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Mutation analysis of pathogenic 
non‑synonymous single nucleotide 
polymorphisms (nsSNPs) in WFS1 
gene through computational 
approaches
Jing Zhao 1, Siqi Zhang 2, Yuan Jiang 2, Yan Liu 2 & Qingwen Zhu 2*

A single base changes causing a change to the amino acid sequence of the encoded protein, which 
is defined as non‑synonymous single nucleotide polymorphisms (nsSNPs). Many of the nsSNPs can 
cause disease, and these nsSNPs are considered as pathogenic mutations. In the study, the high‑risk 
nsSNPs of WFS1 and their influence on the structure and function of wolframin protein were predicted 
by multiple bioinformatics software. We obtained 13 high‑risk nsSNPs of WFS1. All the 13 high‑risk 
nsSNPs are highly conserved residues with a conservative score of 9 or 8 and mostly may cause a 
decrease in protein stability. The high‑risk nsSNPs have an important effect on not only amino acid 
size, charge and hydrophobicity, but also protein’s spatial structure. Among these, 11 nsSNPs had 
been previously published or cited and 2 nsSNPs (G695S and E776K) had not been reported to date. 
The two novel variants increased or decreased hydrogen bonds. In conclusion, through different 
computational tools, it is presumed that the mechanism of pathogenic WFS1 nsSNPs should include 
the changes of physicochemical properties, significant structural changes and abnormal binding with 
functional partners. We accomplished the computational‑based screening and analysis for deleterious 
nsSNPs in WFS1, which had important reference value and could contribute to further studies of the 
mechanism of WFS1 related disease. The computational analysis has many advantages, but the results 
should be identified by further experimental studies in vivo and in vitro.

Single nucleotide polymorphisms (SNPs) are widely known to be the most common genetics variant of human 
genome, defined as a substitution of a single nucleotide occurring at a specific position in the genome. The fre-
quency of each of SNPs in the general population is more than 1%. The SNPs generally have an important effect 
on many genetic  diseases1. SNPs include two categories: synonymous or non-synonymous SNPs. Due to amino 
acid substitutions, the non-synonymous coding SNPs (nsSNPs) may significantly influence the protein function 
and structure, thus the disease phenotype. We should deeply delve into how the nsSNPs affect the function of 
proteins to have a better knowledge of the genetic basis of human intricate diseases such as hearing loss.

The Wolfram syndrome type 1 (WFS1) gene maps to chromosome 4p16.1, and its 3628 bp coding sequence 
is arranged in eight exons, the first of which is non-coding (Fig S1a). The positions of the exon regions were 
predicted based on the study of Eleonora  Panfili2. Mutations are mostly found to occur in exon 8, which is the 
largest exon, containing 2.6 kb of DNA. The wolframin protein is a 100.29-kDa protein containing 890 amino 
acids and encoded by WFS1 gene, predominantly localizing in endoplasmic reticulum (ER). The hypothetical 
structure of the wolframin protein is shown in Fig S1b. The positions of the transmembrane regions were anno-
tated according to the study of Dewi  Astuti3. The protein consists of three parts: a hydrophilic N-terminus of 
about 300 residues, a hydrophilic C-terminus of 240 residues, and a central hydrophobic domain of 350 residues, 
containing nine transmembrane regions.

The WFS1 pathogenic variants mainly cause Wolfram  syndrome4 and  NSHL5, whose common feature is 
hearing loss. So far, more than 490 variants of WFS1 gene have been reported. It is found that the most common 
type of WFS1 variants is missense mutation, accounting for about 80%. The pathogenic missense mutations are 
mainly located at exon 8. Numerous of nsSNPs in WFS1 have been found. Although they may have destructive 
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effect on the function of wolframin protein, it is not only time-consuming but also expensive to deeply explore 
their functional effect. It is worthwhile to use different bioinformatics tools to analyze the high-risk nsSNPs. Our 
study focused on the relationship among these nsSNPs and protein function in depth.

Materials and methods
Data mining. Three databases retrieved WFS1 SNPs for subsequent computational analysis, including the 
ClinVar database (https:// www. ncbi. nlm. nih. gov/ clinv ar), Deafness variation database (https:// deafn essva riati 
ondat abase. org/) and dbSNP database (http:// www. ncbi. nlm. nih. gov/ proje cts/ SNP/). We used the ANNOVAR 
to identify the WFS1 SNPs. According to its instruction, we used the 1000 Genomes Project (2014 Oct) annota-
tions through changing command line argument to 1000g2014oct.

