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Toward surface defect detection 
in electronics manufacturing 
by an accurate and lightweight 
YOLO‑style object detector
Jyunrong Wang 1,2,3, Huafeng Dai 2,3,4, Taogen Chen 2,3, Hao Liu 2,3, Xuegang Zhang 2,3, 
Quan Zhong 2,3 & Rongsheng Lu 1*

In electronics manufacturing, surface defect detection is very important for product quality control, 
and defective products can cause severe customer complaints. At the same time, in the manufacturing 
process, the cycle time of each product is usually very short. Furthermore, high-resolution input 
images from high-resolution industrial cameras are necessary to meet the requirements for high 
quality control standards. Hence, how to design an accurate object detector with real-time inference 
speed that can accept high-resolution input is an important task. In this work, an accurate YOLO-style 
object detector was designed, ATT-YOLO, which uses only one self-attention module, many-scale 
feature extraction and integration in the backbone and feature pyramid, and an improved auto-
anchor design to address this problem. There are few datasets for surface detection in electronics 
manufacturing. Hence, we curated a dataset consisting of 14,478 laptop surface defects, on which 
ATT-YOLO achieved 92.8% mAP0.5 for the binary-class object detection task. We also further 
verified our design on the COCO benchmark dataset. Considering both computation costs and the 
performance of object detectors, ATT-YOLO outperforms several state-of-the-art and lightweight 
object detectors on the COCO dataset. It achieves a 44.9% mAP score and 21.8 GFLOPs, which is 
better than the compared models including YOLOv8-small (44.9%, 28.6G), YOLOv7-tiny-SiLU (38.7%, 
13.8G), YOLOv6-small (43.1%, 44.2G), pp-YOLOE-small (42.7%, 17.4G), YOLOX-small (39.6%, 26.8G), 
and YOLOv5-small (36.7%, 17.2G). We hope that this work can serve as a useful reference for the 
utilization of attention-based networks in real-world situations.

The problem of surface defect detection problem is important for quality control in electronics manufacturing. 
This problem has several characteristics. First, a real-time inference speed is required. During the manufactur-
ing process, the cycle time of each product is usually very short. Second, the training time should be short. In 
real-world situations, the lifetimes of numerous products are very short. Furthermore, small and medium-sized 
enterprises typically do not have abundant computational resources. Third, high-resolution input is necessary. 
Due to the high-quality control standards required for electronic products, the samples used for quality control 
are collected by high-resolution industrial cameras. Although medium, large, or extra-large model architectures 
can achieve accurate performance, their long training times and slow inference times are prohibitive in real 
situations. Fourth, the designed model should be easy to deploy. Complicated operators are not directly sup-
ported by inference architectures. Hence, to address this problem, there is a critical need to design an accurate 
object detector with a real-time inference speed for high-resolution input images, a minimal training time, and 
a simple design.

