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Intracerebral hemorrhage CT scan 
image segmentation with HarDNet 
based transformer
Zhegao Piao , Yeong Hyeon Gu *, Hailin Jin  & Seong Joon Yoo *

Although previous studies conducted on the segmentation of hemorrhage images were based on the 
U-Net model, which comprises an encoder-decoder architecture, these models exhibit low parameter 
passing efficiency between the encoder and decoder, large model size, and slow speed. Therefore, to 
overcome these drawbacks, this study proposes TransHarDNet, an image segmentation model for the 
diagnosis of intracerebral hemorrhage in CT scan images of the brain. In this model, the HarDNet block 
is applied to the U-Net architecture, and the encoder and decoder are connected using a transformer 
block. As a result, the network complexity was reduced and the inference speed improved while 
maintaining the high performance compared to conventional models. Furthermore, the superiority 
of the proposed model was verified by using 82,636 CT scan images showing five different types of 
hemorrhages to train and test the model. Experimental results showed that the proposed model 
exhibited a Dice coefficient and IoU of 0.712 and 0.597, respectively, in a test set comprising 1200 
images of hemorrhage, indicating better performance compared to typical segmentation models such 
as U-Net, U-Net++, SegNet, PSPNet, and HarDNet. Moreover, the inference time was 30.78 frames 
per second (FPS), which was faster than all en-coder-decoder-based models except HarDNet.

Intracerebral hemorrhage (ICH) is the condition caused by bleeding in the ventricles of the brain when blood 
vessels rupture spontaneously due to reasons other than external injury. ICH occurs primarily in middle-aged 
adults and is the sub stay of stroke, exhibiting the second highest occurrence rate after ischemic  stroke1 owing to 
the high incidence, mortality, and disability rates. ICH can be categorized into five types based on the bleeding 
location within the brain: epidural hemorrhage (EDH), subdural hemorrhage (SDH), subarachnoid hemor-
rhage (SAH), intraventricular hemorrhage (IVH), and intraparenchymal hemorrhage (IPH). Given that ICH 
has become a life threatening disease and causes a burden on the families of those suffering from the disease, it 
is essential to develop accurate and rapid diagnosis and treatment methods for ICH.

A computed tomography (CT) scan is a fast diagnostic imaging technique having good resolution used for 
accurately determining the location of hematoma, amount of bleeding, the mass effect, presence or absence 
of bleeding in the ventricles, and the amount of damage to the subarachnoid and surrounding brain tissues. 
Therefore, it is considered ideal for the diagnosis and treatment of  ICH2. Generally, experts first confirm the 
presence of hemorrhage through CT scans followed by detecting the type and location of the bleeding. However, 
a diagnosis as such requires extensive time from a radiology specialist for the examination, especially when it 
entails the possibility of a missed diagnosis.

Medical image segmentation is the process of identifying areas affected by the disease using medical diag-
nosis technologies such as computed tomography (CT) or magnetic resonance imaging (MRI). While existing 
deep learning-based ICH image segmentation (hereinafter referred to as “ICH segmentation”) methods using 
the U-shaped encoder-decoder architecture acquired adequate results, two problems still persisted. First, these 
networks require much time for inference and training owing to a large number of parameters. The inference 
time increases for high resolution input images. Second, when low-resolution features extracted from the encoder 
are transformed into high-resolution features in the decoder, it results in the significant loss of sensitivity to the 
sensitivity of the final segmentation.

Because ICH must be definitively diagnosed and treated within 1h of its occurrence, the speed of the diagnosis 
model is critical when diagnosing ICH, in addition to the performance. Therefore, this study proposes a Tran-
sHarDNet ICH segmentation network to overcome such drawbacks for the effective diagnosis and treatment of 
ICH. TransHarDNet comprises a U-shaped encoder-decoder architecture and has the following characteristics: 
The existing convolution calculation is replaced with a transformer block with a self-attention mechanism for 
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the effective exchange of information between the encoder and the  decoder3. Long-distance dependency can 
be modeled, and global information is analyzed to extract various context features and produce more detailed 
segmentation results.

In this study, we used 82,636 CT scan images of ICH as datasets from five different institutions, including 
the Catholic University of Korea Seoul St. Mary’s Hospital. Furthermore, we compared the inference speed 
and segmentation performance of the TransHarDNet model with that of other segmentation models, such as 
the U-Net4, U-Net++5,  SegNet6,  PSPNet7, and  HarDNet8. Experimental results showed that the TransHarDNet 
model exhibited an inference speed of 30.78 FPS, IoU of 0.597, and a Dice coefficient of 0.712, which makes it 
superior to other conventional models.