Prediction of high‑risk nsSNPs in WFS1. To assess the potential effect of SNPs in the WFS1, we per-
formed analyses utilizing a range of database servers. When all the computational tools predict one nsSNP is 
deleterious, we consider it as the high-risk nsSNP, which is highly likely to have harmful effects on the function 
of protein and even lead to diseases.

Sorting intolerant from tolerant (SIFT) (http:// sift. jcvi. org/) and Protein variation effect analyzer (PROVEAN) 
(http:// prove an. jcvi. org) can predict the potential influence of an amino acid substitution in a protein according 
to the sequence  homology6. Polymorphism phenotyping V2 (PolyPhen-2) (http:// genet ics. bwh. harva rd. edu/ 
pph2/) can calculate the potential functional effect of amino acid substitutions from its individual characteristics 
via Naïve Bayes  classifier7. Likelihood Ratio Test (LRT) uses the statistical method of likelihood ratio test to make 
predictions by analyzing the conservation of amino  acids8. Unlike SIFT and PloyPhen-2, LRT does not need to 
analyze the evolutionary distance between homologous protein sequences to predict amino acid conservation, 
and has a wider range of applications. Functional Analysis through Hidden Markov Models (FATHMM) (http:// 
fathmm. bioco mpute. org. uk/ inher ited. html) can predict the impact of missense mutations on the function of 
protein with optional species-specific  weights9. Its MKL algorithm can be used to predict both coding and 
non-coding variants. Mutation Taster (http:// www. mutat ionta ster. org/ ChrPos. html) is an analysis tool which 
have recruits several biomedical databases, and predict that the mutation is a polymorphism or disease causing 
through a naive Bayes  classifier210. Based on evolutionary conservation of the mutant amino acid in protein 
homologs, Mutation Assessor (http:// mutat ionas sessor. org/ r3/) can assess the functional influence of  nsSNPs11. 
Protein variation effect analyzer Variant Effect Scoring Tool 3 (VEST3) (http:// karch inlab. org/ apps/ appVe st. 
html) can predict the functional influence of variants according to the probability of missense mutations causing 
 disease12. There are also following six comprehensive prediction tools using machine learning and other related 
algorithms to score the pathogenicity of a SNP and other variants:  CADD13,  DANN14, Meta SVM,  MetaLR15, 
M-CAP16 and  REVEL17.

Prediction of stability of mutant proteins. MUpro (http:// mupro. prote omics. ics. uci. edu) can predict 
protein stability changes without tertiary structures with two machine learning methods: Neural Networks and 
Support Vector  Machines18. The confidence score is between 1 and -1. The bigger the absolute value, the more 
confident the prediction is. I-Mutant2.0 (https:// foldi ng. biofo ld. org/i- mutant/ i- mutan t2.0. html) can evalu-
ate the change of protein stability upon single site mutation starting from the protein sequence or structure. 
INPS-MD (http:// inpsmd. bioco mp. unibo. it), also named as Impact of Non-Synonymous Mutations on Protein 
Stability-Multi Dimension, is a web server devised to prediction of protein stability change upon single point 
 mutation19. The iStable (http:// predi ctor. nchu. edu. tw/ istab le/ index Seq. php) is a comprehensive predictor of pro-
tein stability change after single  mutation20.

Evolutionary conservation analysis of nsSNPs. The ConSurf server (http:// consu rf. tau. ac. il) can cal-
culate the conservation score to estimate the conservation of amino acids in evolution through a maximum like-
lihood (ML) method or an empirical Bayesian  method21. The score between 7 and 9 is considered evolutionarily 
conservative.

Prediction of secondary structure and membrane protein topology. SOPMA is also named as 
Self-Optimized Prediction Method with Alignment based on the homologue method. It can predict the sec-
ondary structure of protein through five independent  algorithms22. TMHMM Server 2.0 (https:// servi ces. healt 
htech. dtu. dk/ servi ce. php? TMHMM-2.0) is an online tool, based on a hidden Markov model (HMM) approach, 
for prediction of transmembrane structures in proteins.