Currently, You Only Look Once (YOLO)-style object detectors1–3 and fully convolutional one-stage (FCOS)-
style object detectors4,5 are usually used for real-time object detection tasks. YOLO series and their variants 
have been widely used to various applications. Chen et al. proposed an improved YOLOv5 for plant disease 
recognition6. Dewi et al. proposed an improved YOLOv3 for small traffic sign recognition7. Dewi et al. proposed 
an improved YOLOv5 for road marking sign identification8. Mekhalf et al. conducted a comparison among 
YOLOv5, transformer, and EfficientDet on the task of crop circle detection in desert9. Zhang et al. proposed 
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an improved YOLOv5 for target detection of forward-looking sonar image10. Xu et al. proposed an improved 
YOLOv5 for safety helmet wearing detection11. Yao et al. proposed an improved YOLOv5 for kiwifruit defects 
detection12. Dewi et al. proposed an improved YOLOv4 for advanced traffic sign recognition13. Among these 
elegant studies, the key issue is to design a fast and accurate object detector. To achieve fast and accurate object 
detection, (1) a good combination of local features and global features, (2) a more effective feature integra-
tion method14, (3) features which extracts from the foreground may have better performance than that extract 
from the whole image, and (4) a better initial solution are all beneficial. The latest YOLO-style object detector, 
YOLOv815, is focused on a new backbone network, novel activation function, decoupled head, and anchor-
free design to achieve fast and accurate object detection. Recently, self-attention-based networks have shown 
a superior ability to extract global features from input16–18. The self-attention module is designed such that the 
receptive field for the features is learnable instead of fixed16–18. Furthermore, the self-attention module can extract 
the features focusing on the foreground. However, such a self-attention module has more parameters than a 
convolutional module. An elegant proposal, TPH-YOLOv519, uses several self-attention modules corresponding 
to multiple scales in a feature pyramid. TPH-YOLOv519 performs well for object detection tasks focusing on 
remote sensing images. TPH-YOLOv5 use several self-attention modules to localize the objects from the high-
density scenes. However, the large computational cost of TPH-YOLOv519 makes it unsuitable use in surface 
defect detection in electronics manufacturing. On the other hand, the various scales of the objects of interest may 
necessitate feature extraction at more scales and feature integration by means of a feature pyramid20. Another 
elegant proposal, Scaled-YOLOv420, has been the subject of some experiments focusing on this consideration. 
However, for object detectors with such a many-scale design, the default auto-anchor method may not perform 
well. Hence, an improved auto-anchor search to enhance the initial solution is important to alleviate this problem 
with many-scale designs, which can cause poor performance in terms of the best possible recall4,5 and result in 
a poor initial solution for object detection tasks.

In this work, we propose an accurate object detector, ATT-YOLO (attention-YOLO), that is oriented toward 
the problem of surface defect detection in electronics manufacturing. ATT-YOLO uses only one self-attention 
module21 to achieve better global feature extraction and localize the interested objects from the highly density 
scenes10 at the cost of fewer additional parameters compared with methods that use multiple self-attention 
modules. ATT-YOLO also uses a many-scale backbone and feature pyramid as well as an improved auto-anchor 
design to obtain better initial solutions. For the problem under consideration, we used a small-scale YOLOv5 
model as our baseline model to conduct a series of experiments. We verified our design on both a self-curated 
dataset and the COCO benchmark dataset22.

Results
Ablation study of ATT‑YOLO.  We designed a series of experiments to analyze the contribution of each 
aspect of the design. The results are shown in Table 1.

The interpretation of these results can be divided into four salient points. (1) Regarding the activation func-
tion, we compare Mish23 and SiLU24 in combination with both the baseline model (YOLOv5-small) and ATT-
YOLO. The results show that for both model designs, the SiLU activation function can achieve a higher value 
of the mean average precision (mAP0.5:0.95) index with less training time. (2) In experiment B, the deeper 
multiscale backbone, deeper feature pyramid, and self-attention module can improve the mAP0.5:0.95 perfor-
mance by 8.1% compared to that of the baseline model. (3) The results of the auto-anchor comparison (Exp. B 
and Exp. E) show that the improved auto-anchor design can increase the mAP0.5:0.95 by 1.4% compared to that 
of the model without the improved auto-anchor design. (4) Comparisons of the results obtained with different 
numbers of training epochs ((Exp. C, Exp. E) and (Exp. D, Exp. G)) show that when the self-attention module 
is included, training for more epochs is better than training for fewer epochs. In contrast, object detectors using 
only convolution operations usually converge within 300 epochs14,25. Comparisons between the with/without 
the self-attention module is shown in the (Exp. F, Exp. G). The self-attention module improves 1.6% in terms of 
the mAP0.5:0.95. Finally, the results obtained using the ATT-YOLO model design, the improved auto-anchor 
design, the SiLU activation function and more training epochs are the best (mAP0.5:0.95 44.9%) among all 
experiments in the ablation study.