Related works
In an ICH image analysis, segmentation accurately detects the bleeding location amount in the initial step of 
identifying the occurrence of bleeding, which is why it has more clinical applicability than classification. Seg-
mentation techniques are also used to analyze medical diagnostic images except that of ICH. The most frequently 
used segmentation models include those having an encoder-decoder architecture that has been transformed 
based on U-Net.

U-Net4, a segmentation model proposed in 2015, uses a symmetric encoder-decoder architecture with a 
skip connection, and exhibits outstanding performance in the seg-mentation of medical images by converging 
multiscale features. Other U-Net shaped models based on U-Net, such as U-Net++5, 3D U-Net9, and Attention 
U-Net10, have been widely used owing to their excellent performance in the analysis of medical images. Fur-
thermore, models such as  SegNet9 and  PSPNet10 having an encoder-decoder architecture have also been widely 
adopted. Zhang et al.11 proposed a technology that used a generator net to generate an ICH image, which was 
further synthesized along with a normal ICH image having an insufficient amount of training data using the 
U-Net-based network. Results showed that the performance could be improved if the ICH detection model was 
trained on the synthesized and actual data simultaneously. This however was a new case wherein U-Net was 
applied to a medical image synthesis in addition to segmentation. Kushnure and  Talbar12 conducted a study and 
accurately extracted the global and local feature information from CT scan images by replacing the CNN block 
of the U-Net and combining  Res2Net13 and a squeeze-and-excitation (SE) network. Abramova et al.14 proposed 
a segmentation model using 3D U-Net, where the SE network was applied to U-Net. You et al.15 proposed a 3D 
Dissimilar-Siamese-U-Net comprising two U-Nets connected to the encoder by a distance block. The brain CT 
scan images were analyzed in the 3D Dissimilar-Siamese-U-Net by receiving two inputs: left and right. Mizusawa 
et al.16 conducted a study wherein U-Net was applied for the reconstruction of an X-ray image.

Recurrent neural networks (RNN), a model architecture for processing sequence data, have been widely used 
in natural language processing (NLP). Because CT scan or MRI images are established as continuous slices in 
medical image analyses they can be analyzed using RNNs. Stollenga et al.17 conducted a study for the segmenta-
tion of brain MRI images using the 3D PyraMiDLSTM model. The network was constructed to enable GPU-based 
parallel processing to significantly improve the efficiency of model training, which produced good segmentation 
results in the MRBrainS  challenge18. Koutnìk et al.19 constructed a spatial clockwork recurrent neural network 
(CW-RNN) using fewer parameters than RNNs for the segmentation of muscular disease images. As a result, 
the average accuracy of CW-RNN was 5% higher than that of U-Net, and the execution speed was 100 times 
shorter than that of the CNN models. Poudel et al.20 constructed recurrent fully convolutional networks based 
on FCN and RNNs for the real-time computing of heart segmentation.

Chen et al.21 performed CT image segmentation using TransUNet, developed by combining U-Net with 12 
transformer layers and obtained outstanding results. Wang et al.22 built a 3D MRI brain tumor segmentation 
model with a transformer architecture based on U-Net. Chen et al.21 and Wang et al.22 proved that the overall 
performance of the segmentation model can be improved by combining a CNN model having an encoder-
decoder architecture with a transformer used for the analysis of sequence data. However, Wang et al.22 used a 
3D CNN layer with a large number of parameters and exhibited a slow processing time considering the existing 
U-Net model architecture was applied.

Dataset. In this study, we used 82,636 CT scan images of ICH as datasets, collected from the Catholic Uni-
versity of Korea Seoul St. Mary’s Hospital, Chung-Ang University, Inje University, Inje University Pusan Paik 
Hospital, and Konkuk University Medical Center(The dataset published on  AIHub23). For the data, experts man-
ually found the disease area and marked the ground truth. All images were high-resolution (512 ± 512) and were 
categorized as EDH, IPH, IVH, SAH, or SDH depending on the location of bleeding. Figure 1a–f show examples 
of the CT scan images from each category, that is, intraparenchymal hemorrhage (IPH), intraventricular hemor-
rhage (IVH), subarachnoid hemorrhage (SAH), subdural hemorrhage (SDH), epidural hemorrhage (EDH), and 
at least one type of hemorrhage (multiple), respectively.