Model building and evaluation of wolframin protein, analysis of mutation‑induced structural 
changes. The Robetta (http:// robet ta. baker lab. org/) is a prediction server of protein structure, using the 
Robetta fragment-insertion method. It can predict a full chain protein structure automatically for ab initio and 
comparative modeling. The three-dimension (3D) model of the wolframin protein was built by Alphafold2, with 
the template performed using Robetta server. PyRAMA was used to geometrically evaluated the modeled 3D 
structure by calculating the Ramachandran plot. Structural presentation of wild and mutant proteins was made 
by using PyMOL programs. Cartoon drawings of the structures were obtained. PyMOL software was used to 
label native as well mutant amino acids and present the hydrogen bond between them. Modeled mutant proteins 
was superimposed with PyMOL on the wild protein for comparison of three-dimensional structure of wild and 
mutant proteins. As an online web service, HOPE (http:// www. cmbi. umcn. nl/ hope) can analyze the impact of 
a given mutation on the protein structure. The Accessible Surface Area and Accessibility Calculation for Pro-
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tein (ver. 1.2) online server can calculate the solvent-accessible surface areas of 890 amino acids of wolframin 
protein(http:// cib. cf. ocha. ac. jp/ bitool/ ASA/)23.

Analysis of interaction network. STRING (https:// cn. string- db. org/), also named as Search Tool for the 
Retrieval of Interacting Genes/proteins, is a web based server exploring the target gene interaction network with 
other proteins. The high confidence level is above 0.700.

Results
Dataset. Firstly, 13,521 SNPs were retrieved from the dbSNP database, 1146 from the ClinVar database, and 
7203 from the Deafness variation database. Secondly, we eliminated the duplicate SNPs and obtained 15,660 
WFS1 SNPs. The introns occupy 61.53% of 15,660 SNPs (Fig. 1a). At last, after removing the noncoding SNPs 
and manual screening, there were 1782 WFS1 SNPs (Fig. 1b). In the SNPs which occur at coding region of WFS1 
gene, the proportion of missense SNPs is 84.12%.

Identification of the pathogenicity of nsSNPs. We used fourteen computational tools to predict 
whether every one of the nsSNPs is deleterious or not (Table S1). The number of deleterious nsSNPs predicting 
by each software was shown in Fig. 1c. The screening conditions predicted as harmful by each software are as 
follows: "Deleterious" by M-CAP, FATHMM, MetaLR, LRT, MetaSVM and PROVEAN; “Probably damaging” 
or “Possibly damaging” by Polyphen2; "Damaging” by SIFT; "High” or “Medium” by MutationAssessor; "Disease 
causing automatic” or “Disease causing” by Mutation Taster2; rank score higher than 0.9 by FATHMM -MKL 
and DANN; score higher than 25 by CADD_Phred; score higher than 0.9 by VEST3 and REVEL. There were 13 
nsSNPs which considered as the highly harmful nsSNPs by all the computational tools. As shown in Fig. 1d, the 
darkest purple region was highlighted and had the positive correlation with highly harmful nsSNPs in WFS1. 
The detailed results are highlighted in Table 1. Finally, the 13 nsSNPs were considered high risk and selected for 
in-depth analysis.

Changes of protein stability after mutations. The effect of 13 nsSNPs on protein stability were pre-
dicted by MUpro, I-Mutant 2.0, INPS-MD and iStable software (Fig. 2 and Table 2). INPS-MD software pre-

Figure 1.  Distribution of mutations and prediction of damaging nsSNPs in WFS1 gene. (a) Distribution of all 
types of mutations in WFS1 gene including splice site, silent, intron, nonsense, missense, 5′UTR and 3′UTR 
domains, frame shift and so on. (b) Distribution of all types of coding mutations in WFS1 gene. (c) Number of 
high-risk nsSNPs in WFS1 predicted by computational tools. (d) A surface chart representing the correlations 
among the harmful predictions by multiple bioinformatics tools in WFS1 gene.

http://cib.cf.ocha.ac.jp/bitool/ASA/
https://cn.string-db.org/
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dicted that all 13 nsSNPs resulted in decreased protein stability. MUpro software, I-Mutant 2.0 and iStable 
software predicted 10, 10 and 11 nsSNPs leading to a decline in stability of wolframin protein, respectively. 
Meanwhile, the stability of protein had a sharp decline after the L723P and L829P mutations, because their total 
score was both below -6. Moreover, P724L and P885L were predicted to increase the stability of wolframin pro-
tein by three software tools.

