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Thermodynamic determination 
of the equilibrium first‑order 
phase‑transition line hidden 
by hysteresis in a phase diagram
Keisuke Matsuura 1*, Yo Nishizawa 2, Markus Kriener 1, Takashi Kurumaji 3, Hiroshi Oike 1,2,4, 
Yoshinori Tokura 1,2,5 & Fumitaka Kagawa 1,2,6

In some materials exhibiting field‑induced first‑order transitions (FOTs), the equilibrium phase‑
transition line is hidden by the hysteresis region associated with the FOT. In general, phase diagrams 
form the basis for the study of material science, and the profiles of phase‑transition lines separating 
different thermodynamic phases include comprehensive information about thermodynamic 
quantities, such as latent heat. However, in a field‑induced FOT, the equilibrium phase‑transition 
line cannot be precisely determined from measurements of resistivity, magnetization, etc, especially 
when the transition is accompanied by large hysteresis. Here, we demonstrate a thermodynamics‑
based method for determining the hidden equilibrium FOT line in a material exhibiting a field‑induced 
FOT. This method is verified for the field‑induced FOT between antiferromagnetic and ferrimagnetic 
states in magneto‑electric compounds ( Fe

0.95
Zn

0.05
)
2
Mo

3
O
8
 . The equilibrium FOT line determined 

based on the Clausius–Clapeyron equation exhibits a reasonable profile in terms of the third law of 
thermodynamics, and it shows marked differences from the midpoints of the hysteresis region. Our 
findings highlight that for a field‑induced FOT exhibiting large hysteresis, care should be taken for 
referring to the hysteresis midpoint line when discussing field‑induced latent heat or magnetocaloric 
effects.

Condensed matter often changes its structural/electric/magnetic states in response to changes in temperature, 
T, and external fields such as magnetic fields, H, electric fields, E, and pressures, P. These changes are concisely 
summarized in phase diagrams. In addition to separating different phases, the profile of a phase-transition 
line includes comprehensive information on thermodynamic quantities associated with the phase transition. 
For example, in the P–T phase diagram of 3He, the slope of the first-order transition (FOT), dT

∗

dP∗  (the asterisk 
represents a value on the phase boundary), between the solid and liquid phases becomes negative below 0.32 
K, indicating that the solid 3 He has larger entropy than the liquid 3He, which is a behaviour known as the 
Pomeranchuk  effect1. Additionally, in the P − T phase diagrams in certain organic conductors, the slope of the 
FOT line between antiferromagnetic (AFM) and superconducting (SC) phases is negative, whereas the slope 
between quantum spin liquid (QSL) and SC phases is almost perpendicular to the pressure axis. This observation 
indicates that the QSL phase has larger entropy than the AFM  phase2,3. Furthermore, for the case of an FOT, the 
Clausius–Clapeyron equation enables a quantitative estimation of the entropy change (or latent heat) accompany-
ing the FOT, �S∗ (or T∗�S∗ ), if the change in the other extensive quantity is given (the magnetization change, 
�M∗ , for the case of an H − T phase diagram). For instance, accurate evaluation of magnetic-field-induced 
latent heat has been a central issue in the study of magnetocaloric  effects4, and thus, comparison with theoretical 
values derived from the correct phase diagram provides important insights. Thus, the accurate determination of 
a phase-boundary profile can be an important issue in many contexts.

However, in a real material, an FOT does not necessarily occur at the equilibrium FOT line but in a param-
eter region away from it. This behaviour originates from the fact that an FOT generally involves nucleation and 
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growth, which are nonequilibrium kinetic processes. As a result, two hysteresis lines, which we define as the 
lower-field and higher-field boundaries of the hysteresis region, are often drawn instead of one equilibrium 
FOT line, particularly in an experimentally determined phase diagram. In fact, the precise determination of the 
equilibrium FOT line is often not straightforward in experiments.