The 200 ICH images were selected from the EDH, IPH, IVH, SAH, SDH, and multiple categories to acquire 
1200 images for the test data. The remaining 81,436 images were divided in a ratio of 8:2 at the unit of disease 
category to form training and validation datasets comprising 65,151 and 16,285 images, respectively. Table 1 
shows the statistics of the data used for the training and testing of a model in each category.

The proposed model: TransHarDNet
This study proposed the TransHarDNet segmentation model to accurately and quickly generate segmentation 
results for the CT scan images of ICH. Figure 5 shows a schematic of TransHarDNet. The model comprises an 
encoder-decoder-based U-Net architecture. HarDNet was used as the backbone of the encoder-decoder owing 
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to its light-weight architecture. The simple convolution calculation was replaced with a transformer block that 
connected the encoder and the decoder. Table 2 is the details of the model architecture.

HarDNet block. HarDNet is a densely connected network architecture built to maintain high accuracy 
while reducing memory usage. Compared to methods such as DenseNet block or ResNet block, HarDNet block 
can shorten the inference time by approximately 30% at a similar performance level in applications such as image 
classification, object detection, and image  segmentation8.

HarDNet comprises harmonic dense blocks (HDBs), which are connected when the k-th layer is connected 
to the k − 2n-th layer, when k − 2n is greater than 0 and 2

n

k  is a natural number, as seen in (1). k is the location 
of a layer in the HDB, n is the layer connected to k in the HDB, and N is a natural number. And Fig. 2 is an 
illustration of HarDNet.

In HarDNet, HDBs are connected by a depth wise-separable convolution layer (DWConv), which reduces 
the convolutional input/output (CIO) by 50% when compared to the 1× 1 convolution layer. Therefore, a 2× 2 
average pooling layer is used in DenseNet[3]. Figure 3 is a comparison of the transition layers of DenseNet and 
HarDNet.

(1)Ck = k − 2
n
, if

2n

k
∈ N , k − 2

n ≥ 0

Figure 1.  Data examples; (a) example of intraparenchymal hemorrhage (IPH); (b) example of intraventricular 
hemorrhage (IVH); (c) example of subarachnoid hemorrhage (SAH); (d) example of subdural hemorrhage 
(SDH); (e) example of epidural hemorrhage (EDH); (f) CT images with one or more cerebral hemorrhagic 
lesions (the image include IPH, SDH, and EDH).

Table 1.  Our ICH dataset.

EDH IVH SDH SAH IPH Multiple Sum

Train 2286 5352 27,413 13,421 17,605 15,359 81,436

Test 200 200 200 200 200 200 1200

Sum 2486 5552 27,613 13,621 17,805 15,559 82,636
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Table 2.  Model architecture.

Stage Block name Details Output size

Input – – 512 × 512 × 1

Encoder

Conv block 4 × convolution 128 × 128 × 48

HarDNet block 4 × convolution 128 × 128 × 48

Down sampling block Convolution, AvgPool2d 64 × 64 × 64

HarDNet block 4 × convolution 64 × 64 × 78

Down sampling block Convolution, AvgPool2d 32 × 32 × 96

HarDNet block 8 × convolution 32 × 32 × 160

Down sampling block Convolution, AvgPool2d 16 × 16 × 160

HarDNet block 8 × convolution 16 × 16 × 214

Down sampling block Convolution, AvgPool2d 8 × 8 × 224

HarDNet block 8 × convolution 8 × 8 × 286

Transformer (bottle neck)

– 1 × convolution 8 × 8 × 320

Linear projection Reshape 512 × 64

Transformer block 4 × transformer layer 512 × 64

– 1 × convolution 8 × 8 × 512

– 1 × convolution 8 × 8 × 320

Decoder

Up sampling block Upsample, convolution 16 × 16 × 320

HarDNet block 8 × convolution 16 × 16 × 214

Up sampling block Upsample, convolution 32 × 32 × 214

HarDNet block 8 × convolution 32 × 32 × 160

Up sampling block Upsample, convolution 64 × 64 × 160

HarDNet block 4 × convolution 64 × 64 × 78

Up sampling block Upsample, convolution 128 × 128 × 78

HarDNet block 4 × convolution 128 × 128 × 48

Up sampling block Upsample, convolution 512 × 512 × 6

Output Conv block 1 × convolution 512 × 512 × 6

Figure 2.  Example of HarDNet connections.