Evolutionary Conservation Analysis. According to the result of the ConSurf analysis, more than half 
of the 890 positions of wolframin protein were evolutionarily conserved, scoring between 7 and 9 (Fig. 3a). It 
was demonstrated that G107R, G494R, L723P had a conservation score of 8 and A684T, G695S, G702S, P724L, 
R732H, G736S, G736R, E776K, L829P, P885L had a conservation score of 9.

The secondary structure, and transmembrane helices prediction of the wolframin pro‑
tein. The secondary structure of the wolframin protein was predicted by SOPMA (Fig. 3b). Four secondary 
structures composed the wolframin protein with 890 amino acids (Fig S2). The alpha helix consisted of 442 
amino acids (accounting for 49.66%), the beta turn consisted of 44 amino acids (4.94%), the beta sheet consisted 
of 98 amino acids (11.01%), and the random coil consisted of 306 amino acids (34.38%). We used the TMHMM 

Table 1.  Cumulative prediction of damaging nsSNPs in WFS1.

Substituent
Nucleotide 
Variation SNP ID

SIFT 
Score

Polyphen2 
HDIV 
score

Polyphen2 
HVAR 
score

LRT 
score

MutationTaster 
score

Mutation 
Assessor 
score

FATHMM 
score

FATHMM-
MKL 
rankscore

PROVEAN 
score

VEST3 
score

MetaSVM 
score

MetaLR 
score

M-CAP 
score

REVEL 
score

CADD 
phred

DANN 
rankscore

G107R G319C 0.003 1 0.996 0 1 2.585 − 3.78 0.956 − 3.97 0.924 1.042 0.919 0.854 0.95 26 0.99

G494R G1480C rs760692398 0.002 1 0.994 0 1 2.85 − 2.73 0.986 − 5.82 0.972 0.869 0.836 0.814 0.943 25.9 0.966

A684T G2050A rs1412819148 0 1 0.997 0 1 2.84 − 4.18 0.901 − 3.03 0.937 1.087 0.943 0.835 0.964 28 0.988

G695S G2083A rs1252460131 0 1 0.995 0 1 2.89 − 4.19 0.901 − 5.51 0.955 1.086 0.942 0.806 0.98 27.9 0.93

G702S G2104A rs71532862 0 1 1 0 1 2.91 − 4.29 0.901 − 5.99 0.989 1.1 0.954 0.892 0.978 29.2 0.924

L723P T2168C 0.001 1 0.994 0 1 2.825 − 4.43 0.93 − 6.06 0.969 1.095 0.946 0.902 0.943 25.5 0.923

P724L C2171T rs28937890 0.002 1 1 0 1 2.89 − 4.34 0.936 − 9.92 0.988 1.1 0.954 0.924 0.948 31 0.967

R732H G2195A rs149013740 0.018 1 0.995 0 1 2.6 − 4.4 0.967 − 3.37 0.916 1.094 0.95 0.816 0.971 32 0.997

G736S G2206A rs71532864 0 1 1 0 1 2.91 − 4.24 0.967 − 5.65 0.99 1.095 0.946 0.893 0.968 32 0.929

G736R G2206C rs71532864 0 1 1 0 1 2.91 − 4.25 0.977 − 7.6 0.988 1.099 0.952 0.922 0.987 29.4 0.963

E776K G2326A rs1421068689 0.005 0.998 0.956 0 1 2.51 − 3.67 0.991 − 3.38 0.927 1.029 0.915 0.805 0.963 29.1 0.984

L829P c.T2486C rs104893883 0.001 1 1 0 1 2.42 − 3.66 0.985 − 4.79 1 0.952 0.846 0.876 0.916 25.7 0.947

P885L c.C2654T rs372855769 0 1 0.999 0 1 2.51 − 4.4 0.926 − 7.69 0.946 1.052 0.909 0.92 0.932 28.6 0.969

Figure 2.  MUpro, I-Mutant 2.0, INPS-MD and iStable predicted the change of protein stability resulted from 
nsSNPs.
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to characterize the amino acid of WFS1 for their inside/outside of membrane region and transmembrane region 
and investigated the effect of mutations of high-risk nsSNPs. It was showed that there were nine transmembrane 
regions in WFS1 by using TMHMM server (Fig. 4a–c). The G494R and P885L mutation significantly increased 
the probability that the corresponding amino acid site is located at transmembrane region. However, none of the 
nsSNPs resulted in changes in the structure of the wolframin transmembrane region. Notably, most pathogenic 
variants were found in the C-terminal region of wolframin rather than the transmembrane domain.