The possible reason that why the default auto-anchor of YOLOv5 is not suitable for the ATT-YOLO may 
cause from the simplified genetic algorithm and the design of fitness function which caused the limited fitting 

Table 1.   Ablation study of ATT-YOLO on the COCO dataset. *Means the data cited from the YOLOv5. ‘–’, 
means the data not available.

Exp Description Epochs mAP0.5:0.95 (%) Training time (h)

A YOLOv5-small + Mish 300 26.8 247.0

B A + deeper multiscale backbone + deeper feature pyramid + self-attention module 300 33.9 329.5

C B + improved auto-anchor design 300 34.9 329.5

D The same settings as experiment C except that the Mish activation function is replaced by the SiLU activation function 300 35.3 296.0

E The same model as in experiment C but with 400 epochs 400 35.3 424.0

F* A + deeper multiscale backbone + deeper feature pyramid except that the Mish activation function is replaced by the 
SiLU activation function 300 43.3 –

G The same settings as experiment D but with 400 epochs and training from scratch 400 44.9 395.0
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ability of an optimization problem. The default YOLOv5 has only three prediction heads, but the ATT-YOLO 
has six prediction heads. The parameters needed to be optimized is more than original network design. Since 
the genetic algorithm has random strategy during the algorithm execution, it cannot be guaranteed the next 
generation results are better than previous results. Hence, without the elitism design in the genetic algorithm, the 
optimized results may worse than previous generation. Another possible reason of the fitness function design, the 
IOU distance is more directly to the object detection task than the Euclidean distance. Since the objective of the 
object detection task is the IOU metric or its variant, directly used the IOU distance as the fitness function of the 
designed genetic algorithm may have better optimized results in our experience. In the results of this work, the 
default auto-anchor method BPR is 11.4%, the improved auto-anchor method improves BPR from 11.4% to 99.9% 
and improved mAP0.5:0.95 from 33.9% to 34.9%. The experiment results are consistent with our experience.

Comparison with existing lightweight and state‑of‑the‑art YOLO‑style object detectors.  In 
this section, we compare ATT-YOLO with other methods with similar computational costs, namely, small-scale 
YOLO designs based on existing YOLO-style object detectors. The compared lightweight and state-of-the-art 
models include YOLOv5-small26, YOLOX-small27, pp-YOLOE-small28, YOLOv6-small25, YOLOv7-tiny-SiLU14, 
and YOLOv8-small15 (Fig. 1 and Table 2).The results show that ATT-YOLO achieves a mAP0.5:0.95 of 44.9% 
and GFLOPs of 21.8G, outperforming some state-of-the-art YOLO-style object detectors with similar compu-
tational costs. The related experimental results are cited from the corresponding papers. The detailed results are 
shown in Table 2 and Fig. 1.

Results on the LCFC‑Laptop dataset.  In this section, to verify the ability to handle the electronics man-
ufacturing surface detection problem, we present two experiments conducted on the LCFC-Laptop dataset: one 
focuses on the multiclass object detection task, and the other focuses on the binary-class object detection task. 

Figure 1.   Comparison among existing YOLO-style object detectors in terms of mAP0.5:0.95 on the COCO 
dataset and computational cost (GFLOPs). A smaller number of GFLOPs and a larger mAP0.5:0.95 are better. 
The x-axis represents mAP0.5:0.95, and the y-axis represents the computational cost (GFLOPs). The area of 
the circle representing each model is also proportional to its computational cost. This figure was plotted by 
Microsoft Office 2016.

Table 2.   A comprehensive comparison of small-scale and state-of-the-art YOLO-style models on the COCO 
dataset. ‘-’, Means the corresponding performance are not available on the corresponding proposals.