Figure 3.  Comparison of the transition layers of DenseNet and HarDNet.
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Transformer block. In the transformer, the sequence data processing method used in NLP analysis was suc-
cessfully applied to computer vision. Currently, Owing to their outstanding performance, transformers are gain-
ing wide attention in computer vision for applications such as  detection24,  segmentation25, and  classification26. 
In this study, the existing CNN connection between the U-NET encoder and decoder was replaced with a seg-
mentation transformer (SETR). The SETR architecture is shown in Fig. 4.

A feature map extracted from the encoder using HarDNet as a backbone was input to the transformer. The 
feature map is transformed into sequence data in the linear projection block using the position-embedding 
technique. The sequence data comprising information on the location were first normalized through layer nor-
malization (LN), which resolved the internal covariate shift (ICS) occurring during the training of small batches. 
Furthermore, the normalized data is input to a multi-head attention block to extract various features by inferring 
the relationship between the location information in the sequence data.

The output of the multi-head attention block and the first sequence data delivered through the skip connection 
are combined and passed through the LN and feed-forward network (FFN). The FFN comprises two activation 
functions: the first layer is the ReLU activation function, and the second layer is a linear activation function that 
facilitates inference. One transformer layer was configured as such. In this study, we constructed a module with 
four transformer layers, and the feature map passing through these layers is decoded to the same size as the input.

Model architecture. TransHarDNet comprises an encoder, a decoder, and a bottleneck layer.
The encoder extracts the feature map and reduces the image size through down sampling. The encoder com-

prises a convolution block and the HarDNet block. W, H, and C represent the width, height, and channel of the 
preprocessed image (W, H, C). The shape of the feature map inferred with a convolution block was W/4, H/4, 
C*48. The convolution block consists of a convolution layer where filter = 16, kernel size = 3, stride = 2, a convolu-
tion layer where filter = 24, kernel size = 3, stride = 1, a convolution layer where filter = 32, kernel size = 3, stride 
= 2, and a convolution layer where filter = 48, kernel size = 3, and stride = 1. A down-sampling block consists of 
a convolution layer with kernel size = 1 and an AvgPoll2d layer with kernel size = 2 and stride = 2. Subsequently, 
the feature map undergoes down sampling through the HarDNet block and results in W/32, H/32, C*320.

The transformation section extracts valid information from the feature map and delivers it to the decoder. 
The feature map is encoded into sequence data through a linear projection layer and passed through four trans-
former layers. The sequence data is decoded by two convolution layers where kernel size = 1, stride = 1 again to 
the dimensions of W/32, H/32, C*320 and delivered to the TransHarDNet decoder.

The feature map from the transformer block is up-sampled by the decoder to the same size as the Tran-
sHarDNet input, while the ICH region of the feature map is marked in the output image. The decoder outputs 
the final (W, H) image size by passing through four HarDNet blocks, five up-sampling blocks, and the last 
convolution layer with kernel size = 1. An up-sampling block consists of an interpolate function that uses the 
“bilinear” mode and a convolution layer with kernel size = 1. Figure 5 and Table 2 are detailed descriptions of 
the HarDNet structure.

Experimentations
Performance evaluation indicators. We evaluated the performance of the model based on four indica-
tors commonly used to evaluate the performance of a model in medical image segmentation: the Dice similarity 
coefficient (DSC), intersection over union (IoU), Jaccard index, precision, and recall. IoU is calculated as the 
ratio of the intersection value of the predicted and actual values to the union value and is used for object detec-
tion and semantic segmentation. The Dice coefficient, IoU, precision, and recall can be inferred using true posi-
tive (TP), true negative (TN), false positive (FP), and false negative (FN) indicators of a confusion matrix. The 
Dice coefficient, IoU, precision, and recall can be calculated as shown in (2)–(5).

Figure 4.  Architecture of transformer.
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Experimental environment and parameter setting. Table 3 presents the experimental environment 
used for this study. The input image size for all models was 515 ± 512 for training, and the batch size was 8. Adap-
tive moment estimation (Adam) was used as the optimization algorithm for training the model, and the initial 
learning rate was set to 0.01. The learning rate was reduced by 0.5 when the training loss value did not decrease 
for five epochs, and early stopping was applied when the value did not decrease for 10 epochs.

Selection of a loss function. We conducted an experiment to determine an appropriate loss function for 
the model by combining the Dice loss, cross entropy (CE), and focal  loss27.