We consider two prototypical cases of a field-temperature phase diagram that exhibits an FOT (Fig. 1a,b). 
The first case represents an FOT between “up” and “down” phases connected by a symmetry operation, such as 
time-reversal or space-inversion operations (Fig. 1a). Typical ferromagnetic (FM) and ferroelectric materials 
are classified into this case if uniform magnetic and electric fields are chosen as the external fields, respectively. 
The free energies of the two states obviously degenerate in the absence of a symmetry-breaking  field5, and the 
equilibrium FOT line lies on the zero-field line by definition. The hysteresis lines in positive- and negative-field 
regions should be symmetric regarding the zero-field line, and thus, one may determine the equilibrium FOT 
points by taking the midpoints of the two hysteresis lines. In the second case, by contrast, the competing two 
phases do not degenerate at zero field (Fig. 1b). A typical example includes a magnetic-field-induced FOT from 
AFM to FM phases. In such a case, there is no symmetry reason for the midpoints of the two hysteresis lines to 
agree with the equilibrium FOT points. To the best of the authors’ knowledge, the validity of considering the 
midpoints as the FOT points has never been carefully discussed for a field-induced FOT.

The uncertainty of a field-induced equilibrium FOT line may be crucial for a material exhibiting a wide hys-
teresis; for instance, various materials, such as Gd5Ge46, LaFe12B67, doped CeF2  alloys8,9, doped Mn2Sb

10,11, doped 
manganese  oxides12–14, and martensitic  materials15,16 are known to exhibit distinct hysteresis broadening at low 
temperatures. Similar hysteresis broadening is also observed in a pressure-induced liquid–liquid transition of 
an aqueous  solution17. In the present study, by focusing on ( Fe1−yZny)2Mo3O8 (Fig. 1c), we exemplify how the 
equilibrium FOT line is determined for a material exhibiting a broad hysteresis and show that the midpoints of 
the two hysteresis lines appreciably deviate from the equilibrium FOT line. This finding indicates that consid-
ering the midpoints of hysteresis as the equilibrium FOT line potentially leads to an erroneous conclusion on 
thermodynamic quantities, such as field-induced latent heat accompanying the FOT, even at a qualitative level.

Introduction to ( Fe
1−yZny)2Mo

3
O
8

. Our target material, ( Fe1−yZny)2Mo3O8 , is a polar crystal (space 
group P63mc ) with a linear magnetoelectric  effect18,19. The magnetic properties are dominated by two kinds 
of Fe2+ sites surrounded by oxygen tetrahedra (A-sites) and octahedra (B-sites) (Fig. 1c); local spins of three 
Mo4+ ions form a nonmagnetic spin-trimer  singlet20 and thus have no contribution to the magnetism. Accord-
ing to a previous neutron study on the mother compound Fe2Mo3O8

21, the magnetic moments at octahedral 
sites are slightly larger than those at tetrahedral sites; hence, the spin configuration shown in Fig. 1d has no net 
magnetization (antiferromagnetic; AFM), whereas that shown in Fig.  1e creates an appreciable macroscopic 
magnetization (ferrimagnetic; FRI). The ground state at zero magnetic field is the AFM phase, which is replaced 
with the FRI phase when a sufficiently high magnetic field is applied. For undoped Fe2Mo3O8 , the magnetic-
field-induced FOT between the AFM to the FRI phases occurs far above 15 T below 30  K18.

The molecular-field  analysis21 argues that the intralayer A–B, interlayer A–B and interlayer A–A magnetic 
interactions are all AFM, whereas the interlayer B–B magnetic interaction is weakly FM. In addition, the mag-
nitudes of the interlayer A–B and interlayer A–A magnetic interactions are comparable, resulting in a delicate 
energy balance between the AFM and FRI phases in this system. Doped nonmagnetic Zn ions selectively occupy 
tetrahedral  sites22 and weaken the effective interlayer A–A magnetic interactions. Thus, the Zn-doping stabilizes 
the FRI phase, and accordingly the transition field to the FRI phase decreases upon Zn doping. In this study, we 
chose 5% Zn-doping ( y = 0.05 ) so that both the AFM and FRI phases are accessible in the feasible magnetic 
field range of 14  T18.

