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Forecasting COVID‑19 spreading 
through an ensemble of classical 
and machine learning models: 
Spain’s case study
Ignacio Heredia Cacha , Judith Sáinz‑Pardo Díaz , María Castrillo  & Álvaro López García *

In this work the applicability of an ensemble of population and machine learning models to predict the 
evolution of the COVID‑19 pandemic in Spain is evaluated, relying solely on public datasets. Firstly, 
using only incidence data, we trained machine learning models and adjusted classical ODE‑based 
population models, especially suited to capture long term trends. As a novel approach, we then made 
an ensemble of these two families of models in order to obtain a more robust and accurate prediction. 
We then proceed to improve machine learning models by adding more input features: vaccination, 
human mobility and weather conditions. However, these improvements did not translate to the 
overall ensemble, as the different model families had also different prediction patterns. Additionally, 
machine learning models degraded when new COVID variants appeared after training. We finally used 
Shapley Additive Explanation values to discern the relative importance of the different input features 
for the machine learning models’ predictions. The conclusion of this work is that the ensemble 
of machine learning models and population models can be a promising alternative to SEIR‑like 
compartmental models, especially given that the former do not need data from recovered patients, 
which are hard to collect and generally unavailable.

After the surge of cases of the new Coronavirus Disease 2019 (COVID-19), caused by the SARS-COV-2 virus, 
several measures were imposed to slow down the spread of the disease in every region in Spain by the second 
week of March 2020. Over the time, these measures have included hard lock-downs, restrictions on people 
mobility, limitations of the number of people in public places and the usage of protection gear (masks or gloves), 
among others.

The application of those measures has not been consistent between countries nor between Spain regions. 
This makes it hard to reliably assess the impact of the individual restrictions to avoid the  spreading1,2. Human 
mobility and its direct impact on the spread of infectious diseases (including COVID-19) has been profusely 
studied, and restricting or limiting the mobility from infected areas is one of the first measures being adopted by 
authorities in order to prevent an epidemic spread, with different  results2–8. In addition, weather conditions have 
an influence on the evolution of the pandemic, as it is known that other respiratory viruses survive less in humid 
climates and with low  temperatures9. Some studies already evaluated the influence of climate on COVID-19 cases, 
for  example10, where it is concluded that climatic factors play an important role in the pandemic,  and11, where 
it is also concluded that climate is a relevant factor in determining the incidence rate of COVID-19 pandemic 
cases (in the first citation this is concluded for a tropical country and in the second one for the case of India).

In this context, the approach that we propose in this work is to predict the spread of COVID-19 combining 
both machine learning (ML) and classical population models, using exclusively publicly available data of inci-
dence, mobility, vaccination and weather. Having a reliable forecast enables us to assess the influence of these 
factors on the spreading rate, thus allowing decision makers to design more effective policies.

The motivation for using these two types of models lies in the fact that, from our experience, while ML models 
in the vast majority of cases overestimate the number of daily cases, population models generally seem to pre-
dict fewer cases than the actual ones. To make the most of both model families, we aggregated their predictions 
using ensemble learning. In ensemble learning all the individual predictions are combined to generate a meta-
prediction and the ensemble usually outperforms any of its individual model  members12,13.

The contributions made in the present work can be summarized in two essential points:
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• Classical and ML models are combined and their optimal temporal range of applicability is studied. We are 
currently not aware of any work including an ensemble of both ML and population models (ODE based) for 
epidemiological predictions.

• As classical models, less explored population growth models are used. Contrary to compartmental epide-
miological models, these models can be used even when the data of recovered population are not available. 
This is a crucial advantage because recovered patient data are usually hard to collect, and in fact not available 
anymore for Spain since 17 May 2020 (see dataset  in14). It should be noted nevertheless that some regions 
do provide these data on recoveries and/or active cases, and there are some very successful works in the 
development of this type of compartmental  models15.

The paper is structured as follows: section “Related work” contains the related work relevant to this publica-
tion; section “Data” outlines the datasets considered for our work, as well as the pre-processing that we have 
performed to them; in section “Methods” we present the ensemble of models being used to predict the evolu-
tion of the epidemic spread in Spain; section “Results and discussion” describes our main findings and results; 
section “Conclusions” contains the main conclusions which emerge from the analysis of results and the last one 
(section “Challenges and future directions”) outlines the future work which arises from this research.

Related work
Much effort has been done to try to predict the COVID-19 spreading, and therefore to be able to design better and 
more reliable control  measures16. Many of the most solid work comes from classical compartmental epidemio-
logical models like SEIR, where population is divided in different compartments (Susceptible, Exposed, Infected, 
Recovered). Many SEIR models have been extended to account for additional factors like  confinements17, popula-
tion  migrations18, types of social  interactions19 or the survival of the pathogen in the  environment20. In particu-
lar,15 predicts required beds at Intensive Care Units by adding 4 additional compartments to those of the SEIR 
model: Fatality cases, Asymptomatics, Hospitalized and Super-spreaders.

In the present study, instead of compartmental models we chose to use population models, for which we only 
need the data of the daily cases. Several works already include the use of this type of models for the COVID-19 
case studies, such  as21, where the use of Gompertz curves and logistic regression is proposed,  or22, where the 
Von Bertalanffy growth function (VBGF) is used to forecast the trend of COVID-19 outbreak. Additionally,23 
compares the use of artificial neural networks and the Gompertz model to predict the dynamics of COVID-19 
deaths in Mexico. However, our approach does not compare the performance of both kind of models (ML and 
population models), instead it combines them to try to obtain more accurate and robust predictions.

In recent years, ML has emerged as a strong competitor to classical mechanistic models. In the context of the 
spread of COVID-19 during the early phases of the outbreak, the focus was on trying to predict the evolution of 
the time series of pandemic  numbers24,25, with disparate prediction quality and uncertainties. ML has been used 
both as a standalone  model26 or as a top layer over classical epidemiological  models27. ML models have been 
used to exploit different big data  sources28,29 or incorporating heterogeneous  features30. Also, several general 
evaluations of the applicability of these models  exist31–34. Applications of deep learning techniques arise beyond 
the classically expected for dealing with COVID-19 (e.g. epidemiology), such as Natural Language Processing 
(NLP) or computer vision through the use of deep learning techniques, are also as reported  in35.