The Dice loss, which stems from the Dice coefficient, was first proposed in a study by Milletari et al.28 and is 
widely used in medical image segmentation. In this study, the Dice loss was used to indicate similarities between 
the two samples. The Dice loss value ranges between 0 and 1, and a smaller value indicates a higher level of 
similarity between the two samples. It can be calculated using (6):

(2)Dice =
2TP

(2TP + FP + FN)

(3)IoU =
TP

(TP + FP + FN)

(4)Precision =
TP

(TP + FP)

(5)Recall =
TP

(TP + FN)

(6)LDice(X,Y) = 1 −
2 |X

⋂
Y |

|X| + |Y |

Figure 5.  Overall architecture of the proposed TransHarDNet.

Table 3.  Experimental environment.

Device Specifications

OS Windows 10

CPU Intel Core i9-9900KF 3.6 GHz

GPU NVIDIA GeForce RTX 2080Ti * 1

RAM (memory) 96 GB

Storage 1TB SSD + 4TB HDD

Language Python 3.7, PyTorch = 1.5
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The concept of CE originated from information theory, an expanded concept of binary cross entropy frequently 
used in multinomial classification. As seen from (7), the CE loss function infers the difference in the quantity 
of information between the predicted and actual values of the sample, where M is the number of categories, yic 
is the dummy variable having a value of 1 with identical predicted and actual values, and 0 otherwise, and pic is 
the probability of category c for input i.

Focal loss is a loss function first used for object detection, and since, has been used to solve category imbalance 
issues and differences in category difficulty of classification problems. As shown in (8), the focal loss adds a 
modulating factor based on weight cross entropy (WCE) to reduce the weight of samples that can be classified 
easily during training to focus on the samples difficult to classify.

The losses in (9) and (10), referred to as DiceCE and DiceFocal, respectively, were combined to perform the 
experiment in this study. Two loss functions were applied to the model for training, and the performance was 
measured using the test dataset. The results are provided in Table 4. Compared to DiceFocal, the model with 
the DiceCE loss function applied produced improved results for all four performance indicators. Therefore, the 
DiceCE loss function was used in this study.

Two loss functions were applied to TransHarDNet for training, and the performance of the model was meas-
ured using the test dataset. The results are provided in Table 4. With an average Dice coefficient of 0.712, IoU 
of 0.597, precision of 0.777, and recall of 0.708, TransHarDNet exhibited better performance when DiceCE was 
applied compared to when DiceFocal was applied. Furthermore, DiceCE produced better results for each ICH 
category compared to DiceFocal. Therefore, the DiceCE loss function was used in TransHarDNet for the fol-
lowing experiments.

Comparative analysis for the model performance. We conducted a comparative analysis by measur-
ing the segmentation performance for the TransHarDNet model proposed in this study and the conventional 
segmentation models such as U-Net4, U-Net++5,  SegNet18,  PSPNet19, and  HarDNet8 to verify the effectiveness 
of the proposed model. Furthermore, we used identical hyper-parameters and DiceCE loss function to ensure 
consistency in the training process.

The experimental results are listed in Table 5. The proposed TransHarDNet exhibited better performance 
than the four conventional semantic methods, with Dice coefficients, IoU, and HD95 of 0.712, 0.597, and 27.733, 
respectively. Furthermore, the TransHarDNet, wherein a transformer module was introduced to HarDNet, 
improved the model accuracy by 1.6% compared to HarDNet alone by applying simple convolution calculation.

Figure 6 shows the prediction results, which intuitively represent the results of the semantic segmentation 
methods used in the experiment. The results showed that the TransHarDNet can segment the bleeding location 
more accurately compared to other segmentation methods.

Comparative analysis for the model speed. Owing to a large number of parameters, existing segmen-
tation models have limitations in terms of the complicated model architecture and slow inference speed. Addi-
tionally, while most segmentation analysis models require a 3-channel RGB image as input, the brain CT scan 
images are grayscale and exhibit a simple image type. Therefore, using models with complicated architecture 
and a large number of parameters to acquire brain CT scan images could reduce model efficiency and result in 
overfitting.

(7)LCE =
1

N

m∑

c=1

yiclog(pic)

(8)LF = − (1− pt)
r log(pt)

(9)L1 =LDice + LCE

(10)L2 =LDice + LFocal

Table 4.  Comparison of performance by category of the proposed models.