Notes on thermodynamic analysis. Clausius–Clapeyron equation. On an equilibrium FOT line sepa-
rating two phases, α and β , the thermodynamic potentials of the two phases are equal to each other by definition. 
This condition leads to the Clausius–Clapeyron equation, which is given in the following form for the case of an 
equilibrium FOT line in an H − T phase diagram:

where ( H∗ , T∗ ) represents an arbitrary point on the equilibrium FOT line and M∗
α (or M∗

β ) and S∗α (or S∗β ) are 
the magnetization and entropy values of the α (or β ) phase on the equilibrium FOT line, respectively. Note that 
any equilibrium FOT line in a H − T phase diagram must satisfy this equation. This requirement means that by 
following the Clausius–Clapeyron equation, an equilibrium FOT line can be drawn sequentially by integrating 
dT∗

dH∗ , as detailed in Results section.
To determine the slope of the FOT, dT

∗

dH∗ , the entropy and magnetization changes, �S∗αβ and �M∗
αβ , respectively, 

accompanying the magnetic-field-induced FOT should be given. To this end, the S −H and M −H curves 
should be derived for the α and β phases, separately. Although the M −H curves are readily measurable, the 
S −H curves are not because the magnetic-field dependence of the specific heat, cp , does not provide the S −H 
curve. To obtain the S −H curves and thus �S∗αβ , we measure the cp(T) at predetermined magnetic fields: H = 0 , 
0.1, 1, 2, 3, 4, 5, 6 and 7 T (we use the notation H ≡ µ0H as an external magnetic field, where µ0 is magnetic 
permeability in vacuum). Thus, the SH (T) are derived by using SH (T) =

∫ T
0

cp(H ,T ′)

T ′ dT ′ , and discretized ST (H) 
data points at a given T are obtained.

(1)
dT∗

dH∗
= −

M∗
α −M∗

β

S∗α − S∗β
≡ −

�M∗
αβ

�S∗αβ
,
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Figure 1.  Field-temperature phase diagram of (Fe0.95Zn0.05)2Mo3O8. (a,b) Phase diagrams with temperature and 
external field axes in the system with field-induced first-order phase transitions: (a) ferroic-order case in which two states are 
connected with symmetry operations, such as time-reversal and space-inversion symmetries, and (b) two-phase-competing 
case in which two thermodynamic phases indicated by α and β are not degenerate in free energy at zero external field. The 
solid lines in (a) and (b) represent magnetic fields at which the phase transition is observed during magnetic field sweeps 
at a given rate. (c) The crystal structures of ( Fe1−yZny)2Mo3O8 . Fe2+ ions at the A-sites (brown) and B-sites (blue) are 
surrounded by oxygen tetrahedra and octahedra, respectively. Mo4+ ions (gray) form the nonmagnetic spin-trimer. (d,e) The 
magnetic structure of the (d) antiferromagnetic (AFM) and (e) ferrimagnetic (FRI) phases. (f) The isothermal magnetization 
curves of ( Fe0.95Zn0.05)2Mo3O8 at selected temperatures. Each curve is shifted by 2 µB/f .u. for clarity. The transition from 
the AFM to the FRI phases and from the FRI to the AFM phases are indicated by red and blue triangles, respectively. (g) The 
temperature-magnetic-field phase diagrams of ( Fe0.95Zn0.05)2Mo3O8 . The transitions from the AFM to the FRI phases and 
from the FRI to the AFM phases are indicated by red and blue circles, respectively. Gray closed and open circles represent the 
transition between PM and AFM and the crossover between PM to FRI, respectively, and they were determined from M − T 
curves. Green triangles represent the midpoints between two transitions from the AFM (FRI) to the FRI (AFM) phases. In 
(g,f), the gray-hatched areas represents the hysteresis region.
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Application of the Maxwell relation. In principle, if the S − T curves are given for many magnetic field points, 
isothermal S −H curves at different temperatures can be derived with sufficient accuracy. However, from an 
experimental point of view, the measurement of specific heat requires much more time than that of magnetiza-
tion; therefore, collecting cp(T) at many magnetic-field points is not practical. To overcome this technical dif-
ficulty, we refer to the Maxwell relation, 

(

∂S
∂H

)

T
=

(

∂M
∂T

)

H
 , which enables compensation for the limited number 

of ST (H) data points by referring to easily measurable magnetization data. Thus, isothermal S −H curves are 
obtainable with improved accuracy.