Model FLOPs mAP0.5:0.95 (%) #Param (M) mAP0.5 (%) APs (%) APm (%) APl (%)

YOLOv5-small26 17.2G 36.7 7.3 55.4 – – –

YOLOX-small27 26.8G 39.6 9.0 – – – –

pp-YOLOE-small28 17.4G 42.7 7.9 60.5 23.2 46.4 56.9

YOLOv6-small25 44.2G 43.1 17.2 – – – –

YOLOv7-tiny-SiLU14 13.8G 38.7 6.2 56.7 18.8 42.4 51.9

YOLOv8-small15 28.6G 44.9 11.2 – – – –

Ours 21.8G 44.9 23.1 63.2 29.7 49.6 57.6
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The multiclass object detection task can be used to analyze which defect class is predominant during a certain 
period. Since each defect has corresponding reasons for its occurrence, the analysis of multiclass object detection 
can be employed to improve the manufacturing process. On the other hand, the binary-class object detection 
task focuses on determining whether a given sample is defective or not, which is the commonly used industry 
standard for a production line. It provides overall metrics for product quality. By combining all classes of defects 
into the "defect" class, the imbalanced problem in the LCFC-Laptop dataset can be alleviated.

In the multiclass task (Table 3), ATT-YOLO achieves an overall precision of 84.7%, an overall recall of 87.4%, 
and a mAP0.5 of 90.3%. On the other hand, ATT-YOLO achieves an overall precision of 88.2%, an overall recall 
of 88.1%, and a mAP0.5 of 92.8% on the binary-class object detection task (Table 4). Some prediction results 
can be seen in the Fig. 2. These results show that ATT-YOLO may overcome the data imbalanced problem to 
some degree. However, ATT-YOLO achieves a higher mAP0.5 value on the binary-class object detection task 
than on the multiclass object detection task. As shown in Table 5, on the single RTX 3080 GPU, ATT-YOLO 
can achieve an inference speed of 111.0 FPS based on the TensorRT architecture, whereas the inference speed 
of the PyTorch implementation can reach 65.3 FPS on the single TITAN RTX GPU. Both inference speeds are 
sufficient to meet the standard for real-time prediction on regular GPUs instead of high-end GPUs. However, 
some mislabeling problems in this dataset may have detrimental impacts on an object detector. Despite the noisy 
labels in the dataset, ATT-YOLO can achieve good results on this dataset. However, to meet the high standards 
of quality control, it will be necessary to evolutionarily refine this dataset. As mentioned above, the binary class 
object detection task alleviates the imbalanced problem in the LCFC-Laptop dataset, which improves the overall 
mAP0.5 from 90.3% to 92.8%. However, the multiclass object detection task is beneficial for analyzing the major-
ity class(es). After changing the manufacturing process, the quantity of a given change to improve the production 
line’s yield rate can be estimated. The feedback between changes to the manufacturing process and the yield rate 
is valuable for optimizing the manufacturing process. The main training parameters are listed in Table 6. Both 
the multiclass object detection task and the binary class object detection task require 8 h of training time. The 
primary training environment used for the LCFC-Laptop dataset includes PyTorch 1.7.0, opencv-python 4.1.1, 
numpy 1.18.5, and Pillow 7.1.2. The detailed list of Python packages can be found on our page.

Discussion
In this study, to demonstrate the ability to handle the electronics manufacturing surface defect detection problem, 
we conducted a series of experiments to verify each component of the ATT-YOLO design. Because of the need for 
simplicity in this problem, we used only a simple design for the model architecture. We believe that by replacing 
the simple convolutional and attention modules used in ATT-YOLO with more sophisticated, novel designs, it 
may be possible to achieve better performance than that reported here. To save computational costs, we did not 
perform hyperparameter tuning in this study, and we trained our models from scratch without using another 
external dataset. We further compared ATT-YOLO against other YOLO-style object detectors with similar 
computational costs on the COCO dataset. The results show that ATT-YOLO outperforms existing YOLO-style 
object detectors under the condition of a similar computational cost. Furthermore, to evaluate the ability to 
handle the problem of interest, we conducted two experiments on a real-world dataset. Despite the noisy labels 
in the dataset, ATT-YOLO achieved good results in these experiments. These results show that ATT-YOLO may 
be suitable for handling this real-world problem.