Regarding the model ensemble, work has been developed both in the  USA36 and  EU37 to consolidate all these 
different models by deploying portals that ensemble the predictions. ML techniques have also been used to help 
improving classical epidemiological  models38.

Despite everyone best efforts, sensible work has carefully warned against the possibility of meaningfully 
predicting the evolution for temporal horizons over a  week39, just as is the case for the weather forecasts. For 
this reason, we do our best all over this paper to point out the limitations of our data (as presented at the end of 
the next section) and models so that we do not add more fuel to the hype wagon.

Data
In the spirit of Open Science, the present work exclusively relies on open-access public data. The intention is, one 
the hand, to contribute to the rigorous assessment of the models before they can be adopted by policy makers, 
and on the other hand to encourage the release of comprehensive and quality open datasets by public adminis-
trations, not limited to the COVID-19 pandemic data.

Our dataset is composed of COVID-19 cases data, COVID-19 vaccination data, human population mobility 
data and weather observations, and is constructed as explained in what follows.

The spatial basic units of the present work are the whole country (Spain), and the autonomous community 
(Spain is composed of 17 autonomous communities and 2 autonomous cities). Therefore, the final objective is 
to predict the number of daily cases per day for Spain as a whole and for each autonomous community. Due to 
their particular geographical situation and demographics, the pandemic outbreak in the two autonomous cities 
of Ceuta and Melilla had a different behaviour and they have not been analyzed individually in this study. How-
ever, we have considered the daily cases reported by these autonomous cities in the total number of daily cases 
in Spain. Furthermore, in the case of mobility and temperature, these data are different if the analysis is carried 
out for the whole of Spain, or if it is done by autonomous community.

The dataset time range goes from January 1st, 2021 to December 31st, 2021. For consistency, we do not 
include data before that date because vaccination in Spain started on December 27st, 2020. Also, note that after 
November 2021, the daily cases exploded due to Omicron variant (cf. Fig. 1), so the forecasts will be presumably 
worse in that month.
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In the case of the ML models, these data were split into training, validation and test sets. Specifically, the 
days to be predicted in test were, from October 2nd, 2021 (so the date on which the prediction would be made 
is October 1st), until December 31st. The 30 days prior to these dates correspond to the validation set, and 
the rest to the training set. Note that forecasts are made for 14 days. In the case of the population models, we 
considered the same test set, and as training the 30 days prior to the 14 days to be predicted (more details in 
section “Population models”).

Daily COVID‑19 cases data. Concerning the data on daily cases confirmed by COVID-19, we used the 
data collected by the Carlos III Health Institute —in Spanish Instituto de Salud Carlos III (ISCIII)—which is a 
Spanish autonomous public organization currently dependent on the Ministry of Science and Innovation—in 
Spanish Ministerio de Ciencia e Innovación (MICINN)—. The data source is available  in40.

The dataset classifies new cases according to the test technique used to detect them (PCR, antibody, antigen, 
unknown) and the autonomous community of residence. For this study, we used the total number of new cases 
across all techniques.

Figure 1 shows the evolution of daily COVID-19 cases (normalized) throughout 2021 for Spain, and for the 
autonomous community of Cantabria as an example. It reveals that the evolution of the trend for Cantabria is 
analogous to that of the country as a whole.

Figure 2 shows the number of diagnosed cases according to the day of the week when they were recorded. 
As expected, a weekly pattern is perceived, with a lower number of cases recorded on the weekends. However, 
after performing some preliminary tests as they are explained later, finally the day of the week was not included 
as an input variable in the models.

Vaccination data. Vaccination against COVID-19 has shown as key to protect the most vulnerable groups, 
reducing the severity and mortality of the disease. The vaccination process in Spain began on December 27th, 
2020, prioritizing its inoculation to people living in elderly residences and other dependency centers, health 
personnel and first-line healthcare partners, and people with a high degree of dependency not institutionalized. 
The vaccination strategy continued with the most vulnerable people following an age criterion, in a descending 
order. By June 2021, the vaccine was widely available, and the process continued again in descending order of 
age, reaching those over 12 years of age. Thus, by October 14th, 87.9% of the target population (i.e. those over 12 
years old) had received the full vaccination  schedule41.

As of December 15th, 2021, 4 vaccines were authorized for administration by the European Medicines Agency 
(EMA)41 (cf. Table 1).

The data from the Ministry of Health of the Government of Spain on the vaccination strategy consist of 
reports on the evolution of the strategy, i.e. no daily or weekly data on the doses administered are publicly avail-
able. Therefore, in this study we use the European COVID-19 vaccination data collected by the European Centre 
for Disease Prevention and Control. This dataset contains the doses administered per week in each country, 
grouped by vaccine type and age group. In addition, a distinction is made whether the vaccine corresponds to a 
first or a second dose. The data source is available  in42.

In Fig. 3 we show the weekly evolution of the vaccination strategy considering the type of vaccine, and the 
first and second doses (without distinguishing by age groups).

The number of doses administered is given on a weekly basis (i.e. doses administered each week), but we 
were interested in extrapolating these data to a daily level. As the value of the total weekly doses was not known 
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Figure 1.  Daily COVID-19 confirmed cases (normalized) in Spain and in Cantabria autonomous community. 
Transparency is added to data outside our considered time range (data before 2021).
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until the last day of each week, we associated to each Sunday the total value of doses administered that week 
divided by 7. Then, we had to assign values for the intermediate days. Note that, in order to predict the cases of 
day n, the vaccination, mobility and weather data on day n− 14 are used (the motivation for this is explained in 
Subection ML models and in Table 2). Then, in order not to use future data in the test set (we do not know the 
data from the last available day to n), we could not interpolate those values for that part of the data, therefore the 
implemented process was: we interpolated using cubic splines with the known data until August 29th, 2021 (the 
training set covered up to September 1st, 2021), and from the last known data, we extrapolated linearly until the 
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Figure 2.  Statistics on the number of cases depending on the day of the week (ML train set). The dotted black 
line shows the mean of the daily cases in the study period, and in each boxplot the mean and standard deviation 
are also shown as dashed lines

Table 1.  Vaccines authorized by the EMA.