For the purpose of deriving �S∗ accompanying an equilibrium FOT, however, the Maxwell relation should 
be carefully used. To begin, the Maxwell relation cannot be used at an ideal FOT in principle because its deriva-
tion postulates that S and M are a differentiable continuous function of H and T. This prerequisite is obviously 
not satisfied at an ideal FOT, which is accompanied by discontinuity in S and M. One may assume that an actual 
FOT often exhibits relatively continuous change in S and M as a result of the evolution of the two-phase mixture 
(see Supplementary Fig. 1), and thus, the application of the Maxwell relation to the transition region appears 
fine. Nevertheless, the integration of 

(

∂S
∂H

)

T
=

(

∂M
∂T

)

H
 with respect to H across the transition region still tends 

to overestimate the intrinsic value of �S∗ ; that is, the integration of the Maxwell relation across the FOT, fre-
quently used in the analysis of the magnetocaloric  effect4,23, cannot be applied to the precise determination of 
�S∗ (for more details, see Supplementary Note 1). Therefore, we restrict the use of the Maxwell relation to when 
the magnetic state is considered a single phase of either the AFM or FRI phases. �S∗ cannot be obtained from 
the Clausius–Clapeyron equation  either23, because the determination of the exact profile of the equilibrium FOT 
line itself is the purpose of this study.

Results
Field‑temperature phase diagram. Figure 1f shows the isothermal magnetization curves of the target 
compound, ( Fe0.95Zn0.05)2Mo3O8 (the enlarged M-H curves are shown in Supplementary Fig. 2). The magnetic 
states at + 14 and −14 T are the FRI phase with a positive and negative spontaneous magnetization, respectively, 
and in the temperature range investigated, the AFM phase intervenes between the two high-field states. The red 
(blue) triangles indicate the transition fields from the AFM to the FRI phases (the FRI to the AFM phases) upon 
increasing (decreasing) magnetic field. The two hysteresis lines accompanying the magnetic-field-induced FOT 
in a positive magnetic field are drawn by tracing these two transition-fields. The experimental phase diagram is 
thus obtained, as shown in Fig. 1g.

This material exhibits distinct hysteresis broadening at low temperatures. The hysteresis width, which is the 
difference between two transition fields, is as small as 0.4 T at 40 K; however, it significantly increases to ≈ 20 T 
at 6.5 K. In Fig. 1g, the midpoints of the two hysteresis lines are plotted for reference. Note that the midpoint line 
starts to bend below 18 K, and its slope is appreciably positive at 6.5 K. If one considers the midpoint line as an 
approximate equilibrium FOT line, the midpoint line should bend again at low temperatures to be perpendicular 
to the magnetic-field axis to satisfy the third law of thermodynamics (Nernst–Planck  hypothesis24). Thus, the 
Clausius–Clapeyron equation concludes that �S∗ ( ≡ S∗FRI − S∗AFM ) and/or �M∗ ( ≡ M∗

FRI −M∗
AFM ) should exhibit 

complicated behaviour below 18 K. This finding, however, appears unusual, and its validity should be carefully 
considered by testing whether the midpoint line accurately represents the equilibrium FOT line.

M − T  curves. We aimed to determine the equilibrium FOT line by following the equilibrium thermody-
namics for a single phase. It was therefore important to avoid the data analysis in the (H, T) region where the 
magnetic state is considered AFM–FRI phase mixture. In particular, extensive attention has to be paid to the 
magnetic state during cooling because we collected the cp(T) upon decreasing temperature. To identify the (H, T) 
region of the two-phase mixture during cooling, we measured the M − T curves at various magnetic fields dur-
ing field-cooling (FC) and field-warming (FW) processes; in FC process, the magnetic fields were applied at 100 
K ( > Tc ≈ 56 K) and the magnetization was measured from 100 to 2 K while retaining the magnetic fields; then, 
in FW process, the magnetization was measured from 2 to 100 K at the same magnetic fields. The data at selected 
magnetic fields are shown in Fig. 2a. Overall, a transition from the PM to the AFM phase was observed below 
1.5 T, whereas that to the FRI phase was observed above 3 T. At an intermediate field ranging from 1.6 to 3 T, a 
sharp, continuous change in magnetization and the associated thermal hysteresis were observed, signifying the 
thermally induced FOT between the AFM and FRI phases (see also Fig. 1g).