In the future, first, it will be necessary to evolutionarily refine the LCFC-Laptop dataset for benchmarking 
performance on the surface defect detection problem in electronics manufacturing. Second, a more efficient 
and accurate design of ATT-YOLO for this problem should be pursued. Third, unsupervised or semisupervised 
methods should be developed to reduce the cost of dataset collection. We believe that the availability of a suf-
ficiently high-quality dataset will help improve performance to meet the high standards required in the industry.

Table 3.   Performance in the multiclass object detection task on the LCFC-Laptop dataset.

Defect type Precision (%) Recall (%) mAP0.5 (%)

Dirt 87.4 81.7 89.3

Plain particle 83.2 94.3 93.7

Edge particle 79.2 85.7 87.0

Collision 80.7 72.4 78.6

Scratch 89.8 94.7 96.2

Unknown 88.2 95.8 96.9

All 84.7 87.4 90.3

Table 4.   Performance in the binary class object detection task on the LCFC-Laptop dataset.

Defect type Precision (%) Recall (%) mAP0.5 (%)

All 88.2 88.1 92.8
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(a) (b)

(c) (d)

(e) (f)

Figure 2.   The prediction results of ATT-YOLO on various defect types. (a) Dirt, (b) plain particle, (c) collision, 
(d) scratch, (e) collision, and (f) edge particle. This figure was plotted by python with version 3.8.12.

Table 5.   Inference speed of ATT-YOLO on the LCFC-Laptop dataset.

Architecture FPS GPU

PyTorch 65.3 The TITAN RTX GPU

TensorRT 111.0 The RTX 3080 GPU
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Materials and methods
The LCFC‑laptop dataset.  LCFC (Hefei) Electronics Technology Co., Ltd. (LCFC) is a wholly owned sub-
sidiary of Lenovo. Worldwide, one out of eight laptops sold are manufactured by LCFC; the cumulative number 
of laptops sold has reached 0.2 billion, and over 126 countries have bought laptops from Lenovo. Hence, through 
collaboration with this company, we were able to gain the opportunity to establish an extensive laptop dataset to 
verify the performance of ATT-YOLO.

To construct the LCFC-Laptop dataset, we collected samples acquired by four 5000 × 5000 high-resolution 
industrial cameras with 6 sets of lights, including white lights, blue lights, and red lights. We believe that a given 
defect is associated with a combination of specific wavelengths and that illumination with a broad spectrum can 
allow a variety of defects to be well captured. Hence, we used various wavelengths of light to collect this dataset. 
The 6 sets of lights were tuned by senior optical engineers. Next, we used the same standards adopted by the 
senior engineers and quality inspectors of LCFC to label this dataset. Finally, we obtained a dataset consisting of 
14,478 annotated defects. The detailed statistics of this dataset are shown in Table 7. The dataset includes various 
types of defects, such as scratches, dirt, plain particles, edge particles, collision defects, and defects of unknown 
type. Examples of each defect type are shown in Fig. 3. Although the dataset was labeled by senior engineers and 
quality inspectors, some mislabeled samples are inevitable. The mislabeled samples can be divided into three 
categories. First, a sample of one class may be labeled as belonging to another class. Second, a nondefect sample 

Table 6.   ATT-YOLO training parameters.

Parameter Value Parameter Value

lr0 0.0032 lrf 0.12

Momentum 0.843 weight_decay 0.00036

Mosaic 1.000 mixup 0.243

Table 7.   Statistics of the LCFC-Laptop dataset.

