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Waist circumference mediates 
the association between rs1260326 
in GCKR gene and the odds of lean 
NAFLD
Na Wu 1,2,6, Jie Li 1,6, Jing Zhang 5,6, Fan Yuan 2, Ning Yu 1, Fengwei Zhang 1, Dong Li 4, 
Jianying Wang 1, Lei Zhang 1, Yi Shi 2, Guang He 2*, Guang Ji 3* & Baocheng Liu 1*

While non-alcoholic fatty liver disease (NAFLD) has been widely studied, the pathophysiology of lean 
NAFLD, the critical NAFLD subgroup, remains elusive. This study aimed to clarify the association 
between polymorphisms of GCKR, waist circumference, and the odds of lean NAFLD in the elderly 
Chinese Han population who live in the Zhangjiang community center of Shanghai, China. Three single 
nucleotide polymorphisms (SNPs), including rs1260326, rs780093, and rs780094, were genotyped in 
MassARRAY Analyzer. The association between SNPs with waist circumference in five genetic models 
was analyzed and rechecked by the logistic regression analysis. Mediation models were established to 
evaluate whether the waist circumstance can mediate the association between SNPs and lean NAFLD. 
In this study, the frequency of the C allele of rs1260326, rs780093, and rs780094 was significantly 
lower in lean NAFLD individuals than in lean non-NAFLD ones. The association between rs1260326 
in GCKR and the odds of lean NAFLD was mediated via waist circumference after adjusting gender 
and age in the elderly Chinese Han population (β = 1.196, R2 = 0.043, p = 0.020). For the first time, this 
study examined the mediating effect of waist circumference on the association between rs1260326 in 
GCKR and the odds of lean NAFLD (β = 0.0515, 95% CI 0.0107–0.0900, p = 0.004). It may contribute to 
illustrating the pathogenesis of lean NAFLD and indicate that waist circumference management might 
improve lean NAFLD control.
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HWE	� Hardy-Weinberg equilibrium
LDL	� Low-density lipoprotein
NAFLD	� Non-alcoholic fatty liver disease
NASH	� Nonalcoholic steatohepatitis
OR	� Odds ratio
PNPLA3	� Patatin‐like phospholipase domain containing 3
SBP	� Systolic blood pressure
SLC39A8	� Solute carrier family 39 member 8
SNP	� Single nucleotide polymorphisms
SUMO4	� Small ubiquitin-like modifier 4
T2D	� Type II diabetes
TC	� Total cholesterol
TG	� Triglyceride
TM6SF2	� Transmembrane 6 superfamily member 2
WHR	� Waist to hip ratio

Non-alcoholic fatty liver disease (NAFLD) is a spectrum progressing from simple steatosis to nonalcoholic 
steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC)1, and it has become the pre-
dominant cause of chronic liver disease in the world. NAFLD also links tightly to obesity, type II diabetes (T2D), 
and cardiovascular diseases, which have given rise to an enormous burden on society2.

It is worth noting that not all NAFLD patients are overweight or obese, the lean individuals also account for 
a significant proportion (10–20%) of NAFLD cases in the world3. And lean NAFLD might probably progress to 
NASH and fibrosis4, although these patients usually presented fewer obesity-related conditions. Both genetic 
background and abnormal glucose and lipid, e.g., dyslipidemia and altered glucose and lipid turnover, are pos-
sibly involved in the pathological mechanism of lean NAFLD5. Besides being used to screen abdominal fat 
distribution and obesity6, waist circumference positively correlated with the risks of lean NAFLD7. The distinct 
role of waist circumference on lean NAFLD has caught wide attention. However, despite the functions of vari-
ous genetic predispositions in the pathogenesis of NAFLD in obese and lean patients, the relevant research has 
mainly been studied in obese individuals8,9; effects of genetic variation in glucose or lipid-related genes on lean 
NAFLD-related traits have rarely been studied.

Accumulating evidence indicated that genetic variants have contributed to the occurrence and develop-
ment of NAFLD10,11. Genome-wide association studies (GWASs) have shown several single nucleotide polymor-
phisms (SNPs), e.g., rs738409-G in patatin‐like phospholipase domain containing 3 (PNPLA3)11, rs58542926-T 
in transmembrane 6 superfamily member 2 (TM6SF2)12, rs13107325-T in solute carrier family 39 member 
8 (SLC39A8)13, rs6834314-A in hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13)14 and rs1260326-T in 
glucokinase regulator (GCKR)15,16 associated with NAFLD-related comorbidities. Amongst the SNPs identified 
in GCKR, e.g., rs780093 and rs780094 were also identified as potential risk loci in metabolic syndrome17. Addi-
tionally, GCKR is involved in glucose and lipid homeostasis by regulating glucokinase, a rate-limiting enzyme 
in glycolysis18. Although the same genetic variants may drive most lean NAFLD individuals as overweight and 
obese, genetic variation might be influenced by diverse races and regions; the distinct role of SNPs of GCKR in 
lean NAFLD will be explored in the present study.