Dice IoU Precision Recall

DiceCE DiceFocal DiceCE DiceFocal DiceCE DiceFocal DiceCE DiceFocal

EDH 0.777 0.709 0.681 0.614 0.809 0.786 0.772 0.684

IPH 0.809 0.770 0.714 0.676 0.845 0.832 0.821 0.752

IVH 0.742 0.675 0.625 0.566 0.810 0.761 0.734 0.656

SAH 0.545 0.471 0.414 0.353 0.643 0.615 0.554 0.454

SDH 0.709 0.618 0.591 0.505 0.766 0.742 0.712 0.586

Multicategory 0.686 0.657 0.557 0.528 0.783 0.785 0.653 0.609

Average 0.712 0.650 0.597 0.540 0.777 0.754 0.708 0.623
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The model proposed in this study possessed the characteristics of HarDNet, which enables fast and accurate 
ICH segmentation. The total inference time, FPS, and the number of parameters for each semantic segmentation 
network were identified using the test dataset comprising 1200 images. As shown in Table 6, the inference time 
of TransHarDNet is 30.78, which is faster than most encoder-decoder-based segmentation networks, except 
for HarDNet. Furthermore, the inference speed improved by 44.64% compared to PSPNet, which is the second 
most outstanding segmentation model in terms of performance. With respect to the model size, TransHarDNet 
is lighter compared to other semantic segmentation models, except for HarDNet.

Table 5.  Comparative analysis for the models.

Model Dice IoU HD95

U-Net 0.684 0.569 30.693

U-Net++ 0.676 0.561 32.005

SegNet 0.588 0.480 33.391

PSPNet 0.709 0.593 27.886

HarDNet 0.708 0.591 28.609

SwinTransformer 0.710 0.593 28.614

TransUNet 0.651 0.532 38.253

TransHarDNet (our) 0.712 0.597 27.733

Figure 6.  Example of segmentation results.

Table 6.  Comparative analysis of the models speed.

Model Inference times (s) FPS Model size (MB)

U-Net 49.0 24.49/s 69.07

U-Net++ 51.5 23.30/s 36.65

SegNet 46.9 25.58/s 117.78

PSPNet 56.4 21.28/s 186.83

HarDNet 38.6 31.09/s 16.47

SwinTransformer 158.8 7.56/s 19.53

TransUNet 58.2 20.62/s 207.21

TransHarDNet (our) 39.0 30.78/s 108.09
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Discussion. In this study, we focused on improving the performance of ICH segmentation by connecting 
the HarDNet block and the transformer block. Also, the proposed model showed good performance in many 
categories except SAH in ICH segmentation. When SAH and multi-class are excluded, the proposed model 
exhibits more desirable performance with Dice coefficient of 0.759, IoU of 0.653, precision of 0.808, and recall of 
0.760. But in this study, the reason for the low Dice and IoU performance in SAH was not confirmed. This will 
be addressed in future research.

Results
In this study, we proposed a TransHarDNet model with a U-Net-based encoder-decoder architecture for the 
segmentation of ICH regions in the CT scan images of the brain. The conventional CNN block between the 
encoder and decoder was replaced with the HarDNet backbone. Furthermore, the part between the encoder and 
decoder connected through CNN calculation was replaced by a transformer block. By combining the HarDNet 
and transformer blocks, the TransHarDNet network complexity was reduced, which improved the inference 
speed while maintaining the high performance of the model.

Through the self-attention mechanism of the transformer, the proposed model can effectively analyze and 
model the feature map by learning the context in high-level semantics, thereby overcoming the drawbacks of 
extensive calculation and insufficient understanding of the context existing in conventional methods.

We used 82,636 CT scan images of five different types of ICH provided by the Catholic University of Korea 
Seoul St. Mary’s Hospital to verify the proposed model. Compared to conventional segmentation models such as 
U-Net, U-Net++, SegNet, PSPNet, and HarDNet, the TransHarDNet exhibited the best performance in all per-
formance evaluation indicators with a Dice coefficient, IoU, and HD95 of 0.712, 0.597, and 27.733, respectively.

Moreover, the TransHarDNet has fewer parameters and maintains a high speed when using a HarDNet block. 
The inference speed of TransHarDNet was calculated as 30.78 FPS, which was 25.68% faster than U-Net, and 
the performance improved by 3%. Although the inference speed was 1.0% slower than that of the conventional 
HarDNet, the segmentation performance improved by 2%. Based on the acquired results, the effectiveness of 
the proposed TransHarDNet model proposed has been sufficiently proven.

Data availibility
The datasets analysed during the current study are available in the  [AIHub23] repository, [https:// aihub. or. kr/ 
aidata/ 34101], or available from the corresponding author on reasonable request.
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