Protein modeling of wolframin and analysis for the structural effects of mutation. The 3D 
structures of wolframin and its mutant proteins were predicted by Robetta server (Fig. 5a). The Ramachandran 
analysis was carried out for wolframin protein. The residues of the wild type protein were greater than 90% in 
most favored and allowed region, which showed the structure was usual (Fig. 5b). According to the comparison 
of the qualitative electrostatic representation of wild and mutant G494R proteins, it was found that the G494R 
mutation changed the charge of the amino acid at this site from neutral to positive (Fig. 5c,d). Figure 5e exhibited 
the wildtype protein model highlighting substitution regions. Modeled mutant proteins was superimposed on 
the wild protein by PyMOL for comparison of three-dimensional structure of wild and mutant proteins (Fig. 5f). 
Almost all nsSNPs resulted in the structural drifting, further confirming by energy refinement. We calculated 
root-mean-square deviation (RMSD) values for all mutant models (Table 3). The value means the average dis-
tance of α‐carbon backbones between mutant and wild model. The structure deviation between mutant and wild 
protein was positively correlated with RMSD value. The model of the G107R mutation had the greatest deviation 
with 1.730B RMSD value followed by P885L, G702S, L829P, G494R and P724L with 1.573B, 1.504B, 1.496B, 
1.469B and 1.468B RMSD values, respectively. Others had slight changes including G736S (1.367B RMSD), 
L723P (1.133B RMSD), and A684T (1.106B RMSD).

The changes of amino acid substitutions on the size, hydrophobicity, structure and so on of wolframin were 
predicted by HOPE (Table 3). All 13 nsSNPs brought about changes in size of amino acids (10 larger and 3 
smaller) and 5 nsSNPs resulted in change of charge. Besides, 4 nsSNPs decreased the hydrophobicity. It is specu-
lated that these changes can lead to changes of intramolecular interactions so that affect the function of wolframin 
protein. The changes of solvent accessible surface areas (SASA) were analyzed by the Accessible Surface Area and 
Accessibility Calculation for Protein (ver. 1.2) online server, which is considered as an important factor in protein 
folding and stability studies. According to SASA analysis, the similar residual fluctuations were shown between 
the wild and mutant protein (Fig. 6a). SASA parameter is proven that the protein is accessible to other ligand 
and/or proteins. As shown in Fig. 6b, there were 385 (43.26%) amino acids on the surface, 270 (30.34%) in the 
core and 235 (26.40%) in other parts of wolframin protein. The proportion of protein surface amino acids was 
increased except for P724L.The proportion of protein core amino acids was decreased in all 13 WFS1 high-risk 
pathogenic nsSNPs mutations, meaning that more amino acids were exposed and eventually may have harmful 
effects on interaction with other proteins.

In the next step, we selected two novel nsSNPs (G695S and E776K) that have not been reported (Fig. 7a,b). 
All the novel variants increased or decreased hydrogen bonds (Fig. 7c,d). In the wild type, Gly695 has a hydrogen 
bond with Tyr660 and Leu829, respectively. In the mutant type G695S, the original hydrogen bond distances are 
changed and a hydrogen bond between Ser695 and Glu694 is added. Wild type has two hydrogen bonds between 
Glu776 and Arg708, Arg805, respectively. The variant E776K eliminates hydrogen bonds between Lys776 and 
Arg805. Changes in hydrogen bonds may influence the stability and intramolecular interactions of the wolframin 
protein, then causing diseases.

Table 2.  Validation result of protein stability change by using MUpro, I-Mutant 2.0(Seq), INPS-MD and 
iStable.

Substitutions

MUpro I-Mutant 2.0(Seq) INPS-MD iStable

Confidence score Prediction Delta G Prediction DDG Prediction DDG Prediction Confidence score Prediction

G107R − 0.53681855 Decrease − 0.719856 Decrease − 0.43 Increase − 0.614571 Decrease 0.711645 Decrease

G494R − 0.27432649 Decrease − 0.799365 Decrease − 0.39 Decrease − 0.614996 Decrease 0.859133 Decrease

A684T − 1 Decrease − 1.059934 Decrease − 0.77 Decrease − 1.28314 Decrease 0.823745 Decrease

G695S − 1 Decrease − 1.025896 Decrease − 1.09 Decrease − 1.02497 Decrease 0.888069 Decrease