Abbrv. Company Vaccine type Dosage

AZ AstraZeneca Adenovirus vector 2 doses

COM Pfizer/BioNTech ARNm 2 doses

JANSS Janssen Adenovirus vector 1 dose

MOD Moderna ARNm 2 doses
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Figure 3.  First and second doses of the COVID-19 vaccine given in Spain by week and type of vaccine.
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end of that week (when a new observation will be available). That is, if we consider as known days the last day 
of each week, every time we reach a new known data, we continue the linear extrapolation. The result obtained 
for the data of the first dose is shown in Fig. 4, where it can be seen which values were known because it was the 
last day of the week, which were interpolated and which were extrapolated.

Therefore, through a process of interpolation for the train set, and extrapolation for validation and test sets, 
we associated to each day of 2021 a value for the vaccination data of the first and second doses of COVID-19 
vaccine. Figure 4 shows the result corresponding to the first dose, and an analogous process was followed for 
the second dose.

Mobility data. In order to assess human mobility we used the data provided by the Spanish National Statis-
tics Institute—in Spanish Instituto Nacional de Estadística (INE)—. The data source is available  at43.

Since 2019 the INE has conducted a human mobility study based on cellphone data. In 2020, during the 
period corresponding to the state of alarm, and due to the impact of mobility in the COVID-19 pandemic in 
Spain, this project provided daily information on movements between the 3214 mobility areas that were designed 
for the original study. For this period, from March 16th to June 20th, the telephone operators provided daily 
data. Subsequently, due to the continuous waves of the pandemic and the influence of mobility on its evolution, 
the study continued, but with the publication of weekly data, relative to two specific days of the previous week 
(Wednesday and Sunday). Information on the study is available  at43.

Regarding the data collected in this project, we were interested in knowing the flux between different popula-
tion areas, for which we have areas of residence and areas of destination.

Some important aspects of the data provided by this study are summarized below:

• Cellphones location data were obtained from the three major mobile operators in the country (Orange, 
Telefónica and Vodafone).

• The area of residence of each cellphone is considered to be the area where it was located for the longest time 
between 22:00 hours of the previous day and 06:00 hours of the observed day.

Table 2.  Input for predicting data for days n+ 1 to n+ 14 using ML models. Note the feedback process taking 
place in the lags column.

Input

Day predicted lag1 lag2 . lag14 Vaccination/mobility/weather data

n+ 1 Cases n Cases n− 1 . Cases n− 13 Data n− 13

n+ 2 Pred n+ 1 Cases n . Cases n− 12 Data n− 12

n+ 3 Pred n+ 2 Pred n+ 1 . Cases n− 11 Data n− 11

. . . . . .

n+ 14 Pred n+ 13 Pred n+ 12 . Cases n Data n
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Figure 4.  Interpolated and extrapolated values for each day of 2021 for the first dose of the vaccine.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6750  | https://doi.org/10.1038/s41598-023-33795-8

www.nature.com/scientificreports/

• In order to determine the area of destination, all areas (including the residence one) in which the terminal 
was located during the hours of 10:00 to 16:00 of the observed day were taken. If there were more than one 
area, the one where the terminal was located the longest time, other than the area of residence, was taken.

• In order to preserve user privacy, whenever the number of observations was less than 15 in an area for a given 
operator, the result was censored at source. Origin-destination mobility data was then only provided for the 
areas in which at least one of the three operators pass this threshold.

• As in most of the original data there were available two days for each week, a forward fill was performed 
when data was not available (i.e. propagating the known values as explained hereinafter).

Figure 5 shows a visual representation of the origin-destination fluxes provided by the INE.
Finally, in order to assign a daily mobility value to each autonomous community we implemented the follow-

ing process. Be Xi each of the N autonomous communities considered in the study, i ∈ {1, ...,N} . The mobility 
flux assigned to an autonomous community Xi on a given day t ( FtXi

 ) is the sum of all the incoming fluxes from 
the remaining N − 1 Communities (inter-mobility), that is f tXj→Xi

 ∀j ∈ {1, ...,N} , j  = i , together with the internal 
flux f tXi→Xi

 inside that Community (intra-mobility):

When studying the whole country, Spain, the mobility was the sum of the fluxes of all the autonomous com-
munities. Figure 6 shows the temporal evolution of mobility for Cantabria, separating the intra-mobility and 
inter-mobility components.

As real mobility data were only published for Wednesdays and Sundays, we implemented the following 
approach to assign daily mobility values to the remaining days. For each week, we assigned Monday/Tuesday 
the values of previous Wednesday, Thursday/Friday the values of current Wednesday, and Saturday the value of 
previous Sunday. The process is shown in Fig. 7.

This approach is based in two key observations: (1) mobility has a strong weekly pattern (higher on weekdays, 
lower on weekends); (2) We could not directly assign the Wednesday value for all weekdays in the week because 
that would create an information leak (i.e. on Monday one cannot already know Wednesday mobility); same 
argument applies also for weekends. Avoiding this information leak is especially important in the test dataset, 
hence this approach.

Weather conditions data. As already stated in the Introduction, there is evidence suggesting that temper-
ature and humidity data could be linked to the infection rate of COVID-19. Daily weather data records for Spain, 
since 2013, are publicly  available44. However, these data do not include humidity records, therefore we have used 
precipitation instead. In order to assign a daily temperature and precipitation values to each autonomous com-
munity we simply average the mean daily values of all stations located in that autonomous community. In the 
case of Spain, we take the average of all stations.

(1)FtXi
=

N∑

j=1

f tXj→Xi

Figure 5.  Mobility fluxes in Spain. Arrow size shows inter-province fluxes and dot size shows intra-province 
fluxes. Visualization has been created with FlowmapBlue (https:// flowm ap. blue/).

https://flowmap.blue/
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As we are mainly interested in seeing if large scale weather trends (mainly seasonal) have and influence of 
spreading, we have performed a 7-day rolling average of these values (both temperature and precipitations). This 
also helps reducing the noise in the input data for the models.

Data limitations. Most of the data limitations that we have faced are of course not exclusive to this paper. 
But we wanted nonetheless gather them all together so the reader can have a clearer picture of the confidence 
level on the results here found. Here are some of the limitations we faced while developing this work:

• Incidence data is not always a good proxy for infected people because it relies on the number of diagnostic 
tests performed. This led to an underestimation of infected people especially at the beginning of the pan-
demic because the tests were not widely available. Not performing tests on the whole population, just on 
symptomatic people, also leads to an underestimation of infected people. Holidays may also modify testing 
patterns.

