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Automated cornea diagnosis 
using deep convolutional neural 
networks based on cornea 
topography maps
Benjamin Fassbind 1*, Achim Langenbucher 2 & Andreas Streich 1

Cornea topography maps allow ophthalmologists to screen and diagnose cornea pathologies. We 
aim to automatically identify any cornea abnormalities based on such cornea topography maps, 
with focus on diagnosing keratoconus. To do so, we represent the OCT scans as images and apply 
Convolutional Neural Networks (CNNs) for the automatic analysis. The model is based on a state-of-
the-art ConvNeXt CNN architecture with weights fine-tuned for the given specific application using the 
cornea scans dataset. A set of 1940 consecutive screening scans from the Saarland University Hospital 
Clinic for Ophthalmology was annotated and used for model training and validation. All scans were 
recorded with a CASIA2 anterior segment Optical Coherence Tomography (OCT) scanner. The proposed 
model achieves a sensitivity of 98.46% and a specificity of 91.96% when distinguishing between 
healthy and pathological corneas. Our approach enables the screening of cornea pathologies and the 
classification of common pathologies like keratoconus. Furthermore, the approach is independent of 
the topography scanner and enables the visualization of those scan regions which drive the model’s 
decisions.

Vision is arguably the most important way we humans navigate and interact with our environment. However, 
we tend to only notice this once the visual performance is deteriorated due to some pathology. Keratoconus, for 
example, is a progressive eye disease that affects the cornea of the eye, and is one of the most common cornea 
 pathologies1. The cornea reduces in thickness, and thus starts to bulge out due to the intraocular pressure, an 
effect that typically results in visual  deterioration2,3. In advanced stages, a cornea transplant is the only feasible 
treatment option. If diagnosed early, however, less invasive treatments like Corneal Cross Linking (CXL) or 
Intracorneal Ring Segments (ICRS) can be used to reduce disease  progression4.

When visiting an ophthalmologist, often the corneal topography is inspected using an OCT scan. OCT scans 
are non-invasive and are often part of standard diagnostic procedures in ophthalmology. However, especially in 
early stages, keratoconus and other corneal pathologies are hard to detect, making a diagnosis based on these 
scans extremely difficult. According to a study from the Department of Opthalmology at the Cantonal Hospital 
of  Lucerne5, the difficulty of diagnosis may also be compounded by weaker than expected levels of keratoconus 
expertise among general ophthalmologists. Some corneal topography devices already calculate an index like the 
CASIA2 Ectasia Severity Index (ESI)6 or the Pentacam Belin-Ambrósio enhanced ectasia display (BAD)7, on 
how deformed a cornea is. Some assumptions underlying those indexes, like the separation of the cornea in < 3 
mm and > 3 mm zones in the BAD or the focus on asymmetry in the ESI (thus neglecting central keratoconus 
cases), seem arbitrary to the authors. Those algorithms are also unable to distinguish between different corneal 
 pathologies8.

Data and image classification techniques have become increasingly relevant and useful in everyday life situ-
ations and also in the medical  field9–11. Such techniques are successfully used in  oncology12,  dermatology13 and 
many other  domains14 to help diagnose diseases.

Major advancements in the field of computer vision and image classification helped to improve the accuracy 
and reliability in such classification  tasks15. Among such advancements, Convolutional Neural Networks (CNN) 
are a class of deep neural networks which take inspiration from the way mammal brains interpret vision signals 
from the  eye16. CNN are especially powerful in analyzing unstructured data such as images. Using a deep learning 
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approach, pathologies can be detected and classified automatically, without the need for experts to interpret 
indexes that are different for every device.

The main aim of this study was to develop a method of using preprocessed corneal OCT screening data to 
automatically assess corneal health, and potentially to discriminate between different diseases and conditions 
such as keratoconus. This could be of significant benefit in a screening setting as part of a standard OCT diagnosis, 
where identifying corneal pathologies and abnormalities at an early stage would allow appropriate treatments to 
be applied promptly, improving outcomes.

Using preprocessed OCT data from a CASIA2 device, we demonstrate a model initially developed for deter-
mining whether a cornea is healthy or abnormal, and evaluate the potential of further training the model to 
distinguish between individual disorders and abnormalities using more detailed labelled data.