G702S − 0.58902382 Decrease − 0.87166 Decrease − 1.42 Decrease − 1.02497 Decrease 0.781893 Decrease

L723P − 1 Decrease − 2.211354 Decrease − 2.07 Decrease − 3.14935 Decrease 0.788351 Decrease

P724L 0.21392985 Increase 0.021993 Increase − 0.05 Increase − 0.357545 Decrease 0.799145 Increase

R732H − 0.45171425 Decrease − 0.845002 Decrease − 1.29 Decrease − 1.09836 Decrease 0.80706 Decrease

G736S − 0.59692055 Decrease − 0.594136 Decrease − 1.17 Decrease − 0.997424 Decrease 0.850104 Decrease

G736R 0.37352591 Increase − 0.41075 Decrease − 0.19 Decrease − 0.257352 Decrease 0.510684 Decrease

E776K − 0.94924869 Decrease − 1.358258 Decrease − 0.76 Decrease − 0.677756 Decrease 0.830963 Decrease

L829P − 1 Decrease − 1.508759 Decrease − 1.45 Decrease − 3.16076 Decrease 0.868579 Decrease

P885L 0.47334686 Increase − 0.326501 Decrease 0.35 Increase − 0.357545 Decrease 0.804748 Increase
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Figure 3.  Combined figures. (a) The prediction results of ConSurf software about the evolutionary 
conservation of WFS1. The mutant amino acid sites are highlighted by black boxes. The color-coding bar 
represents the conservation score. (b) The secondary structure of wolframin protein according to SOPMA 
analysis. The high-risk nsSNPs are highlighted by black boxes.
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Protein–protein interaction and functional characterization. We could have a knowledge of the 
interacting partners of WFS1 through using STRING database (Table  S3). At high confidence score 0.700, 
the number of average node degree, nodes and interaction number of edges were 4.57, 21 and 48 respectively 
(Fig. 8a,b).

It is shown that WFS1 interacts with ATP1A1, ATP1A2, ATP1A3 and ATP1B1, then connecting with Na/K-
ATPase. It is also named as sodium/potassium adenosine triphosphatase or ATP1A protein. ATP1A consists 
of a α subunit and a β subunit and plays an important part in keeping the electrochemical gradient on the cell 
membrane. ATP1A1, ATP1A2 and ATP1A3 belong to the α subunit, and ATP1B1 belongs to the β subunit. 
Furthermore, WFS1 interacted with ATF6, ATF6B and XBP1, which were involved in the unfolded protein 
response (UPR) and endoplasmic reticulum stress (ERS), and maintained interactions with  Ca2+-associated 
folding factors (HSPA5, HSP90B1/GRP94, and CALR) and other chaperones (ERN1 and DNAJC3). Among the 
other interacting proteins of the WFS1, CISD2 and TMEM38A play a vital part in regulation of cytosolic  Ca2+ 
homeostasis, and ADCY8 is essential for activating the glucose-induced signaling pathways in beta cells. WFS1 

Figure 4.  The nine transmembrane regions in WFS1 shown by TMHMM server. The red boxes indicate the 
change of transmembrane probability due to mutant amino acid (a is the wild type, b is the G494R mutant type, 
and c is the P885L mutant type).
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also interacts with the insulin release-related proteins (HHEX and CDKAL1), which are strongly associated with 
genetic risk variants for diabetes.

Figure 5.  Protein structure predicted by the PyMOL. (a) The protein structure of the wild type wolframin 
(Red: alpha helix; Blue: beta sheet; Yellow: random coils and other structures). (b) A validation of 3D models by 
Ramachandran plot. (c) A qualitative electrostatic representation of wolframin protein generated by PyMOL. 
Protein contact potentials can be represented by displaying virtual (false) red/blue charged smooth surfaces 
on wolframin protein. (d) A qualitative electrostatic representation of mutant G494R protein generated by 
PyMOL. The black circle indicates the position of amino acid 494. (e) The wildtype protein model highlighting 
substitution regions. (f) Mutation-induced structural changes in WFS1. It shows superimposed view of 
wolframin protein in wild and mutant state.
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Discussion
We screened out 13 high-risk nsSNPs of WFS1 gene, in which 11 nsSNPs had been reported in the literature. It 
is noteworthy that one nsSNP (L829P) is associated with non-syndromic hearing loss and eight nsSNPs (G107R, 
A684T, G702S, L723P, P724L, G736S, G736R and P885L) are associated with Wolfram syndrome (WS)24–27. The 
G494R and R732H were reported as the variants of uncertain significance. Wolfram syndrome is an autosomal 
recessive disorder, and its clinical features are diabetes insipidus, diabetes mellitus, optic atrophy and deafness. 
The mutational studies of Wolfram syndrome reported most pathogenic variants were located in transmembrane 
region and carboxy tail of wolframin protein, inside exon 8. However, the nsSNP (c.319G > C, p.G107R) was 
detected in two siblings from Southern Italy with Wolfram syndrome (WS), inside exon  428.