• Incidence prediction can be reliable usually up to two weeks, but further predictions will be influenced by 
future data not yet available when making the predictions. These data includes future control measures, 
future vaccination trends, future weather, etc. Therefore measuring the accuracy of the model for time ranges 
beyond that limit is not a good assessment of its quality, that is why all results in this work are limited to 
14-day forecasts.

• Vaccination data are only available on a weekly basis provided at country level, so fine-grained differences 
in vaccination progress between regions are lost.

• Spain is a regional state, and each autonomous community is the ultimate responsible for public health deci-
sions, resulting in methodological disparities between administrations when reporting cases.
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Figure 6.  Mobility fluxes in Cantabria, separating the contributions of the two components: intra-mobility 
(people that move inside Cantabria) and inter-mobility (people that arrive to Cantabria).

Figure 7.  Mobility data processing.
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• Infection data did not report the COVID-19 variants. Therefore models have a limited time-range applicabil-
ity. Models trained at the beginning of the pandemic will hardly be able to predict the high-rate spreading 
of the Omicron  variant45, as it is shown in the “Results” section.

• Mobility data can be misleading, as they do not always equate to risk of infection, because certain activities 
may suppose more risk of infection than others, regardless of the level of mobility required for each of them. 
For example,  in46 it is mentioned that markets and other shopping malls with frequent visitors were areas 
with high risk of infection (in the case of Wuhan, China), so, in general, mobility to these types of places 
may suppose a higher exposure to the disease. In addition, we only had the actual data on Wednesdays and 
Sundays, from which we had to infer the values for the rest of the days.

• The weather value of a region has been taken as the average of all weather stations located inside that region. 
Despite being a good first approximation, this was obviously not optimal. Stations located near densely 
populated areas should had greater weight than those located near sparsely populated areas.

Methods
In this work we have designed an ensemble of models to predict the evolution of the epidemic spread in Spain, 
specifically ML and population models.

We purposely decided to use population models instead of the classical SEIR models (which are designed to 
model pandemics) because Spain no longer publishes the data of recovered patients. These daily recoveries (or 
the daily number of active cases) is crucial in order to estimate the recovery rate, and thus the SEIR basics com-
partments (Susceptible, Exposed, Infected, Recovered). As it can be seen in the following equation, the missing 
data cannot be inferred from available data, so the data on the daily recovered were not available:

In this study we used a training set to train the ML models and fit the parameters of the population models. In 
order to make the ensemble, the predictions of each model for the test set are weighted according to the root-
mean-square error (RMSE) in the validation set.

Computing environment. The computations were performed using the DEEP training  platform47. Also, 
this work was implemented using the Python 3 programming  language48. In particular, the following additional 
libraries and versions were used: scikit-learn49 version 0.24.2, scipy50 version 1.7.1, pandas51 version 
1.3.3, numpy52 version 1.21.2, and plotly53 version 5.3.1. Additionally flowmap.blue54 was used to visualize 
flow maps.

Models definition. Population models. Population models are mathematical models applied to the study 
of population dynamics. The classic application of this kind of models is to analyze and predict the growth of a 
 population55. However, there are numerous applications in other fields, from animal  growth56, tumor  growth57, 
evolution of plant  diseases58, etc. In addition, several works use this type of model to try to predict the future 
trend of COVID-19 cases, as exposed in section “Related work”.

Specifically in this study, we used the following four models. 

Gompertz model is a type of mathematical model that is described by a sigmoid function, so that growth 
is slower at the beginning and at the end of the time period studied. It is used in numerous fields of biology, 
from modeling the growth of animals and plants to the growth of cancer  cells59. Be p(t) the population at time 
t, then, the ordinary differential equation (ODE) which defines the model is given by: 

 And its explicit solution: 

Optimized parameters: once we have the explicit solution for the ODE of the model, we need to estimate 
the three parameters involved: a, b and c. To do so, we follow the process described in the last section of the 
Supplementary Materials (Explicit solution of the ODE of the Gompertz model and estimation of the initial 
parameters). When we get an initial estimation for a, b and c, these parameters are optimized using the explicit 
solution of the ODE and the known training data. Specifically in our study we have used the sum of squares 
of the error for this purpose.
Implementation: for the optimization of parameters from the initial estimation, fmin function from the 
optimize package of scipy  library50 was used.
Logistic model was introduced by Verhulst in  183860, and establishes that the rate of population change is 
proportional to the current population p and K − p , being K the carrying capacity of the population. Thus, 
be a the constant of proportionality, and b = a

K  , the ODE that defines the model it is given by: 

 And the explicit solution: 

Confirmed = Active + Recovered + Deceased

(2)
∂p

∂t
= ap(t)− bp(t)log(p(t))

p(t) = e
a
b+ce−bt

(3)
∂p

∂t
= ap(t)− bp2(t)
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 Again it is necessary to calculate some initial parameters, which are optimized as in the case of the Gompertz 
model) a, b and c.
Optimized parameters: a, b and c, first estimated following an analogous process to that of the Gompertz 
model.
Implementation: for the optimization of the initial parameters fmin function from the optimize package 
of scipy  library50 has been used.
Richards model is a generalization of the logistic model or  curve61, introducing a new parameter s, which 
allows greater flexibility in the modeling of the curve. It is defined by the following ODE: 

 And the explicit solution: 

 Note that if s = 1 we are considering the logistic model: 

Optimized parameters: in view of the above, we considered as the initial values for a, b and c those optimized 
parameters after training the logistic model and s = 1.
Implementation: for the optimization of the initial parameters fmin function from the optimize package 
of scipy  library50 was used.
Bertalanffy model or the Von Bertalanffy growth function (VBGF) was first introduced and developed for 
fish growth modeling since it uses some physiological  assumptions62,63. However, some studies show its pos-
sible applications to other types of scenarios, adapting its parameters to be used as a model for population 
 modeling64. It is therefore reasonable to study the applicability of this model to the evolution of COVID-19 
positive cases, as is done  in65. The general formulation of the function is given by the following  ODE66: 

 Although numerous studies focus only on an appropriate choice of n and m  values67, as we seek to test the fit 
of this model, we take two standard parameters n = 1 (which is widely  assumed68) and m = 3/4 as proposed 
 in69. Thus, the explicit solution of the ODE is: 

Optimized parameters: a, b and c first estimated following a process analogous to that of the Gompertz 
model.
Implementation: for the optimization of the initial parameters fmin function from the optimize package 
of scipy  library50 has been used.