Methods
Our proposed process first represents the numerical results of OCT scans as images, and then use a CNN to diag-
nose corneal abnormalities, especially keratoconus. The visual representation of the OCT as basis for diagnosis 
has several advantages. Firstly it corresponds to the way humans identify abnormalities in the cornea; secondly, 
as the parts of the image that are most influential for a particular outcome of a neural network can be easily 
identified and visualized, results can be examined and checked (explainable AI, or  XAI17); and finally, a visual 
representation is relatively independent of the device and the setting used.

As a first step, classical Machine Learning (ML) methods such as k-means and random forest have been trained 
and evaluated on the raw scan data as baseline. The use of raw scan data means that in the future other cornea 
diagnostics devices like corneal tomography or Scheimpflug  devices18 may not be supported by these methods. 
All the devices however can produce topography maps as those maps are used for diagnosis by ophthalmolo-
gists. Also, these classical ML methods lag in performance compared to modern CNN architectures, and they 
were not considered further.

In terms of technology, the entire processing was done in the programming language Python, version 3.10, 
running on a computer with an NVIDIA RTX A5000 GPU.

Cornea scans dataset. All anterior OCT scans were performed with a CASIA2 anterior OCT device by 
the Saarland University Hospital Clinic for Ophthalmology as part of a standard patient screening procedure. 
The device calculates various features from the measured cornea data. For this study the anterior axial refraction, 
posterior axial refraction, anterior elevation, posterior elevation and pachymetry were used. The data is provided as 
a 2D matrix of (32 × 400) data points in a polar format. Some faulty scans by the device with missing or invalid 
data points were filtered out as part of a data quality  assessment19. The CASIA2 masks data points where no valid 
data is available, for example when the eyelid obstructs the cornea. Scans with any masked value in the central 
2mm area were discarded. This resulted in approximately 10% of the scans being filtered. Some of these scans 
for example had a pachymetry of several centimeters and more. Supplementary Figure S1 shows an example of 
a faulty scan.

The raw measurement data were represented as images using the function contourf in the Python package 
matplotlib20; these images were annotated by a cornea expert to obtain the labels for the supervised learning task. 
To support the annotation process, the keratoconus ABCD  score21 and the asymmetry and astigmatism in the 
inner 1.5 mm of the cornea were also provided.

As each cornea scan could potentially contain any cornea pathology, the most common cornea pathologies 
and abnormalities were annotated. All technically well-recorded scans were used to get a realistic real-world data 
sample. Besides keratoconus (the most frequent pathologic condition), several other clearly defined conditions 
have been used as labels despite insufficient training data for a few of them. Specifically, the following labels were 
given: healthy, keratoconus, post laser, keratoglobus, pellucid marginal corneal degeneration (PMD), other (less 
common diseases/scars/irregularities in the cornea) and not appreciable (N/A) (faulty, invalid or unidentifiable 
scans by the OCT device). Supplementary Figures S2 to S8 show examples of the different labels.

Traditional statistical approaches are not able to filter out all invalid scans. Some scans might look valid from 
a data distribution perspective but do not allow an ophthalmologist to assess the health condition. Those scans 
were labeled as N/A and then also used during model training, as in a clinical setting such invalid scans might 
be present.

The annotated 1940 cornea scans from 899 patients were randomly split into a training (containing 80% of the 
available data) and validation dataset. Hold-out validation was performed to evaluate the models’ performance 
while training. Table 1 presents the split of the cornea scans dataset and the number of scans used for every set.

To evaluate the final model, a completely new, disjoint and more recent test dataset was collected, consisting 
of 242 scans from 188 patients. The scans were performed with the same CASIA2 device in the same clinic as the 

Table 1.  Class distribution and count in the cornea scans dataset showing the imbalanced classes in the 
screening data.

Total Healthy Keratoconus PMD Post laser Keratoglobus Other N/A

Train set 1552 719 (46.2%) 290 (18.6%) 8 (0.5%) 292 (18.8%) 4 (0.3%) 201 (12.9%) 38 (2.4%)

Val set 388 185 (47.6%) 61 (15.7%) 0 (0.0%) 88 (22.6%) 3 (0.8%) 44 (11.3%) 7 (1.8%)

Test set 242 113 (46.7%) 112 (46.6%) 0 (0.0%) 3 (1.2%) 2 (0.8%) 12 (5.0%) 0 (0.0%)
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training and validation scans. The test dataset only contains scans from patients not present in the training or 
validation datasets. The labeling was done in the same way as the labeling of the training and validation dataset, 
but this time by two different cornea experts. For 15 (6.20%) scans the two experts disagreed on the label. These 
cases were discussed between the experts in order to agree on a final label.