We obtained two novel nsSNPs (G695S and E776K) from WFS1 high-risk nsSNPs. We speculate that they are 
highly likely to be pathogenic mutations, because:(1) they were all predicted to be highly harmful by all predictive 
tools; (2) they all had highly score 9 in conservation analysis; (3) they could all lead to decreasing protein stabil-
ity; (4) they could all cause changes in amino acid properties and tertiary structure. However, clinical literature 
reports and other evidence are needed to verify their pathogenicity.

In order to further explore the potential pathogenic mechanism of WFS1 high-risk nsSNPs, we analyzed the 
stability, conservation, the physical and chemical properties, tertiary structure through many software tools. 
The conservation analysis showed that all 13 high-risk nsSNPs were highly conserved in the WFS1, regarded as 
massively damaging, because the residues of the conserved domain have an important effect on biological pro-
cess such as interactions among proteins. The wild-type residues of G107R, G494R, G695S, G702S, G736S and 
G736R are glycine, which is flexible enough to make torsion angles. Their mutant residues cause torsion angles 
to be unusual so that force the local backbone into an incorrect conformation and disturb the local structure. As 
the wild-type residues of P724L and P885L, proline has a very rigid structure, thus inducing a special backbone 
conformation which might be required at corresponding positions. These mutations with leucine residue maybe 
disturb the local structure and function of wolframin protein.

According to multiple studies, the wolframin protein have a vital function on the following aspects: (1) inter-
action with Na+/K + ATPase β  subunit29; (2) regulation of the ER stress  response30;(3) regulation of the cellular 
calcium  homeostasis31; and (4) regulation of insulin production and secretion from pancreatic β-cells32. The 
same conclusion can be drawn from the WFS1 protein interaction network analyzed by STRING. The C-terminal 
region of wolframin is located on the cytoplasmic side of the ER membrane, adopting a folded confirmation. It 
can interact with the C-terminal region of the ER-localized Na + /K + ATPase beta1 subunit, which is important 
for subunit maturation. Na + /K + ATPase deficiency is known to be responsible for apoptosis and neural degen-
erative disease. If a similar association exists within the inner ear, amino acid substitutions may result in hearing 
loss in this way. The state of accumulation of misfolded and unfolded proteins in the organelle is ER stress. The 
unfolded protein response (UPR), also called the ER stress signaling network, can deal with ER stress in cells. 
Wolframin can negatively regulate the ER stress signaling network through interaction with the master regulators 
of the UPR (such as ATF6). Under normal conditions, WFS1 recruited ATF6α to an E3 ligase, HRD1, and the 
proteasome, prevents ATF6 activation and promotes ATF6 ubiquitination and proteasomal degradation. WFS1 
also can reduce the expression of ATF6α target genes, for example HPSA5/GRP78/BiP and XBP-1. In patients 
with Wolfram syndrome, because of the variation of WFS1, ATF6 is hyperactivated, leading to dysregulated ATF6 
signaling pathway. Wolframin can modulate the filling state of the ER  Ca2+ store to participate in the regulation 
of cellular  Ca2+ homeostasis. Once a variant occurs in WFS1, ER stress is strongly induced, and endolymphatic 
ion composition and homeostasis are disrupted, which leads to deafness. The C-terminal segment of wolframin 
protein in ER lumen bind to vesicular cargo proteins including proinsulin directly. The pathogenic variants in 
the domain may disrupt the interaction and result in abnormal accumulation of proinsulin in endoplasmic 
reticulum, which impede insulin secretion and proinsulin processing.

Table 3.  Evolutionary conservativeness analyses and protein prediction of WFS1 high-risk pathogenic 
nsSNPs. TM transmembrane, W wild type, M mutant type.