The main motivation to use this type of models was the shape of the curve of the cumulative COVID-19 cases. 
Figure 8 shows the cumulative cases in Spain. It can be seen that many sections of the curve follow a sigmoid 
shape, which can be modeled, as we have shown, with the previously presented models. Thus, we can take a rela-
tively short period of time (e.g. 30 days), prior to the days we want to predict and apply the previous population 
models optimizing their parameters to adapt to the shape of the curve and make new predictions.

Machine learning models. After training several ML models and testing their predictions on a validation set 
and a test set, we reduced the set of models to the following four: Random Forest, k-Nearest Neighbours (kNN), 
Kernel Ridge Regression (KRR) and Gradient Boosting Regressor. All the models under study minimize the 
squared error of the prediction (or similar metrics).

The parameters of each model were optimized using stratified 5-folds cross-validated grid-search, imple-
mented with GridSearchCV from sklearn49. 

p(t) =
1

ce−at + b
a

(4)
∂p

∂t
=

a

s
p(t)

(

1−

(
p(t)

p∞

)s)

p(t) =
1

(

ce−at + 1
(p∞)s

) 1
s

∂p

∂t
= ap(t)

(

1−
p(t)

p∞

)

︸ ︷︷ ︸

ODE Richards Model (s=1)

= ap(t)−
a

p∞
p2(t)

p∞= a
b

=⇒

p∞= a
b

=⇒
∂p

∂t
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︸ ︷︷ ︸

ODE Logistic Model
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Random Forest is an ensemble of individual decision trees, each trained with a different sample (bootstrap 
aggregation)70. This type of model is a bagging technique, and the different individual classifiers that it uses 
(decision trees) are trained without interaction between them, in parallel.
Optimized parameters: the maximum depth of the individual trees, and the number of estimators, i.e. 
individual trees in the forest.
Implementation: RandomForestRegressor class from sklearn49.
k-Nearest Neighbours (kNN) is a supervised learning algorithm, and is an example of instance-based learn-
ing. The basic idea of this model is very simple: given a distance (e.g. Euclidean, Manhattan or Hamming 
distance), the k points of the train set that are closest to the test input x with respect to that distance are 
searched, to infer what value is assigned to that  input71.
Optimized parameters: number of neighbors (k)
Implementation: KNeighborsRegressor class from sklearn49.
Kernel Ridge Regression (KRR) is a simplified version of Support Vector Regression (SVR). In short, this 
technique combines Ridge regression (LS and normalization with l2 norm), and the kernel trick. For details 
on this technique, see e.g.72.
Optimized parameters: α and γ  (see73).
Implementation: KernelRidge class from sklearn49 (with an rbf kernel).
Gradient Boosting Regressor is a boosting-type (combines weak learners into a strong learner) algorithm 
for  regression74. In particular, it is an ensemble of individual decision trees trained sequentially.
Optimized parameters: learning rate and the number of estimators (i.e. the number of individual trees 
considered).
Implementation: XGBRegressor class from the XGBoost optimized distributed gradient boosting 
 library75.

Model inputs and outputs. In the following sections the technicalities of what inputs are needed and 
how outputs are generated for each kind of model family are discussed. In particular, in this work we generated 
14-day forecasts with both population and ML models.

Population models. Population models are trained with the daily accumulated cases of the 30 days prior to the 
start date of the prediction. Once fitted with these data, the model returns the subsequent days prediction (14 
days in this case).

As already stated, population models use the accumulated cases (instead of raw cases) because it intermittently 
follows a sigmoid curve (cf. Figure 8) that these models are especially designed to fit. It should additionally be 
stressed that population models do not use the rest of the variables (such as mobility, vaccination, etc) that are 
included in ML models.

Machine learning models. The process of generating time series predictions with ML models is recurrent. One 
generates the prediction for the first day ( n+ 1 ), then one feeds back that prediction back to the model to gener-
ate n+ 2 , and so on until reaching n+ 14 . In order to generate a prediction of the cases at n+ 1 the models use 
the cases of the last 14 days (lag1-14) as well as the data at n− 14 for the other variables (mobility, vaccination, 
temperature, precipitation). We only use n− 14 and not more recent data (n, ..., n− 13 ) because these variables 
have delayed effects on the pandemics evolution.
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Figure 8.  Cumulative COVID-19 confirmed cases in Spain since the start of the pandemic.
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In the case of vaccination data, the main motivation to include this lag is that the COVID-19 vaccines manu-
factured by Pfizer, Moderna and AstraZeneca are considered to protect against the disease two weeks after the 
second dose. With the Janssen vaccine, this value rises to four weeks after the administration of one dose. How-
ever, in order to unify criteria, since in this study the data are not distinguished by type of vaccine administered, 
a two-week delay was considered  (see76).

In the case of mobility data,  in77 it is mentioned that scenarios with a lag of two and three weeks of mobility 
data and COVID-19 infections are considered for the statistical models.  Additionally78 found that decreases in 
mobility were said to be associated with substantial reductions in case growth two to four weeks later.

Finally, with respect to the weather data,  in79 the authors conclude that the best correlation between weather 
data and the epidemic situation happens when a 14 days lag is considered. It should be noted that we have taken 
a 7-day rolling average to reduce the noise and capture the trend in temperature and precipitation (for further 
details on the weather data pre-processing see section “Weather conditions data”).

The input selection for the recurrent prediction process is illustrated in Table 2. Note that the data were 
standardized (by removing the mean and scaling to unit variance) using StandandarScaler from the 
preprocessing package of the sklearn Python  library49.

Regarding the input variables of the ML models, we tested different configurations depending on the input 
data included. Figure 2 of Supplementary Materials shows the results obtained with different input configurations. 
After performing different tests, we decided to analyze the four scenarios exposed in Table 3.

Metrics and model ensemble. We used the mean absolute percentage error (MAPE) and the root mean 
squared error (RMSE) to evaluate the quality of the predictions. The error assigned to a single 14-day forecast is 
the mean of the errors for each of the 14 time steps.

When aggregating predictions of both types of models, we considered the models equally, independently 
of the type (ML or population) they belong to. Nevertheless, we provide disaggregated results for each type to 
highlight the qualitative differences in their predictions.