Deep neural network architecture. Recent trends in computer vision using deep learning have shown 
that the ConvNeXt convolutional neural network  architecture22 is well suited for classification of image data. 
Compared to traditional machine learning approaches, these architectures do not require domain knowledge 
to do feature engineering, as the relevant features are extracted automatically by the hidden layers of the neural 
network based on the training data. For this study, we have started with the existing ConvNeXt architecture pro-
vided by the Python package torchvision23 within the pytorch  framework24.

In order to use ConvNeXt for cornea disease classification, some adjustments to its architecture were necessary. 
For each cornea, the axial refractive power and the elevation of both the anterior and posterior surface of the 
cornea, as well as its thickness (pachymetry), are obtained from the scan. This results in five partially dependent 
maps, each of which can be represented as gray-scale image. Cornea abnormalities are then visible at the same 
location in several of these gray-scale images. As CNN architectures are powerful extractors of relevant features 
from spacial data, all gray-scale images of a cornea were stacked together to form a five-channel pseudo-image. 
The original ConvNeXt architecture takes three channels as input, one channel each for red, green and blue. For 
each of the three color channels, the information can be represented as gray-scale map. To make all available 
information from a cornea scan available to the model, the three channels from ConvNeXt are expanded to five 
channels, copying the pre-trained weights from torchvision. Figure 1 illustrates how the model receives the cornea 
maps as input, and how the predicted output is visualized. We call this new architecture CorNeXt.

The CorNeXt model was trained in multiple iterations to evaluate several model configurations. The final 
model hyper-parameter configuration is shown in Table 2. We found that training all weights of the CNN model 
resulted in better performance than just training the classification head. As a loss function negative log likeli-
hood was used.

All weights of the model are transfer learned from the pre-trained ConvNeXt weights provided by torchvision. 
As optimizer AdamW is used, inspired by the original ConvNeXt implementation together with the ReduceLROn-
Plateau learning rate scheduler. While training, the model is augmented using RandomVerticalFlip. Augmentation 
is limited to RandomVerticalFlip because the position of the eye is fixed when creating an OCT scan.

To evaluate the model performance, the accuracy, F1 score, sensitivity, specificity and the Area Under the 
Receiver Operating Characteristic (AUROC) are calculated using the torchmetrics  library25. The best model was 
selected based on the F1 score with a weighted average considering each class’s support. The F1 score is a method 
to measure a statistical test’s accuracy and allows a meaningful evaluation even when the dataset has an uneven 
class distribution.

Determining whether a prediction was made for the correct reasons is the core topic of model  explainability17. 
To do so, integrated  gradient26 from the captum27 library was used to visualize which input features are most 
relevant for a model to make a certain prediction.

A Python based web application was developed to enable easy interaction with the CorNeXt model. In addition 
to that, the application allows researchers and ophthalmologists to visualize the data used for the prediction to 
verify whether the predictions are plausible.

Results
In a screening setting, the focus is on reliably identifying patients with any kind of cornea abnormality. For this 
evaluation, all metrics are evaluated as a binary classification consisting of the two classes healthy and abnormal. 
A scan is considered abnormal when it has been labeled as either keratoconus, post laser, PMD, keratoglobus or 
other. Note that all data points annotated as n/a were removed for this evaluation as it is not clear if the cornea 
is healthy or not in those cases. Post laser was treated as abnormal for two reasons: (1) namely before laser or 
cataract surgeries, it is essential to identify any cornea abnormality (including previous laser treatment), and (2) 
more often than not, post laser is misinterpreted as some other cornea pathology, since laser treatment can alter 
the shape of the cornea by quite some extent depending on the desired correction of the refractive  error28. The 
evaluation result on the test cornea scans dataset is shown in Table 3. Figure 2 shows the confusion matrix and 
the confidence of the model when classifying a cornea as healthy or abnormal with respect to the correct label. 
A threshold of 0.5 on the softmax output was used to determine the predicted class. The CorNeXt model is able 
to distinguish between healthy and abnormal with very good performance.