Considering all these clues, elderly adults are more susceptible to several NAFLD19. The prevalence increases 
rapidly, especially in China20; we aimed to clarify the association between three common polymorphisms of 
GCKR (rs1260326, rs780093, and rs780094), waist circumference, and the odds of lean NAFLD in the elderly 
Chinese Han population. It will provide increasing evidence to support the role of genetic variation in the odds 
of lean NAFLD occurrence and development.

Results
Demographics of study participants.  In total, 5, 338 potential subjects were included after an initial 
screening; 2, 868 NAFLD and 2, 470 non-NAFLD participants were distinguished by ultrasonography; 1219 
participants (NAFLD, n = 750; non-NAFLD, n = 469) were included for the genotyping analysis; participants 
were categorized into four groups: lean NAFLD (BMI < 23  kg/m2, n = 106), non-lean NAFLD (BMI ≥ 23  kg/
m2, n = 644), lean non-NAFLD (BMI < 23 kg/m2, n = 216) and non-lean non-NAFLD (BMI ≥ 23 kg/m2, n = 253) 
(Fig. 1).

The general characteristics of the lean participants are shown in Table 1. The mean ages of lean NAFLD 
(n = 106) and lean non-NAFLD (n = 216) were 72.5 and 73.5 years old, respectively. Females and males constitute 
64.2 and 35.8 percent of lean NAFLD individuals and 58.8 and 41.2 percent of lean non-NAFLD individuals, 
respectively. Weight, BMI, waist circumference, hip circumference, waist-to-hip ratio (WHR), ALT, fasting glu-
cose, TC, LDL, and TG were significantly higher in lean NAFLD individuals than in lean non-NAFLD individuals 
(p < 0.001, p < 0.001, p < 0.001, p < 0.001, p < 0.001, p = 0.014, p = 0.001, p = 0.008, p = 0.008 and p < 0.001, respec-
tively). In contrast, lean NAFLD individuals had decreased levels of HDL (p < 0.001). In contrast, there were no 
significant differences in blood pressure, AST, and the percentage of hypertension, T2D, and hyperlipidemia 
between lean NAFLD and lean non-NAFLD individuals.

Genetic association between SNPs and lean NAFLD.  Three tested SNPs (rs1260326, rs780093, and 
rs780094) in GCKR shown in Table 2 met Hardy–Weinberg equilibrium (p > 0.05), and the allele and genotype 
distributions of three SNPs in GCKR are shown in Table 3. The frequency of the C allele of rs1260326, rs780093, 
and rs780094 in GCKR was significantly lower in lean NAFLD compared with lean non-NAFLD individuals 
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(OR = 0.700, 95% CI 0.499–0.981, p = 0.038; OR = 0.685, 95% CI 0.488–0.962, p = 0.028; OR = 0.698, 95% CI 
0.497–0.980, p = 0.037). The genotypic frequency of these three SNPs on the GCKR gene significantly differed 
between lean NAFLD and lean non-NAFLD individuals (p < 0.05).

Association of SNPs in GCKR with waist circumference in lean NAFLD individuals.  The asso-
ciation using five genetic models is presented in Table  4. GCKR polymorphism rs1260326 was significantly 
associated with waist circumference under the dominant and over-dominant models. The TT genotype of 
GCKR rs1260326 polymorphism was statistically related to smaller waist circumference (p = 0.023). We also 
used rs1260326 as a logistic regression predictor to examine the associations with waist circumference. And 
rs1260326 genotype was still significantly associated with waist circumference (β = 1.196, R2 = 0.043, p = 0.020) 
after adjusting gender and age (Table 5).

Mediation effect of waist circumference on the association between rs1260326 and the odds 
of lean NAFLD.  The mediation analysis indicated that rs1260326-C had no significant direct effect on lean 
NAFLD (β = − 0.0313, 95% CI − 0.1499 to 0.0800), while rs1260326-C had a significant indirect effect on lean 
NAFLD incidence via waist circumference (β = 0.0515, 95% CI 0.0107–0.0900, p = 0.004) (Fig. 2).