We followed several possible strategies to create the ensemble of the models:

• Mean prediction of all the models.
• Median value of the prediction of all models.
• Weighted average (WAVG) prediction, where the weight given to each model is the inverse of the RMSE of 

that particular model on the validation set (cf. section “Data” for the date ranges of the different splits). That 
is, the better the performance of a model, the higher the weight assigned to the model.

Results and discussion
Results. In this section, we focus on the results and analysis of the models trained on Spain as a whole. We, 
nevertheless, provide in the Supplementary Materials (Analysis by autonomous community) a similar analysis 
for the 17 Spanish autonomous communities.

Tables 4 and 5 show the MAPE and RMSE performance for the test set. Columns encode inputs provided to 
the ML models (cf. Table 3) while rows show the different aggregation methods (cf. section “Metrics and model 
ensemble”) applied to different subsets of models (ML, Pop, All). Additional plots with model-wise errors are 
provided in the Supplementary Materials (Fig. 5).

Focusing on the MAPE (Table 4), one can notice (comparing column-wise) that the WAVG performs better 
than median aggregation which in turn performs better than mean aggregation. When comparing (row-wise) 
different ML models (ML rows) we see that adding more variables generally leads to a better performance. Nev-
ertheless, when we average these ML models with population models (All rows), adding more variables seems 
to be detrimental. The answer to this apparent contradiction comes from looking at the relative error for each 
model family. For this, in Fig. 9, we plot the Mean Percentage Error (MPE) (i.e. same as MAPE but without taking 
the absolute value) obtained for each of the 14 time steps in the validation set. We clearly see that ML models 
tend to overestimate, while population models tend to underestimate. This means that when we combine both 
model families the positive and negative errors cancel out, leading to a better overall prediction. However, this 
entails that if we improve ML models alone (by adding more variables in this case), when we combine them with 
population models the errors end up not cancelling as before. This explains the apparent contradiction that bet-
ter ML models do not necessarily lead to better overall ensembles. It is worth noting than in Fig. 9, both model 
family errors increase as the forecast time step does. But this increase is not evenly distributed, as ML models 
degrade faster than population models, while their performance is on par at shorter time steps.

Table 3.  Input data for ML models.

Input

Scenarios

1 2 3 4

Cases � � � �

Vaccination � � �

Mobility � �

Weather �
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The previous analysis on the validation set corresponds to a stable phase in COVID spreading, enabling us 
to clearly identify the over/underestimate behaviour and the performance degradation in both families. The test 
set however is dominated by an exponential increase in cases due to the sudden appearance of the Omicron 
variant around mid-November (cf. Fig. 1). The patterns detected in the validation set still hold, but they are not 

Table 4.  MAPE obtained in each scenario according to each form of aggregation, for the Spain case in the test 
split. Lowest error values are in [bold].

Aggregation

Scenario

1 2 3 4

Mean

ML 0.5993 0.5571 0.5166 0.5052

Pop 0.5210 – – –

All 0.3424 0.3501 0.3442 0.3470

Median

ML 0.6224 0.5060 0.4610 0.4688

Pop 0.5007 – – –

All 0.3120 0.3352 0.3515 0.3932

WAVG

ML 0.5831 0.5088 0.4427 0.4219

Pop 0.4954 – – –

All 0.3090 0.3375 0.3363 0.3411

Table 5.  RMSE obtained in each scenario according to each form of aggregation, for the Spain case in the test 
split. Lowest error values are in [bold].

Aggregation

Scenario

1 2 3 4

Mean

ML 9510.0 10121.3 10015.4 10032.7

Pop 10006.2 – – –

All 9314.0 9718.4 9700.4 9728.0

Median

ML 9508.8 10069.2 9935.3 9921.0

Pop 9537.2 — – –

All 9235.9 9693.7 9694.1 9783.1

WAVG

ML 9506.9 9857.5 9602.6 9624.1

Pop 9713.0 – – –

All 9201.0 9481.7 9427.9 9471.4

Figure 9.  MPE for each time step of the forecast, grouped by model family, for the Spain case in the validation 
split. Shades show the standard deviation between models of the same family. ML models are trained in Scenario 
4.
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as straightforward to see. In Fig. 10 we show the MPE error in the test set, both for population models and ML 
models trained on several scenarios.

Now, due to the sudden increase in cases, ML models start overestimating, but as the time step increases 
they end up underestimating. This explains why Scenario 3 has sometimes lower MAPE (cf. median aggregation 
and ML row in Table 4) than Scenario 4, which has more input variables. While it should have worse error, the 
fact that ML models end up underestimating means that Scenario 3 underestimates less than Scenario 4, giving 
sometimes (depending on the aggregation method) a better overall prediction.

Regarding population models, they still underestimate but much more severely than ML models, as expected 
from the previous analysis on the validation set. Paired with the progressive underestimation of ML models, this 
means the ensemble tends to be worse when more input variables are added (because ML models with less input 
variables underestimate less), as seen in the All rows in Table 4.

Finally, we provide in Fig. 4 of Supplementary Materials a similar plot but subdividing the test set into a 
stable (no-omicron) and an exponentially increasing (omicron) phase, where we make the same analysis 
performed with the validation set.

For RMSE (Table 5), comparing column-wise, one still sees that each aggregation method improves on the 
previous one. But surprisingly, comparing row-wise on ML rows, we notice that the results go inversely than 
MAPE results. That is, adding more variables to the ML models leads to worse performance.

Again, this can be explained if we take a closer look at the propagation dynamics during the test split. Note 
that, as observed in Fig. 1, since mid-November we observe an exponential increase of cases which corresponds 
to the spread of the Omicron variant.

In Fig. 3 of Supplementary Materials, we subdivide the test results into 2 splits (no-omicron, omicron). 
We see that inside each split, RMSE and MAPE follow the same trend and the contradiction disappears. For the 
no-omicron phase, the best ML scenario is always the one with all the inputs. For the omicron phase, both 
MAPE and RMSE suggest that the best ML scenario is the one just using cases as input variable. This may be 
due to the importance of the first lags in capturing the significant growth of daily cases. In the full test split, the 
contradiction appeared because RMSE gives more weight to dates with higher errors (i.e. the omicron phase), 
while MAPE weights are evenly distributed.