Defect type Number of defects

Dirt 11,285

Plain particle 605

Edge particle 35

Collision 29

Scratch 1104

Unknown 1420

All 14,478

       (a)        (b)        (c)

       (d)         (e)        (f)

Figure 3.   Examples of each defect type. The defect types include (a) dirt, (b) scratches, (c) collision defects, 
(d) plain particles, (e) edge particles, and (f) defects of unknown type. This figure presents only the regions of 
interest of the original input images. This figure was plotted by python with version 3.8.12.
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may be labeled as a defect sample. Third, a defect sample may be labeled as a nondefect sample. Since the samples 
in this dataset will be on the market within 6–12 months, this dataset analyzed during the current study available 
from the corresponding author on reasonable request. After all these products are on the market, the download 
link of this dataset will be available at the URL.

Data preprocess of the LCFC‑Laptop dataset.  The LCFC-Laptop dataset consists of images collected 
from portable computer shells (Fig. 4). We use four high-resolution cameras to capture photos of a portable 
computer shell with a resolution of 5000 × 5000 pixels (Fig. 5). Due to the high GPU memory requirements for 
training a model with such high-resolution images, we divide the original image into smaller pieces. As shown 
in Fig. 6, the original image is split into 16 smaller sub-images. To prevent defects from being damaged during 
the process, there are 32-pixel overlapping regions at the edges of two adjacent sub-images. Since defects smaller 
than 32 pixels are difficult to distinguish with the naked eye, the LCFC-Laptop dataset ultimately consists of 
1280 × 1280 images with 32-pixel overlapping regions.

The COCO dataset.  The Common Objects in Context (COCO) dataset22 is one of the most popular large-
scale labeled image datasets available for public use. It contains various types of objects that are encountered on a 
daily basis and image annotations for 80 object classes, with over 1.5 million object instances. The COCO dataset 
is used for multiple computer vision tasks, such as object detection, instance segmentation, and image caption-

Figure 4.   The appearance of a portable computer shell. The black regions represent regions of interest. The 
corresponding parts for the monitor and touchpad are considered background in the context of surface defect 
detection on portable computer shells. This figure was plotted by the Dahua-A5B57MG200 camera.

Figure 5.   The original sample images have a resolution of 5000 × 5000, captured by an industrial camera. To 
obtain high-quality images from these high-resolution industrial images, we use four high-resolution cameras 
to capture the top left, top right, bottom left, and bottom right sections of an original sample. This figure was 
plotted by the python with version 3.8.12.
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ing. Its versatility and multipurpose scene variations make it highly suitable for training a computer vision model 
and benchmarking its performance.

A brief review of the baseline object detector.  YOLO is one of the most widely known object detec-
tion algorithms due to its speed and accuracy14,25. YOLOv5 implements a family of object detection architectures 
and provides several pretrained models that have been trained on the COCO dataset26. YOLOv5 is designed with 
a flexible architecture that allows developers and researchers to modify and extend it with customized layers 
and model architectures. Furthermore, YOLOv5 and its community provide a series of sample codes for various 
deployment architectures, such as ONNXRuntime, TensorRT29, and TensorFlow. To address the problem under 
consideration, we chose the YOLOv5-small model with version 5.0 as our baseline model. 

YOLOv5 consists of three parts which are the backbone module, the neck module, and the prediction head 
module. On the backbone design of YOLOv5, the modified CSPDarknet30,31 are used, which by combination 
use of the Focus module, the BottleneckCSP module30,31, and the SPP module (Spatial Pyramid Pooling)32. On 
the neck module design, PANet (Path Aggregation Network) are used for information fusion. On the prediction 
head module, classification and regression are coupled which same as the YOLOv3 design3 of the prediction 
head module. 