Identification of the (H,T) region of single magnetic phase during field cooling. From the 
M − T curves, we determined the (H, T) regions where the two-phase coexistence could occur during FC, as 
summarized in Fig. 2b, according to the following two criteria. First, in the temperature range where the transi-
tion progressed, we determined that the data were affected by the two-phase coexistence. Second, especially 
below 30 K, even if the transition did not appear to progress, we determined that the two-phase mixture was 
present when its magnetization value exhibited an intermediate value between the AFM and FRI single phases. 
The lowest-temperature state below 2 T consisted exclusively of the AFM single phase (see Supplementary Note 
3 and Supplementary Fig. 3, in which the M − T curve under FW at 2 T after zero FC was compared with that 
under FC at 2 T). Similarly, above 3 T, the magnetization at the lowest temperature was insensitive to the mag-
netic field (see also Fig. 1f), indicating the FRI single phase. In contrast, at 2.25 T, although thermal hysteresis 
was not observed below 25 K, the magnetization value at the lowest temperature was intermediate between the 
AFM and FRI single phase values. Thus, the magnetic state at 2.25 T below 25 K was considered the two-phase 
mixture.
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The (H, T) region that fell under “two-phase mixture” criteria is shown in grey in Fig. 2b. The data from this 
region were not used in the following single-phase thermodynamic analysis to avoid a possible influence of the 
two-phase mixture.

Derivation of S − H curves. Figure  3a shows the temperature dependences of the specific heat, cp , at 
various magnetic fields measured upon field cooling. A clear lambda-like anomaly is observed in the cp(T) at 
approximately 55 K at 0 T, signifying a second-order transition from the paramagnetic (PM) to the AFM phases. 
The application of a magnetic field larger than 2 T suppresses the � peak, reflecting that a change from the PM to 
the FRI phases is crossover under a finite magnetic field (see Fig. 1g). Similar behaviours have been reported in 
previous  studies19,25,26. The S − T profiles are obtained by integrating cp/T with respect to T. As described in Sup-
plementary Information (Supplementary Note 4), the value of entropy at 2 K is obtained at each magnetic field 
by extrapolating the cp(T) to zero temperature with T3 behaviour. The resulting S(T) data are shown in Fig. 3b–j. 
Note that a discontinuous entropy change associated with an FOT cannot be accurately evaluated by integrating 
cp/T because dSdT =

cp
T  is valid only when dS/dT is well defined (i.e. S is a differential continuous function of T). 

If the latent heat associated with the FOT can be accurately captured by specific heat measurements, the entropy 
above the transition temperature can be determined; however, this is not the case. In general, the latent heat can-
not be correctly estimated from the cp (T) curve, and thus, the entropy above the transition temperature cannot 
be determined either because of the lack of the information of the latent heat. Therefore, the S − T curve (i.e., an 
entropy counting from zero temperature) at 2 T is only valid up to 27 K (Fig. 3e). From these SH (T) data set, the 
discretized ST (H) points are derived (for instance, see Fig. 5a). The comparison of SH (T) between 0 and 7 T tells 
that the FRI phase has a higher entropy than the AFM phase (Supplementary Fig. 5).

Then, we aim to derive the S −H curves with accuracy from the limited number of available ST (H) data 
points by using the Maxwell relation. We derive the 

(

∂M
∂T

)

H
− T curves from the M − T curves arising from a 

single-phase region (either the AFM or FRI phases). The results at selected magnetic fields are shown in Fig. 4a 
with solid lines (for the data above 50 K, see Supplementary Note 5). Then, from the continuous 

(

∂M
∂T

)

H
− T 

Figure 2.  Identification of single-phase AFM and FRI phases from M − T curves. (a) Temperature 
dependencies of the magnetization upon field-cooling (FC; solid lines) and field-warming (FW; dashed lines) 
processes. (b) Schematic phase diagram highlighting the single thermodynamic AFM and FRI phases. The black 
dots represent data points used for the present analysis while carefully avoiding the “two-phase mixture” (gray) 
region.
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curves, we obtain the discretized 
(