This analysis suggests that the model is not robust to changes of COVID variant. When it predicts the same 
variant that it was trained on, the model knows how to make good use of all inputs. But when a new variant 
appears, the spreading dynamics changes, and therefore additional inputs just confuse the model, which prefers 
to rely solely on the cases. Changes in dynamics include facts like Omicron being more contagious (that is, same 
mobility leads to more cases than with the original variant) and being more resistant to vaccines (that is, same 
vaccination levels leads to more cases than with the original variant)80.

Finally, as a visual summary of Table 4 results, we show in Fig. 11 how starting with the most basic ensemble 
(only ML models trained with cases), one can progressively add improvements (more input variables, better 
aggregation methods), until achieving the best performing ensemble (ML models trained with all variables and 
aggregated with population models). The degraded performance with the median aggregation is due to the fact, 
as discussed earlier, that while ML models improved, the total aggregation with population models happened 
to be worse.

Interpretability of ML models. The interpretability of ML models is key in many fields, being the most 
obvious example the medical or health care  field81. Understanding the reasons why a model based on artifi-

Figure 10.  MPE for each time step of the forecast, grouped by model family, for the Spain case in the test split. 
ML models are shown for the 4 different scenarios.
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cial intelligence techniques makes a prediction helps us to understand its behavior and reduce its black box 
 character82. For this purpose, in this work we have used the SHapley Additive exPlanation (SHAP)  values83.

SHAP values are used to estimate the importance of each feature of the input characteristics space in the final 
prediction. The idea is to study the predictions obtained when a feature is removed or added from the model 
training. Specifically, the final contribution of input feature i is determined as the average of its contributions 
in all possible permutations of the feature  set82. Having a positive/negative SHAP value for input feature i on a 
given day t means that feature i on day t contributed to pushing up/down the model prediction on day t (with 
respect to the expected value of the prediction, computed across the whole training set).

In Fig. 12, we plot the importance of the different features: how much the model relies on a given feature 
when making the prediction. This importance is computed taking the mean value (across the full dataset) of the 
absolute value (it does not matter whether the prediction is downward or upward) of the SHAP value. This is 

Figure 11.  Cumulative improvements for the Spain case in the test split. We color separately (1) improvements 
made on ML models by adding more inputs (aggregating always with mean), (2) improvements made when 
aggregating the ML models (with full inputs) with population models with different aggregation methods.

Figure 12.  Mean absolute SHAP values (normalized). Error bars show the standard deviation across all the ML 
models.
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done feature wise and averaging the 4 ML models studied (cf. section “Interpretability of ML models”): Random 
Forest, Gradient Boosting, k-Nearest Neighbors and Kernel Ridge Regression.

We see that the features of the lags of the cases, especially the first lags, have the biggest impact on the predic-
tions. As expected, the larger the lag, the lower the importance of that feature (i.e. more recent the data, the more 
it matters), with some noisiness in the decrease (e.g. lag3 , lag7).

At a first glance one might think that non-cases features (vaccination, mobility and weather), do not matter 
much in comparison to the first lags of the cases. This view is obviously biased. The first lags give a rough estimate 
of future cases (i.e. future cases are roughly equal to present cases), but the remaining features, while smaller in 
absolute importance, are crucial to refine the rough estimate upwards or downwards. And this is precisely why 
we saw that adding more variables always reduced the MAPE of ML models (cf. Table 4).

In Figs. 6 and 7 of the Supplementary Materials we provide a more in depth overview of the contribution of 
each feature.

For the case lags, we see that the positive slope in the lags1−7 shows that higher lag values correlate with higher 
predicted cases, which is obviously expected. For lags8−13 , this trend is inverted, meaning that higher lag values 
correlate with lower predicted cases. This is obviously counter-intuitive and we do not have a clear conclusion 
about why this might be happening, but it is possibly due to some complex interaction between several features. 
In lag14 the trend goes back to normal again, suggesting that the model is following some weekly pattern in the 
lags (as lag7 was also abnormally high) which might be reflecting the moderate weekly pattern we saw in Fig. 2.

For non-cases features, we see that:

• Mobility is not strongly correlated with predicted cases. This is possibly due to the fact that mobility is mis-
leading: when cases grow fast, mobility is restricted, but cases keep growing due to inertia.

• Precipitation is not correlated with predicted cases (probably because precipitation is not a good proxy for 
humidity).

• Higher temperatures are correlated with lower predicted cases as expected (see, for instance,10).
• Higher number of first vaccine dose are moderately correlated with lower predicted cases as expected, while 

second dose does not show mayor correlations. Although unexpected, this lack of negative correlation (more 
vaccines, lower cases) can be explained by the fact that vaccination efforts tend to increase during peaks in 
cases, therefore, as with mobility, cases keep growing due to inertia despite vaccination efforts.

What ended up not working. Every paper that does not contain its counterpaper should be considered 
 incomplete84. Therefore we dedicate this section to briefly describe some of the aspects that we have considered, 
but that ended up not being included in the final model. We also hope to provide, when possible, some insights 
as for why they did not improve accuracy as expected.

Input pre‑processing. When deciding the mobility/vaccination/weather lags, we tested in each case a number of 
values based on the lagged-correlation of those features with the number of cases. In the end, the correlation was 
not a good predictor of the optimal lag, so we decided to go with the community standard values (14 day lags, 
cf. section “Data”). In addition, we tried to include a weekday variable (either in the [1, 7] range or in binary as 
weekday/weekend) to give a hint to the model as when to expect a lower weekend forecast. This did not end up 
working, possibly due to the fact that the weekly patterns in the number of cases are often relatively moderate 
compared to the large variations in cases throughout the year (cf. Fig. 2).

When we fixed the inputs we were going to use, we tested a number of pre-processing techniques that did 
not improve the model performance. Among those:

• We performed a 7-day rolling average of the mobility to smooth the weekly mobility patterns.
• We provided accumulated vaccination instead of raw vaccination. Using cumulative vaccines made more 

sense than using new vaccines, because we would not expect a sudden increase in cases if vaccination was 
to be stopped for one week, especially if a large portion of the population is already vaccinated.

• In addition to the raw features, we added the velocity and acceleration of each feature (cases/mobility/vac-
cination), to give a hint to the models about the evolution trend of each feature.