Discussion
For the first time, this study examined the mediating effect of waist circumference on the association between 
rs1260326-C in the GCKR gene and the odds of lean NAFLD in the elderly Chinese Han population. And three 
SNPs, i.e., rs1260326, rs780093, and rs780094, were all associated with the odds of lean NAFLD in the elderly 
Chinese Han population. In addition, the frequency of the C allele of rs1260326, rs780093, and rs780094 was 
significantly lower in lean NAFLD individuals than in lean non-NAFLD ones.

The pathophysiological mechanism underlying the occurrence and development of lean NAFLD is still elusive. 
Waist circumference can be a better alternative for clinically evaluating abdominal obesity and predicting the risk 
of metabolic diseases21 as BMI fails to discriminate subcutaneous fat from visceral fat accurately22. Furthermore, 
WHR also presents the degree of body fat distribution23, associated with cardiovascular diseases24. While Neeland 
et al.25 showed that the association between visceral fat and WHR was much weaker when compared with waist 
circumference. Thus, waist circumference was recommended for assessing the odds of obesity other than the 
single measurement of BMI or WHR21–25. Based on the above evidence, we checked the potential role of waist 
circumference in the odds of lean NAFLD. And the study showed a significant decrease in waist circumference 
in lean NAFLD than in lean non-NAFLD individuals. It may imply that waist circumference reflects the lipid 
metabolism dysfunction in lean NAFLD patients. The finding supported this implication, which showed that 
waist circumference was highly related to NAFLD or specific lean NAFLD7,26.

Community population 

n=5,387

49 individuals were excluded due to 

health problem and age problem

5,338 individuals included

NAFLD, n=2,868 Non-NAFLD, n=2,470

Diagnosed by ultrasonography

1,219 individuals included

NAFLD, n=750 Non-NAFLD, n=469

BMI≥23 

Non-lean, n=644

BMI≥23 

Non-lean, n=253

230 individuals were excluded due to missing BMI

Genotyping by Mass ARRAY 

n=1,449

BMI<23 
Lean, n=216

BMI<23 
Lean, n=106

1BMI, Body mass index; NAFLD, Non-alcoholic fatty liver disease.

Figure 1.   Study flowchart. BMI Body mass index, NAFLD non-alcoholic fatty liver disease.
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It is well known that NAFLD and its related traits, such as waist circumference, are determined by genetic vari-
ants combined with environmental factors. Tong et al.27,28 found that rs1044250-C in angiopoietin-like protein 4 
(ANGPTL4) and rs237025-A in small ubiquitin-like modifier 4 (SUMO4) were associated with increased waist 
circumference in patients with metabolic syndrome. Duicu et al.29 confirmed that rs9939609-A in fat mass and 
obesity-related (FTO) gene was a risk factor for waist circumference in obesity. However, there were few stud-
ies on waist circumference-related single nucleotide polymorphisms in lean NAFLD. The association between 
rs738409 GG genotype in PNPLA3 and the risk of lean NAFLD was reported in citizens of Hongkong, China30, 
and rs58542926-T in TM6SF2 was associated with TG, not waist circumference in lean NAFLD individuals30. 
Of note, we first discovered that rs1260326-C in the GCKR gene was linked to waist circumference in the elderly 
Chinese Han population with lean NAFLD. This connection may be attributed to the disrupted glucose and lipid 
metabolism regulated by GCKR31, leading to abnormal waist circumference.

Interestingly, there was a significant relation between rs1260326-T and rs780094-T polymorphisms of 
GCKR and the increased risk of NAFLD32. Hernaez et al.33 showed a correlation between patients with simple 
steatosis with higher ALT and rs780094-T. Tan et al.34 demonstrated that NAFLD patients with rs1260326 and 
rs780094 allele T were prone to progress to NASH with significant fibrosis, which would be developed from lean 
NAFLD4. In addition, Yuan et al.16 explored the mediation effect of TG on the association between rs1260326-T 
in GCKR and the risk of NAFLD in the elderly Chinese Han population. Yet, in our study, the association between 
rs1260326-C and the odds of lean NAFLD was mediated by waist circumference. All these findings emphasize 
the importance of GCKR not only in NAFLD but in the specific lean NAFLD.

Table 1.   Clinical characteristics of lean NAFLD and lean non-NAFLD individuals. Variables are presented 
as mean ± SD. P values are based on independent sample t- test. ALT alanine aminotransferase, AST aspartate 
aminotransferase, BMI body mass index, DBP diastolic blood pressure, HDL high density lipoprotein, LDL low 
density lipoprotein, NAFLD nonalcoholic fatty liver disease, SBP systolic blood pressure, TC total cholesterol, 
TG triglyceride, T2D type 2 diabetes, WHR waist to hip ratio.