In a further experiment, we investigate whether the model is able to yield a more granular interpretation of 
the scans and distinguish between different conditions. In general, the model identifies the different classes with 
varying performance. For all classes except healthy and keratoconus, there are too few samples in the test dataset 
to make reliable statements on model performance.

The performance of the model on the test dataset is shown in Table 4 and the confusion matrix is displayed 
in Fig. 3.

The performance of the model on the validation cornea scans dataset is reported in the supplementary 
material (Supplementary Tables S1, S2; Supplementary Figure S9). Comparing the performance on the different 
datasets can reveal potential overfitting: the comparison between validation and test data shows that the conclu-
sions on the model architecture that were based on the performance of different variants on the validation set, 
are confirmed on new data.

When interpreting the results, it should be kept in mind that all the data is consecutive screening data. Hence, 
there might be a potential drift in the characteristics of the scanned eyes.
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Figure 1.  List of all the feature maps and how they are used as input for the CorNeXt model architecture. The 
topography maps are generated using matplotlib20 based on the exported raw data from the CASIA2 device. 
(a) The raw data extracted from the CASIA2 device from a single cornea scan. (b) The features anterior and 
posterior axial refractive and elevation and pachymetry stacked as the five input channels for the CorNeXt 
model. (c) The softmax probability distribution of the models’ prediction over all classes.

Table 2.  Hyperparameters of the final CorNeXt model.

Training dataset Iterations Loss Optimizer lr scheduler Augmentation Training time

Cornea scans dataset 35 k Negative log likelihood AdamW weight decay = 0.05 
learning rate = 1e − 6

ReduceLROnPlateau monitor = 
val_loss mode = min patience = 
30 factor = 0.1

RandomVerticalFlip p = 0.5 36 h
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As the correct interpretation of an OCT scan is critial, we emphasize the importance of explainable artifical 
 intelligence17. For image inputs, integrated  gradients26 show which areas were most relevant to yield the predicted 
class label, and thus allow an expert to compare the key regions for the model with the most relevant area for a 
human-made diagnosis.

Figure 4 shows the integrated gradients on a correctly identified sample input scan with keratoconus. For 
each of the five input channels, a corresponding gray-scale heatmap depicts the importance of a given pixel in 
the input channel for the final label. The obtained class label is mainly based on the ectatic area in the cornea; 
which corresponds to the area deemed most important for a keratoconus by human experts.

We also present a modern web application as shown in Fig. 5 to analyze anterior segment OCT scans and 
predict cornea pathologies. The application shows the probability for each of the most common cornea patholo-
gies, predicted using the developed model. In addition to that, axial refraction, elevation and pachymetry maps 

Table 3.  Evaluation results of the final model on the test cornea scans dataset when distinguishing only 
between healthy and abnormal cornea scans. Post laser is treated as abnormal in this case.

Metric Healthy vs. abnormal

Accuracy 95.45%

F1 score 95.88

Sensitivity 98.46%

Specificity 91.96%

AUROC 0.9953

Figure 2.  The performance of the CorNeXt model on the test cornea scans dataset in distinguishing between 
healthy and abnormal cornea scans. (a) The confusion matrix of the model. (b) How confident the model is 
when classifying a cornea scan as healthy or abnormal. The threshold for probabilistic model output was set to 
0.5 (marked by the vertical line).

Table 4.  Evaluation results of the final model on the test cornea scans dataset. Because the dataset is highly 
imbalanced, the average is weighted taking into account the support of each class. For the classes n/a and 
keratoglobus there are no samples in the test dataset, so they are omitted.

Metric Weighted average Healthy Keratoconus PMD Post laser Other

Accuracy 93.52% 96.28% 92.56% 99.17% 87.19% 93.39%

F1 score 88.17 95.89 91.34 0.00 11.42 20.00

Sensitivity 84.30% 93.75% 84.07% 0.00% 66.67% 16.66%

Specificity 99.00% 98.46% 100.00% 100.00% 87.44% 97.39%

AUROC 0.9651 0.9952 0.9495 0.8604 0.8480 0.8771



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6566  | https://doi.org/10.1038/s41598-023-33793-w

www.nature.com/scientificreports/

Figure 3.  Confusion  matrix20,29 of the test cornea scans dataset. The Prediction axis shows the actual prediction 
from the CorNeXt model and the Actual axis shows the ground truth labels.