In the end, all these a priori sensible pre-processing techniques might not have worked because, as we saw in 
section “Interpretability of ML models”, the correlations between these variables and the predicted cases was 
not strong enough and their absolute importance was small compared with cases lags to be distorted by noise.

Finally, regarding the selection of the four scenarios studied, in addition to the configurations discussed 
above which did not perform successfully, we have tested the seven possible combinations of cases and variables, 
namely: cases + vaccination, cases + mobility, cases + weather, cases + vaccination + mobility, cases + vaccination 
+ weather, cases + mobility + weather and cases + vaccination + mobility + weather. After performing these tests, 
we decided to analyse the scenarios shown in Table 3 because they were the ones that provided the best results.

In Fig. 2 of Supplementary Materials we provide a scatter plot with the performance of these additional 
experiments.

Output structure. Regarding the generation of the forecasts, we generated a single 14-day forecast but it pro-
duced substantially worse results. Generating 1-step forecasts and feeding them back to the model, as we finally 
did, allowed the model to better focus and remove redundancies in the predicting task.
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Aggregation methods. As an additional aggregation method we tried stacking85, where a meta ML model (here, 
a simple Random Forest) learns the optimal way to aggregate the predictions of the ensemble of models. This 
meta-model is trained on the validation set (to not favour models that over fit the training set). In order to have 
a single meta-model to aggregate both population and ML models, we fed the meta-model with just the predic-
tions of each model for a single time step of the forecast. In other settings, meta-models use both inputs and 
predictions, but this was not feasible in our case where inputs varied for population and ML models, and across 
ML scenarios.

In the end, stacking did not improve results, in most cases performing even worse than the simple mean 
aggregation. This is possibly due to the small size of the validation set, which makes it difficult to learn a mean-
ingful meta-model. Variations of this setup included (1) training a different meta-model for each forecast time 
step (same performance as single meta-model setup); (2) feeding the meta-model all 14 time steps (worse per-
formance due to noise added by redundant information).

We also tried to a variation of the weighted average in which we weighted models based on their performance 
on the validation set, but weighting each time step separately. In principle, this should work better than the stand-
ard weighting as it learns to give progressively less weight to models whose forecast degrades more rapidly (that 
is ML models, cf. Fig. 9). In practice it did not show an unequivocal superior performance over the standard 
weighting, performing in some cases better, in others worse. This is possibly due to the fact that in both setups, 
weights are computed based on the performance on the validation set, which is relatively small. Therefore one 
expects that, with more validation data available, the noise cancels out. For the time being, given that the two 
methods showed similar performance, we decided to favour the simpler approach.

Conclusions
In this work we have evaluated the performance of four ML models (Random Forest, Gradient Boosting, k-Near-
est Neighbors and Kernel Ridge Regression), and four population models (Gompertz, Logistic, Richards and 
Bertalanffy) in order to estimate the near future evolution of the COVID-19 pandemic, using daily cases data, 
together with vaccination, mobility and weather data. Specifically, our proposal is to use the two families of 
models to obtain a more robust and accurate prediction.

With regard to the population models, it should be noted that we have used them as an alternative to the 
compartmental ones because all the data necessary to construct a SEIR-type model were not available for the case 
of Spain. Despite their simplicity, we have successfully made an ensemble together with ML models, improving 
the predictions of any individual model. We are currently not aware of any work including an ensemble of both 
ML and population models for epidemiological predictions.

In addition, we found that, when more input features were progressively added, the MAPE error of the aggre-
gation of ML models decreased in most cases. We also saw that this improvement did not necessarily reflected on 
a better performance when we combined them with population models, due to the fact that ML models tended 
to overestimate while population models tended to underestimate. Therefore, improving ML models alone can 
unbalance the ensemble, leading to worse overall predictions. Following this analysis, we found that ML models 
performance degraded when new COVID variants appeared. This, in turn, explains why the RMSE error seemed 
to deteriorate when adding more input features, seemingly contradicting the MAPE error. When accounting for 
the change in COVID variant, the metrics agreed again.

Finally, we computed the SHAP values obtained for each of the 4 ML models to assess the importance of each 
feature in the final prediction. As expected, this highlighted the importance of recent cases when predicting future 
cases. Among non-cases features, vaccination and mobility data proved to have significant absolute importance, 
while lower temperatures showed to be correlated with lower predicted cases. All in all, despite relatively minor 
absolute importance, non-case features (vaccination, mobility and weather) have proven to be crucial in refining 
the predictions of ML models.

The conclusion of this work is that an ensemble of ML models and population models can be a promising 
alternative to SEIR-like compartmental models, especially given that the former do not need data from recovered 
patients, which is hard to collect and generally unavailable.

Challenges and future directions
We foresee several lines to build upon this work. Firstly, adding more and better variables as inputs to the ML 
models; for example, introducing data on social restrictions (use of masks, gauging restrictions, etc), on popula-
tion density, mobility data (type of activity, region’s connectivity, etc), or more weather data such as humidity. 
Second, regarding the types of models, we will explore deep learning models, such as Recurrent Neural Networks 
(to exploit the time-dependent nature of the problem), Transformers (to be able to focus more closely on par-
ticular features), Graph Neural Networks (to leverage the network-like spreading dynamics of a pandemic) or 
Bayesian Neural Networks (to quantify uncertainty in the model’s prediction). All this future work will improve 
the robustness and explainability of the model ensemble when predicting daily cases (and potentially other vari-
ables like Intensive Care Units), both at national and regional levels.

Data availibility
The datasets generated and/or analyzed during the current study are available as follows: data on daily cases con-
firmed by COVID-19 are available from the Carlos III Health Institute—in Spanish Instituto de Salud Carlos III 
(ISCIII)— at https:// cneco vid. isciii. es/ covid 1940. Vaccination data ire avalable from the Ministry of Health of the 
Government of Spain at https:// www. ecdc. europa. eu/ en/ publi catio ns- data/ data- covid- 19- vacci nation- eu- eea42. 
Human mobility data are available from Spanish National Statistics Institute —in Spanish Instituto Nacional de 

https://cnecovid.isciii.es/covid19
https://www.ecdc.europa.eu/en/publications-data/data-covid-19-vaccination-eu-eea
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Estadística (INE)— at https:// www. ine. es/ covid/ covid_ movil idad. htm43. Daily weather data records for Spain, 
since 2013, are publicly available at https:// datos clima. es/ index. htm44.
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