∂M
∂T

)

H
 data points as functions of H at selected temperatures for the AFM and 

FRI single phases, as shown in Fig. 4b,c, respectively.
To obtain the isothermal S −H curves, 

(

∂S
∂H

)

T
 should be integrated with respect to H. To this end, we first 

fit the magnetic field dependence of 
(

∂M
∂T

)

H
=

(

∂S
∂H

)

T
 for the AFM and FRI phases separately by the following 

polynomial functions:

The fittings are successful as shown in Fig. 4b,c, from which the parameters ai and bi ( i = 1, 2, 3 ) are determined. 
The S −H curves are thus given as follows:

(2)
(

∂MAFM(H ,T)

∂T

)

H

=

(

∂SAFM(H ,T)

∂H

)

T

= a3(T)H
2 + a2(T)H + a1(T)

(3)
(

∂MFRI(H ,T)

∂T

)

H

=

(

∂SFRI(H ,T)

∂H

)

T

= b3(T)(H − 7)2 + b2(T)(H − 7)+ b1(T).

(4)SAFM(H ,T) =SAFM(0,T)+

∫ H

0

(

∂SAFM

∂H ′

)

T

dH ′ =
a3(T)

3
H3 +

a2(T)

2
H2 + a1(T)µ0H + a0(T),

a

0

5
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Figure 3.  Temperature dependences of the specific heats and entropies under magnetic fields. (a) Temperature 
dependencies of the specific heats under various magnetic fields. The specific heat measurement was performed 
during the field-cooling process. Inset: Enlarged view around the transitions. The cp(T) at 0 and 0.1 T are almost 
identical and no difference is distinguishable on this scale. (b–j) The temperature dependencies of the entropies 
under various magnetic fields.
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Note that ai and bi ( i = 1, 2, 3 ) are given from the fitting of the 
(

∂M
∂T

)

H
 data points. Finally, to determine the 

remaining parameters a0 (for the AFM phase) and b0 (for the FRI phase), we refer to the discretized ST (H) points, 
which are independently obtained from the cp − T curves. Because there is only one unknown parameter for 
each phase, the problem of the limited ST (H) points is minimized. As shown in Fig. 5a, the fitting S −H curves 
based on the magnetization data, equations (4) and (5), well reproduce the ST (H) data points, which are obtained 
from the specific heat measurement. This good agreement corroborates that the present method based on the 
single-phase thermodynamics successfully avoids the experimental artifacts in the derived S −H  curve27–29 that 
are often caused by a hysteretic behaviour and a kinetic effect associated with a FOT (see Supplementary Note 1). 
In this way, the continuous S −H curves are derived at various temperatures for the AFM and FRI single phases, 
separately. The resulting two curves are not connected to each other, representing the entropy discontinuity 
accompanying the FOT. Overall, the entropy difference decreases as the temperature decreases. Nevertheless, to 
determine �S∗ more precisely, the equilibrium transition field, H∗ , should be determined at each temperature. 
This issue is discussed below.

M − H curves. To apply the Clausius–Clapeyron equation, �M∗ should also be derived from the isothermal 
M −H curves. In contrast to the S −H curves, the M −H curves are straightforwardly measured, as shown in 
Fig. 5b. To obtain the magnetization of a single phase, we first prepare the AFM and FRI single phases by ZFC 
and 7 T-FC from 100 K ( > Tc ≈ 56 K), respectively; then, the magnetization is measured while increasing and 
decreasing the magnetic fields, respectively; the cooling process from 100 K is performed after each M −H 
measurement. The two branches are separated from each other, and the transition to the other branch occurs 
when the magnetic field reaches a value of the hysteresis line (Fig. 1f,g). From these M −H curves, one can 
determine �M∗ , if the equilibrium transition field H∗ is given at each temperature.

