroclinic orbits of system (2). Firstly, the unstable manifold of S0 
has been characterized in Proposition 4.3.

U =
1

2
[2a(y − x)2 + b4(−cz + x2)2]

(11)

dU
dt

∣

∣

(2)
= − 2a2(y − x)2 − 2ab4(−cz + x2)2

= − 2a[a(y − x)2 + b4(−cz + x2)2]
= − 2aU − ab4(−cz + x2)2

≤ − 2aU ,

(12)0 ≤ U ≤ U0e
−2a(t−t0) → 0, t → +∞.

W1
1 = {(a, b1, b2, b3, b4, c) ∈ W1 : Ŵ < 0},

W2
1 = {(a, b1, b2, b3, b4, c) ∈ W1 : Ŵ = 0}

W3
1 = {(a, b1, b2, b3, b4, c) ∈ W1 : Ŵ > 0},

dRe(�2)

db1

∣

∣

∣

∣

b1=b∗1

=
2ac(cb4 + b3 + b2)+ b3ω

2 + c�1(2b2 + b3 + 2ab4)

2(ω2 + �
2
1)(cb4 + b3 + b2)

�= 0.
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Secondly, set the Lyapunov function V(φt(q0)) = V(x, y, z) = ac(c − 2a)b4(y − x)2 + a(c − 2a)

b
2
4(−cz + x

2)2 + 1
2
[−b4(c − 2a)x2 + cb1]2.

Proceeding as  in14,37,38,42,43,47,48,50–60, one formulates the following result.

Proposition 5.1 When c − 2a > 0 , 0 < b1 < a , b4 > 0 , b2 = −cb4 and b3 = −(c − 2a)b4 , one derives the fol-
lowing assertions. 

 (i) If there exist t1 and t2 such that t1 < t2 and V(φt1(q0)) = V(φt2 (q0)) , then q0 is one of equilibria of system 
(2).

 (ii) If φt(q0) → S0 as t → −∞ , and x(t; x0) > 0 for some t ∈ R , then V(S0) > V(φt(q0)) and x(t; x0) > 0 
for all t ∈ R . Consequently, q0 ∈ γ+.

Proof i) For c − 2a > 0 , 0 < b1 < a , b4 > 0 , b2 = −cb4 and b3 = −(c − 2a)b4 , one can compute the derivative 
of V(φt(q0)) along the solution φt(q0):

So, for all t ∈ (t1, t2) , the condition (i) implies

In virtue of system (2), ẋ(t; x0) = a(y − x) = 0 suggests x(t) = x0 and ẏ(t; y0) = 0 , ∀t ∈ R . −cz + x2 = 0 
implies −cz + y2 = 0 for all t ∈ R , i.e. ż(t; z0) = 0 . In a word, q0 is one of equilibria, i.e.

ii) Firstly, one proves V(S0) > V(φt(q0)) , ∀t ∈ R . Otherwise, suppose 0 < V(S0) ≤ V(φt0(q0)) for at least a 
t0 ∈ R . This also yields that q0 is one of equilibria of system (2), which leads to q0 = S0 and x(t; x0) = 0 , ∀t ∈ R 
according to limt→−∞ φt(q0) = S0 . A contradiction occurs! Therefore, V(S0) > V(φt(q0)) , for all t ∈ R.

Next, one proves x(t; x0) > 0 , ∀t ∈ R . Assume by contrary that x(t ′ ; x0) ≤ 0 for some t ′ ∈ R . From the 
hypothesis of (ii), there exists a τ ∈ R such that x(τ , x0) = 0 . Since V(S0) > V(φt(q0)) , ∀t ∈ R , one has 
φτ (q0) ∈ {(x, y, z) : V(S0) > V(x, y, z)} ∩ {(0, y, z)} = {(x, y, z) : ac(c− 2a)b4y

2+ a(c− 2a)b24c
2z2+

1

2
c2b21 <

1

2
c2b21} = ∅ , which is a 

contradiction. Hence, it follows that x(t; x0) > 0 , ∀t ∈ R . The proof of the proposition is finished.   �

Based on Proposition 5.1, the existence of heteroclinic orbits to S0 and S± is derived in the following statement.

(13)dV(φt (q0))
dt

∣

∣

(2)
= 2ac(c − 2a)b4[(b1 − a)(y − x)2 − b4(−cz + x2)2] ≤ 0.

(14)y(t; y0)− x(t; x0) ≡ −cz(t; z0)+ x2(t; x0) ≡ 0.

(15)ẋ(t; x0) ≡ ẏ(t; y0) ≡ ż(t; z0) ≡ 0.

Figure 9.  Hopf bifurcations at S± for system (2) when (a, b1, b2, b3, b4, c) = (3, 9.3563,−7,−1, 1, 7) and 
(x3,40 , y3,40 , z100 ) = (±7.8,±7.8, 8.2).
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Proposition 5.2 Consider c − 2a > 0 , 0 < b1 < a , b4 > 0 , b2 = −cb4 and b3 = −(c − 2a)b4 . One has the state-
ments as follows. 