Figure 4.  The computed integrated gradients with respect to the correct prediction keratoconus (88.9% 
confidence). A pixel highlighted in black means, that this pixel was relevant for the prediction process.
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and state-of-the art metrics like keratoconus ABCD  score21 as well as asymmetry and astigmatism calculations 
are displayed to cross-check the prediction results.

Discussion
The model accurately distinguishes healthy corneas from corneas with abnormalities. The classification of dif-
ferent types of abnormality heavily depends on the available training data and variance inside a class.

The performance between classes differs significantly. While healthy and keratoconus are well recognized, 
post laser, keratoglobus, PMD, other and N/A seem to be very challenging for the model. Unfortunately the test 
dataset does not contain enough samples of these classes to draw any meaningful conclusions about the perfor-
mance of the model.

The confusion matrix in Fig. 3 shows that the model has difficulties distinguishing between the post laser, 
keratoconus and healthy classes. Looking at some samples of misclassification, we see that (1) the class post laser 
has quite a high variance and (2) some post laser treatments look very similar to healthy eyes. Hyperopic post laser 
treatments can also be misclassified as keratoconus, as the topography looks very similar to a keratoconus eye.

A comparison of the performance of the proposed CorNeXt with methods and results published elsewhere is 
challenging, mostly because there is no reference dataset. Similar  works30 show large variations in terms of the 

Figure 5.  The scan details page of the developed Eye Analyzer application. At the very top the predictions 
of the CorNeXt model are visualized. This includes a probability distribution over all classes using a softmax 
output. Furthermore, the keratoconus ABCD score and asymmetry/astigmatism in the inner 1.5 mm region are 
displayed. The topography maps are also shown as a way to cross-check the models’ prediction results. Those 
maps are generated using the same methods as the input images for the model.
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types of cornea scanners used, sample size, validation methods and performance measurements. As far as we 
know, this study is the first to use a completely random sample set of consecutive screening data. Consequently, 
we believe that the results presented here come close to the performance that could be expected in a clinical 
setting.

An intuitive application called Eye-Analyzer was developed to enable ophthalmologists and researchers to 
easily analyze cornea OCT scans and interact with the AI model. The application can help to diagnose ectatic 
cornea diseases like keratoconus even in an early stage, where minimal invasive treatment options such as CXL 
or ICRS implementations are available. This might delay or even prevent corneal grafting or living with some-
times significantly decreased vision. The Eye-Analyzer application could also be used to analyze corneas before 
a cataract or laser surgery, looking for any abnormalities.

Currently, the Eye-Analyzer application can only be used for research purposes, as validation or certification as 
a medical product would be required to be used by ophthalmologists to diagnose patients corneas. Furthermore, 
some classes have barely satisfactory performance and more training data would need to be used to have a more 
stable performance predicting keratoglobus, PMD, post laser and other.

This study demonstrates that it’s possible to analyze anterior OCT cornea screening scans using CNNs. The 
proposed CorNeXt model is able to automatically assess corneal health with state-of-the-art performance com-
pared to publicly available  work30. Predicting the most common corneal diseases in screening data seems to be 
a much more challenging task. The performance of different classes varies depending on their variance and the 
number of samples available for training and validation. For some classes like keratoglobus, PMD, post laser and 
other there was insufficient validation data to draw any conclusions on their performance. Nevertheless, we still 
think it is important to not exclude this data, as it would artificially alter the dataset and could not be considered 
screening data anymore.

It is highly recommended to continue development of the model. The model predictions should also be com-
pared to that of senior ophthalmologists specialized in cornea diseases. In addition to that, the dataset should 
be independently labeled by another ophthalmologist to better understand labeling differences between human 
experts. Using more training data would certainly also help to increase the model’s performance. This could be 
done either by labeling more data or adding an application feature for users to give feedback on the prediction 
results. Furthermore, a gold standard challenge to diagnose cornea abnormalities could be created, making 
comparison of such methods more reliable in the future.

Data availability
The data that supports the findings of this study was provided by Saarland University Hospital Clinic for Oph-
thalmology under license. The data can be made available upon request to the authors with permission of the 
Saarland University Hospital Clinic for Ophthalmology.
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