Derivation of the equilibrium first‑order transition line. The determination of �S∗ and �M∗ and 
that of the equilibrium transition field H∗ are an intertwined issue. If H∗ is given at a certain temperature, �S∗ 
and �M∗ at the same temperature are determined; if �S∗ and �M∗ are given at a certain temperature, H∗ at a 
nearby temperature is determined. To perform this sequential determination, the starting point for drawing the 
equilibrium FOT line must be determined first.

The starting point is chosen at ( H∗
0  , T∗

0  ) = (1.81 T, 45 K) because the hysteresis width is as small as 0.1 T and 
it is reasonable to approximate the midpoint of the two hysteresis lines as the equilibrium FOT point. First, the 
values of �S∗ and �M∗ at (1.81 T, 45 K) are determined by referring to the isothermal S −H and M −H curves, 
respectively; the slope of the FOT line at ( H∗

0 , T∗
0  ), dH

∗

dT∗ |T∗
0
 , is calculated from − �S∗

�M∗ . The next transition field H∗
1 

at the nearby temperature T∗
1  ( < T∗

0  ) is calculated as follows:

(5)

SFRI(H ,T) =SFRI(7,T)+

∫ H

7

(

∂SFRI

∂H ′

)

T

dH ′ =
b3(T)

3
(H − 7)3 +

b2(T)

2
(H − 7)2 + b1(T)(H − 7)+ b0(T).

a b c

Figure 4.  Derivation of isothermal 
(

∂S
∂H

)

T
 curves via the Maxwell relation. (a) dMdT − T curves measured upon 

decreasing temperature. The data indicated by the dotted lines were not used for the Maxwell relation. (b,c) 
Isothermal dMdT −H curves of the (b) AFM and (c) FRI phases. The solid lines represent the best-fit results (see 
the main text). The legend shown in (b) also applies to (c).
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We repeat this procedure sequentially, and the transition field H∗
n at T∗

n ( n ≥ 1 ) is obtained by the following 
equations:

The decrement of the temperature step, T∗
n+1 − T∗

n , is determined by the temperatures at which the isothermal 
M −H curves are measured, and it is −2.5 K in the present study. Thus, �S∗ and �M∗ , − �S∗

�M∗ , and the equi-
librium FOT line are determined sequentially for temperatures below 45 K, as displayed in Figs. 5c,d and  6, 
respectively. �S∗ is sensitive to temperature and monotonically decreases to zero as the temperature decreases 
to zero temperature, whereas �M∗ depends only weakly on temperature (Fig. 5c). Thus, the ratio, − �S∗

�M∗ , mono-
tonically approaches to zero at zero temperature (Fig. 5d).

(6)

H∗
1 = H∗

0 +

(

dH∗

dT∗

)

T∗
0

× (T∗
1 − T∗

0 )

= H∗
0 −

(

�S∗

�M∗

)

T∗
0 ,H

∗
0

× (T∗
1 − T∗

0 )

(7)�S∗(H∗
n ,T

∗
n ) = SFRI(H

∗
n ,T

∗
n )− SAFM(H∗

n ,T
∗
n )

(8)�M∗(H∗
n ,T

∗
n ) = MFRI(H

∗
n ,T

∗
n )−MAFM(H∗

n ,T
∗
n )

(9)

H∗
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n +

(

dH∗

dT∗

)
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n

× (T∗
n+1 − T∗
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(
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)
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∗
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× (T∗
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a b c
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Figure 5.  Determination of �S∗ and �M∗ . (a) Isothermal entropy curves at selected temperatures. Closed 
circles are the data obtained from the specific heat measurements. Blue and red solid lines indicate the fittings 
for the AFM and the FRI phases, respectively, based on the M − T curve and the Maxwell relation. The error 
bars are estimated from the least-squares fitting. (b) Isothermal magnetization curves at selected temperatures. 
Each magnetization curve is shifted by 10 J/(mol T) for visibility. (c) Temperature dependence of the entropy 
and magnetization changes on the determined phase boundary. d Temperature dependence of the ratio of 
�S∗ and �M∗ . The error bars in (c) and (d) are estimated from the standard errors of the parameters when 
performing the least-squares fitting of the cubic function to the dMdT  data.
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The obtained equilibrium FOT line (Fig. 6) becomes appreciably distinct from the midpoints of the two 
hysteresis lines, especially below 18 K. Note that the hysteresis distinctly broadens below 18 K. Toward zero 
temperature, the obtained equilibrium FOT line monotonically becomes perpendicular to the magnetic-field 
axis to satisfy the third law of thermodynamics. The time evolution measurements of the net magnetization, 
M(t), indicates that the equilibrium phase at 2.3 T and 10 K is the AFM phase, rather than the FRI phase (Sup-
plementary Note 6 and Supplementary Fig. 7), further confirming that the profile of the obtained equilibrium 
FOT line is consistent with the observation. The asymptotic behaviour of the FOT line indicates that nothing 
peculiar is involved below 18 K, as demonstrated in Fig. 5c,d, in contrast to the implications drawn from the 
profile of the midpoint line.