Amino acid change Domain Consurf score
SOPMA predicting secondary 
structure RMSD value Change of size Change of charge Change of Hydrophobicity

G107R N-terminal 8 Alpha helix 1.730 M > W Neutral → positive Decrease

G494R TM5 8 Random coil 1.469 M > W Neutral → positive Decrease

A684T C-terminal 9 Alpha helix 1.106 M > W Decrease

G695S C-terminal 9 Beta turn 0.865 M > W

G702S C-terminal 9 Beta turn 1.504 M > W

L723P C-terminal 8 Alpha helix 1.133 M < W

P724L C-terminal 9 Alpha helix 1.468 M > W

R732H C-terminal 9 Alpha helix 0.989 M < W Positive → neutral

G736S C-terminal 9 Beta turn 1.367 M > W

G736R C-terminal 9 Beta turn 0.977 M > W Neutral → positive Decrease

E776K C-terminal 9 Extended strand 0.769 M > W Negative → positive

L829P C-terminal 9 Extended strand → Alpha helix 1.496 M < W

P885L C-terminal 9 Random coil → Alpha helix 1.537 M > W
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Figure 6.  The solvent accessible surface areas of the wolframin protein. (a) The bottom panels describe per-
residue SASA of wolframin protein and mutant proteins. (b) The distribution about the SASA of all 890 amino 
acids in wild and mutant proteins.
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Figure 7.  3D protein modeling of WFS1 variants at amino acid residue 695 and 776. (a,b) Predicted structures 
depict the changes of mutant wolframin protein with the amino acid change G695S, and E776K. Red and brown 
structures indicate differences between wild and mutant type. (c,d) The change of hydrogen bond between 
amino acids before and after mutation. The proteins are shown as cartoon. Amino acids at the mutated site are 
highlighted in yellow and the interacting amino acids are highlighted in blue (red dotted line: the hydrogen 
bond).
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In conclusion, the bioinformatics analysis is useful to efficiently identify high-risk nsSNPs. Pathogenicity of 
some high-risk WFS1 nsSNPs has been confirmed by pedigree and genetic analysis, but further vivo and vitro 
functional studies are required to verify the accuracy of our methods.

Data availability
The data supporting the results reported in the article can be found in the Supplementary Information files. Web 
resources: dbSNP database, http:// www. ncbi. nlm. nih. gov/ proje cts/ SNP/; ClinVar database, https:// www. ncbi. 

Figure 8.  The interaction network analysis of WFS1. (a) Line color indicates the type of interaction evidence. 
The three grey areas indicate the large cluster with functional proteins (edges between clusters: dotted line). (b) 
Line thickness indicates the strength of data support.

http://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.ncbi.nlm.nih.gov/clinvar
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nlm. nih. gov/ clinv ar; Deafness variation database, https:// deafn essva riati ondat abase. org/; SIFT, http:// sift. jcvi. 
org/; PolyPhen-2, http:// genet ics. bwh. harva rd. edu/ pph2/; FATHMM, http:// fathmm. bioco mpute. org. uk/ inher 
ited. html; Mutation Taster, http:// www. mutat ionta ster. org/ ChrPos. html; Mutation Assessor, http:// mutat ionas 
sessor. org/ r3/; PROVEAN, http:// prove an. jcvi. org; VEST3, http:// karch inlab. org/ apps/ appVe st. html; MUpro, 
http:// mupro. prote omics. ics. uci. edu; I-Mutant2.0, https:// foldi ng. biofo ld. org/i- mutant/ i- mutan t2.0. html; INPS-
MD, http:// inpsmd. bioco mp. unibo. it; iStable, http:// predi ctor. nchu. edu. tw/ istab le/ index Seq. php; ConSurf server, 
http:// consu rf. tau. ac. il; SOPMA, https:// npsa- prabi. ibcp. fr/ cgi- bin/ npsa_ autom at. pl? page= npsa_ sopma. html; 
TMHMM Server 2.0, https:// servi ces. healt htech. dtu. dk/ servi ce. php? TMHMM-2.0; Robetta, http:// robet ta. baker 
lab. org/; HOPE, http:// www. cmbi. umcn. nl/ hope; Accessible Surface Area and Accessibility Calculation for Pro-
tein (ver. 1.2) online server, http:// cib. cf. ocha. ac. jp/ bitool/ ASA/; STRING, https:// cn. string- db. org/.
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