(a) Neither homoclinic orbits nor heteroclinic orbits to S+ and S− exist in system (2).
(b) System (2) has a pair of symmetrical heteroclinic orbits to S0 and S±.

Proof a) Firstly, one proves that neither heteroclinic orbits nor homoclinic orbits to S+ and S− exist in system 
(2). Assume by contrary that φt(q0) is a heteroclinic orbit or a homoclinic orbit to S+ and S− , i.e.

where s− and s+ satisfy either {s−, s+} = {S−, S+} or s− = s+ ∈ {S0, S−, S+} . From Eq. (13), one arrives at 
V(s−) ≥ V(φt(q0)) ≥ V(s+) and thus V(s−) = V(s+) in either case, which also yields V(φt(q0)) = V(s+) . 
According to Proposition 5.1(i), q0 is one of equilibria. Therefore, system (2) has neither heteroclinic orbits nor 
homoclinic orbits joining S+ and S−.

b) Next, one proves that there exists a single heteroclinic orbit joining S0 and S+ : γ+(t) . As t → ∞ , it follows 
Proposition 4.2 that φt(q0) approaches neither S0 nor S− . Hence, limt→∞ φt(q0) = S+.

Finally, let us show that if system (2) has a second heteroclinic orbit to S0 and S+ , then it coincides with γ+.
Suppose φ1

t (q0) is a solution of system (2) that

where s1− and s1+ satisfy {s1−, s1+} = {S0, S+} . Since V is decreasing, one has V(s1−) ≥ V(φ1
t (q0)) ≥ V(s1+) and 

V(S0) > V(S+) . Therefore, one obtains s1− = S0 and s1+ = S+ , i.e.,

It follows from Proposition 5.1(ii) that φ1
t (q0) = γ+.

Since system (2) is symmetrical with respect to the z-axis, γ− is another unique heteroclinic orbit to S0 and 
S− . Figure 10 verifies the correctness of the theoretical result. Thus proof is completed.   �

Remark 5.3 It follows from Proposition 5.2 that the special case of system (2), i.e., the one (1) has not hetero-
clinic orbits to S0 and S± for b2 = b4 = 0 . How to prove the existence of heteroclinic orbits of system (1) will be 
our future work, if they exist. Compared with other Lorenz-like  systems14,37,38,42,43,47,48,50–60, it is more difficult to 
construct the Lyapunov function for system (2) with more nonlinear terms.

lim
t→−∞

φt(q0) = s−, lim
t→∞

φt(q0) = s+,

lim
t→−∞

φ1
t (q0) = s1−, limt→∞

φ1
t (q0) = s1+,

lim
t→−∞

φ1
t (q0) = S0, lim

t→∞
φ1
t (q0) = S+.

Figure 10.  Heteroclinic orbits to S0 and S± of system (2) for (a, b1, b2, b3, b4, c) = (3, 2.5,−7,−1, 1, 7) and 
initial values (x

′ ,′′
0 , y

′ ,′′
0 , z

′ ,′′
0 ) = (±1.382× 1e−6,± 5.5

3
× 1.382× 1e−6, 6.05

9
× 1.382× 1.382× 1e−12) on the 

unstable manifolds of S0 , i.e., the Wu
loc(S0) characterized in Proposition 4.3.
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Conclusions
This note reports a new 3D cubic Lorenz-like system, which contains the existing one as special cases and gen-
erates rich dynamics, such as generic and degenerate pitchfork bifurcation, Hopf bifurcation, infinitely many 
singularly degenerate heteroclinic cycles with nearby Chen-like attractors, etc. Using Lyapunov functions, we 
prove that the parabolic type equilibria are globally exponentially asymptotically stable, and there exists a pair 
of heteroclinic orbits to the origin and two symmetrical equilibria.

In future work, other important dynamics of that system, such as homoclinic orbit, invariant algebraic surface, 
positively invariant set, the forming mechanism of chaotic attractor and so on, require further analytical descrip-
tions to complete its mathematical treatment. We also hope that the basic ideas and the self-contained approach 
presented in this paper can be applied to explore other similar chaotic/hyperchaotic systems, i.e.,

where a  = 0 , c, bi , p1, p1, p2, q1, q2, q3 ∈ R , i = 1, 2, 3, 4 , etc. Preliminary studies show that there might exist cha-
otic/hyperchaotic attractors, generic and degenerate pitchfork bifurcation, Hopf bifurcation, singularly degener-
ate heteroclinic cycles, globally exponentially asymptotically stable parabolic type equilibria, a pair of heteroclinic 
orbits to the origin and two symmetrical equilibria in system (16–18). We also guess that the dynamics also exist 
in higher dimensional analogues.
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ẋ = a(y − x),
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