Discussion
Finally, we show that if the midpoint line is regarded as the equilibrium FOT line, it can lead to even qualitatively 
incorrect conclusion regarding thermodynamic quantities such as latent heat. By using equation (1), the latent 
heat �q∗ accompanying the FOT from the AFM to the FRI can be calculated as �q∗ = T∗�S∗ = −T∗�M∗

(

dH∗

dT∗

)

 
for either the midpoint or equilibrium FOT lines. The calculated values of the latent heat for each case are com-
pared in Fig. 7. At high temperatures above 25 K, �q∗ is positive, and its values derived from the midpoint and 
equilibrium FOT lines agree well with each other. However, the two curves show distinct behaviour below 25 K: 
�q∗ derived from the equilibrium FOT line approaches zero asymptotically toward zero temperature, whereas 
that derived from the midpoint line shows nonmonotonous temperature dependence and even a large negative 
value, ≈ − 14 J/mol at 10 K. Thus, the adoption of the midpoint line as the equilibrium FOT line causes the 
erroneous latent heat even at a qualitative level, especially at low temperatures, demonstrating that caution should 
be exercised when referring to the midpoint lines.

Figure 6.  Determination of the equilibrium first-order transition line. Determined phase boundary indicated 
by orange circles with error bars, which are superimposed on the low-temperature enlarged view of Fig. 1g.

Figure 7.  The comparison of calculated latent heats between midpoint and equilibrium first-order-transition 
lines. Temperature dependences of the calculated latent heats based on the midpoint line (red triangles) and the 
equilibrium FOT line (blue circles).
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The experimental observation of FOTs is known to be susceptible to kinetic effects, which are beyond the 
framework of the equilibrium thermodynamics. We have demonstrated that the equilibrium FOT line can 
nevertheless be determined using the single-phase thermodynamics with avoiding analysis of the phase-mixed 
state. The understanding of the temperature-dependent agreement/disagreement between the midpoint and 
equilibrium FOT lines remains an open question in this study. The large deviation of the midpoint line from the 
equilibrium line at low temperatures appears to be related to distinct hysteresis broadening. This observation 
may suggest that the details of the phase evolution in the FOT may vary with temperature.

Conclusion
To conclude, we have shown that using Zn-doped Fe2Mo3O8 as an example, the equilibrium FOT line determined 
strictly following the equilibrium thermodynamics differs significantly from the midpoint line of the hysteresis 
region. As a result, the values of latent heat expected from the profiles of the midpoint line and the equilibrium 
FOT line differ even in their signs, demonstrating a clear case that thermodynamic arguments based on the 
midpoint line leads to an erroneous conclusion.

Methods
Sample preparation. A single crystal of ( Fe0.95Zn0.05)2Mo3O8 was grown by the chemical-vaper transport 
method. The details about the growth of this sample were reported in the  literature30,31,18. All magnetization and 
specific heat measurements were performed using the same sample with a relatively small mass ( ≈ 3 mg).

Magnetization measurement. The magnetization along the c–axis was measured in Quantum Design 
MPMS-XL, MPMS-3, and PPMS 14 T.

Specific heat measurement. Specific heat measurements were performed in a field-cooling procedure, 
and the standard relaxation method available in the heat capacity option of Quantum Design PPMS 14 T was 
used. A small amount of grease (Apiezon N) was used to ensure good thermal contact between the sample stage 
(platform) and the sample.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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