Lean NAFLD Lean non-NAFLD

PMean ± SD Mean ± SD

N 106 216

Age (year) 72.54 ± 6.05 73.54 ± 6.15 0.169

Gender (%)

 Female 64.20% 58.80%
0.357

 Male 35.80% 41.20%

Height (cm) 159.13 ± 8.24 158.60 ± 8.35 0.588

Weight (kg) 55.42 ± 6.25 51.92 ± 6.98  < 0.001

BMI (kg/m2) 21.83 ± 0.96 20.60 ± 1.78  < 0.001

Waist circumference (cm) 79.94 ± 6.26 75.63 ± 6.92  < 0.001

Hip circumference (cm) 90.43 ± 3.91 88.37 ± 4.85  < 0.001

WHR 0.88 ± 0.06 0.85 ± 0.08  < 0.001

SBP (mmHg) 142.04 ± 20.43 138.04 ± 22.45 0.124

DBP (mmHg) 81.08 ± 12.32 78.83 ± 11.92 0.119

ALT (U/L) 22.44 ± 9.254 19.73 ± 9.28 0.014

AST (U/L) 23.88 ± 10.44 23.53 ± 8.58 0.750

Fasting glucose (mmol/L) 6.70 ± 2.20 5.89 ± 1.66 0.001

TC (mmol/L) 5.29 ± 0.91 4.99 ± 1.01 0.008

HDL (mmol/L) 1.16 ± 0.20 1.33 ± 0.30  < 0.001

LDL (mmol/L) 3.30 ± 0.85 3.05 ± 0.89 0.018

TG (mmol/L) 1.92 ± 1.20 1.18 ± 0.69  < 0.001

Hypertension (%) 55.70 44.00 0.050

T2D (%) 20.80 12.0 0.056

Hyperlipidemia (%) 10.40 6.50 0.221

Table 2.   The three SNPs in the GCKR gene analyzed in this study. Chr chromosome, GCKR glucokinase 
regulator, SNP single nucleotide polymorphisms.

SNP ID Chromosome Function Allele

rs1260326 Chr2: 27508073 Missense variant T/C

rs780093 Chr2:27519736 Intron_variant T/C

rs780094 Chr2:27518370 Intron_variant T/C
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The limitation of this study is that the association between GCKR polymorphisms and the odds of lean 
NAFLD was only observed in the elderly Chinese Han population. Since multiple factors affect gene variation, 
more research in different ethnic groups and regions with larger sample sizes is needed to verify the current 
result. Although the mediating effect of waist circumference on the association between rs1260326-C in GCKR 
and the odds of lean NAFLD in the elderly Chinese Han population was explored in this study, we still can-
not ignore that the temporal link between the outcome and the exposure cannot be determined because both 
are examined at the same time in a cross-sectional study. More data are needed from the longitudinal study to 
verify the mediation association. Additionally, the information of health condition, e.g., hypertension, T2D, and 
hyperlipidemia were determined according to the patient’s self-report; this may cause errors in record, recall, 
and social desirability bias.

In conclusion, the mediating effect of waist circumference on the association between rs1260326-C in GCKR 
and the odds of lean NAFLD in the elderly Chinese Han population was explored for the first time. This finding 
may contribute to illustrating the pathogenesis and progression of lean NAFLD and indicate that waist circum-
ference management might improve lean NAFLD control.

Materials and methods
Subjects.  This study was a cross-sectional investigation conducted in the Zhangjiang community center 
Shanghai, China. A total of 5387 residents (aged ≥ 60 years) were recruited in 2017. The study was approved by 
the Ethics Committee of the Shanghai University of Traditional Chinese Medicine. All participants provided 
informed written consent prior to the study. The study followed the declaration of Helsinki.

The inclusion criteria: residents in Shanghai, complete data measurements. The exclusion criteria: participants 
with mental disorders, malignant tumors, or incomplete recorded information. After an initial screening, 5,338 
potential subjects were included, and 49 individuals were excluded due to health problems and age problems 
(age < 60 years). Then 1,449 participants were randomly chosen for the genotyping analysis. After further screen-
ing, 230 participants who lacked BMI data, abused alcohol (< 140 g/week in males and < 70 g/week in females), 
were carriers of hepatitis B or C, or had a history of drug-induced liver disease or autoimmune liver disease were 
excluded, and 1219 participants (NAFLD, n = 750; non-NAFLD, n = 469) were included for the final analysis. 
According to the classification in adult Asian populations35, lean NAFLD in this study was defined by body mass 
index (BMI) < 23 kg/m2. Finally, participants were categorized into four groups: lean NAFLD (BMI < 23 kg/m2, 
n = 106), non-lean NAFLD (BMI ≥ 23 kg/m2, n = 644), lean non-NAFLD (BMI < 23 kg/m2, n = 216) and non-lean 
non-NAFLD (BMI ≥ 23 kg/m2, n = 253) (Fig. 1).