Design of ATT‑YOLO.  According to our observations, (1) a surface defect detection dataset usually contains 
objects with complicated shapes and at many scales, (2) few YOLO-style object detectors use global features to 
enhance the performance of object detection14,25, and (3) a many-scale design may cause the default auto-anchor 
method to not perform well. Hence, the design of ATT-YOLO consists of three parts. First, ATT-YOLO uses a 
many-scale backbone and a many-scale feature pyramid. Second, ATT-YOLO includes only one self-attention 
module, which is located behind the seventh convolutional module in the backbone. Third, ATT-YOLO uses an 
improved auto-anchor method to obtain a set of better initial solutions. To meet the requirements of the problem 
at interest, only a small-scale model was used in this work to conduct the related experiments, and only simple 
convolutional and self-attention modules were adopted for easy deployment. Nevertheless, despite the use of 
small-scale models, the training time spent on these models ranged from 247.0 to 424.0 h. In these experiments, 
training was conducted mainly on eight RTX 3090 GPUs in a distributed manner. All hyperparameters used in 
ATT-YOLO were the same as those in the default YOLOv5 model. The detailed design of ATT-YOLO is shown 
in Fig. 7. The backbone of ATT-YOLO consists of seven convolutional modules and one self-attention module, 
which is immediately behind the last convolutional module (P7). The feature pyramid design of ATT-YOLO 
spans from the P2 module to the P7 module and is adapted from the design of PANet33. The detection head used 
in this work is the original design used in YOLOv526. 

The actual backbone design implementation between ATT-YOLO and YOLOv5-small is shown in the Table 8, 
the basic module is same to the YOLOv5-small consisting of Conv + C3, another difference between the two 
models is the final module, ATT-YOLO adds self-attention behind the P7 module instead of the original imple-
mentation (Conv + SPP + C3). The self-attention module is implemented by the multi-head attention and MLP. 
The connection of backbone to the feature pyramid and the detection head is shown in the Fig. 7.

As a result, ATT-YOLO has a computational cost of 21.8 GFLOPs, which is slightly higher than the original 
computational cost of the YOLOv5-small model (17.2 GFLOPs). Since the CSPDarknet architecture30,31 was 
proposed by the YOLOv4 authors34, the original activation function used in this architecture is Mish23. On 
the other hand, the original activation function used in the YOLOv5 design26 is the sigmoid linear unit (SiLU) 
function24. Hence, this work compares these two activation functions in both the original YOLOv5-small model 

Figure 6.   Illustration of dividing the original images into 1280 × 1280 sub-images. We split the original images 
into 1280 × 1280 sub-images along the green line. The two adjacent sub-images have an overlapping area of 32 
pixels to prevent defects from being damaged during the process. This figure was plotted by the ImageLabeler 
(https://​github.​com/​Manch​ery/​Image​Label​er).

https://github.com/Manchery/ImageLabeler
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and the ATT-YOLO design. The detailed experimental design, including the activation function comparisons, 
is summarized in Table 1. 

To reveal the efficiency of the ATT-YOLO design and to reduce the difficulty of deployment in real situations, 
this work relies on simple convolutional modules, a simple self-attention module21, and the original settings of 
the small-scale YOLOv5-small model. We believe that other types of convolutional modules, such as fast Fourier 
convolution35,36 or dilated convolution37, may offer better performance than these simple convolutional modules. 
Similarly, regarding attention module selection, recent variants of Transformers such as Swin Transformer16,17, 
DETR38, Deformable DETR39, DINO40, and ViT-Adapter-B41 may offer better performance than our simple self-
attention module21. Furthermore, to save computational costs, we did not perform hyperparameter tuning in 
this work. Hence, it may be possible to improve the results of this work by performing a suitable hyperparameter 
search. To address the need for high-resolution input images that is characteristic of the problem of interest, 
ATT-YOLO was implemented with an input size of 1280 × 1280 for these experiments. The 1280 × 1280 input 
images were sliced from the original 5000 × 5000 input images, with some overlap between slices to avoid some 
defects being cut into different parts.

Figure 7.   The design of ATT-YOLO. ATT-YOLO uses a many-scale backbone and feature pyramid. In the 
backbone, ATT-YOLO uses only one self-attention module, which is located immediately behind the P7 
module. The gray blocks represent elements from the original design of YOLOv5. This figure was plotted by the 
Microsoft Office2016.

Table 8.   The comparison between backbones of ATT-YOLO and YOLOv5-small. ‘–’, Means the default 
YOLOv5-small model without the P6 and P7 modules.

Module ATT-YOLO YOLOv5-small

P2 Focus Focus

P3 Conv + C3 Conv + C3

P4 Conv + C3 Conv + C3

P5 Conv + C3 Conv + SPP + C3

P6 Conv + C3 –

P7 Conv + SPP + C3 + self-attention –
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An improved auto‑anchor method.  According to our abundant experience from the intelligent com-
puting lab on the evolutionary algorithms and the genetic algorithms and applications on several fields42–48. We 
improve the default YOLOv5 auto-anchor design. The default YOLOv5 auto-anchor design uses a simple genetic 
algorithm in cooperation with the kmeans algorithm. The kmeans algorithm in YOLOv5 uses the Euclidean 
distance as a fitness function to evolve a set of initial anchors. This design can perform well with the default 
YOLOv5 backbone and feature pyramid, achieving a best possible recall (BPR)4,5 of 99.9% with the default model 
architecture. The BPR is defined as the ratio of the maximum number of ground-truth boxes a detector can recall 
to the total number of ground-truth boxes4,5. However, when the default auto-anchor design26 is directly applied 
in ATT-YOLO, the value of the BPR is reduced to 11.4%, which may imply a poor initial solution for the object 
detection task that used for handling this problem in electronics manufacturing. 

In this work, ATT-YOLO uses a simple genetic algorithm and an elitism mechanism to ensure that the 
offspring results are always better than the ancestor results. We also use a design in which a genetic algorithm 
works in cooperation with the kmeans algorithm. However, ATT-YOLO uses the intersection-over-union (IOU) 
distance instead of the Euclidean distance as the fitness function. The IOU distance is calculated as the 1-IOU. 
For simplicity, this work uses the original IOU definition instead of any novel IOUs24,49–51, which may offer better 
performance but require more complicated computations. As a result, the value of the BPR improves from 11.4 
to 99.9% with the ATT-YOLO design.

Conclusions
The object detection task can be applied to numerous scenarios, each with its own unique requirements. In this 
work, we have summarized the requirements for surface defect detection in electronics manufacturing, where 
both inference speed and accuracy of the object detector are essential. In this context, ATT-YOLO provides 
the best trade-off among existing YOLO-style object detectors. However, when the primary focus of a specific 
scenario is the accuracy of the object detector, YOLO-style object detectors with larger computational costs and 
transformer-based object detectors emerge as superior choices for that scenario.

In this work, ATT-YOLO uses many-scale backbone and feature pyramid, an improved auto-anchor method, 
and a self-attention module to design object detector for surface defect detection in electronics manufactur-
ing. We verified ATT-YOLO by the self-curated LCFC-Laptop dataset and the COCO benchmark dataset. As 
a result, ATT-YOLO satisfies the reequipments of surface defect detection and achieve the best tradeoff among 
lightweight YOLO-style object detectors.

Future work
Since some mislabeling issues are inevitable in human-curated datasets, it is essential to continually refine the 
LCFC-Laptop dataset. Additionally, collecting defect data from various materials is crucial for extending this 
work.

On the other hand, the supervised method proposed in this work targets scenarios where sufficient defect 
data is available. Due to the low probability of defects occurring, it can be challenging to collect adequate data to 
train a high-performing model using a supervised approach. Therefore, it is important to develop unsupervised 
or semisupervised methods for situations where defect data is insufficient. These methods rely on a vast amount 
of normal data to capture the information and distribution of what is considered "normal." Once these models 
are trained, they use deviations from the normal data to determine whether a given input is normal or not.

Data availability
Since the samples in this dataset will be on the market within 6–12 months, this dataset analyzed during the 
current study available from the corresponding author on reasonable request. After all these products are on 
the market, the download link of this dataset will be available at the URL which can be available at https://​bitbu​
cket.​org/​att-​yolov5/​att-​yolov5/​src/​main/.
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