Measurement.  The NAFLD was diagnosed36 and evaluated by the color ultrasound system. Collection 
of information such as age, gender, alcohol consumption, smoking, and medical history (e.g., hypertension, 
osteoporosis and cerebral infarction) was collected by questionnaire (Supplementary Table S1). Hypertension, 
T2D, and hyperlipidemia were determined according to the patient’s self-report, which was acquired from the 
doctors. Alcohol consumption and smoking were divided into two categories (never and always use) by the fol-
lowing questions, respectively: “Have you ever used tobacco?” and “Have you ever used alcohol?” Body mass 
index (BMI) was calculated as weight (kg) divided by height squared (m2). And participants were categorized 
into two groups: lean (BMI < 23 kg/m2) and non-lean (BMI ≥ 23 kg/m2). And lean NAFLD in the present study 
was defined by BMI < 23 kg/m2 according to the classification in adult Asian populations37. Waist and hip cir-
cumference were reliably measured using a non-stretch tape by the trained professional; waist circumference 
was measured midway between the lowest rib and the top of the iliac crest at the end of gentle expiration, hip 
circumference was measured over the great trochanters; circumferences were measured over the naked skin and 

Table 3.   GCKR allele and genotype distribution in lean individuals. FDR false discovery rate, GCKR 
glucokinase regulator, HWE Hardy–Weinberg equilibrium, OR odds ratio, SNP single nucleotide 
polymorphisms.

SNP Allele frequency χ2 P FDR adjusted OR  (95% CI) Genotype frequency χ2 P FDR adjusted HWE

rs1260326 C T 4.283 0.038 0.162 0.700  (0.499–
0.981) C/C C/T T/T 8.392 0.015 0.143

Lean NALFD 79 (0.376) 131 (0.623) 12 (0.114) 55 (0.523) 38 (0.361) 0.493

Lean non-
NAFLD 198 (0.462) 230 (0.537) 54 (0.252) 90 (0.42) 70 (0.327) 0.078

rs780093 C T 4.787 0.028 0.378 0.685  (0.488–
0.962) C/C T/T C/T 6.294 0.042 0.449

Lean NALFD 80 (0.388) 126 (0.611) 13 (0.126) 36 (0.349) 54 (0.524) 0.575

Lean non-
NAFLD 202 (0.48) 218 (0.519) 52 (0.247) 60 (0.285) 98 (0.466) 0.638

rs780094 C T 4.313 0.037 0.378 0.698  (0.497–
0.980) C/C T/T C/T 6.204 0.044 0.449

Lean NALFD 80 (0.388) 126 (0.611) 13 (0.126) 36 (0.349) 54 (0.524) 0.575

Lean non-
NAFLD 200 (0.476) 220 (0.523) 52 (0.247) 62 (0.295) 96 (0.457) 0.479
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Table 4.   Association between GCKR SNPs and waist circumference. CI confidence interval, GCKR 
glucokinase regulator, SNP single nucleotide polymorphisms.

Association Genotype N 95% CI p-value

rs1260326-waist circumference

Codominant

T/T 105 0.054

T/C 142 0.411 to 3.903

C/C 65 − 0.819 to 3.462

Dominant

T/T 105 0.023

T/C-C/C 207 0.271 to 3.519

Recessive

T/T-T/C 247 0.933

C/C 65 − 1.824 to 1.987

Over-dominant

T/T-C/C 170 0.037

T/C 142 0.109 to 3.195

log-Additive

0,1,2 − 0.235 to 1.887 0.128

rs780093-waist circumference

Codominant

T/T 94 0.216

T/C 149 − 0.332 to 3.263

C/C 64 − 0.606 to 3.818

Dominant

T/T 94 0.081

T/C-C/C 213 − 0.1795 to 3.195

Recessive

T/T-T/C 243 0.472

C/C 64 − 1.216 to 2.629

Over-dominant

T/T-C/C 158 0.307

T/C 149 − 0.746 to 2.376

log-Additive

0,1,2 − 0.230 to 1.961 0.123

rs780094-waist circumference

Codominant

T/T 96 0.183

T/C 147 − 0.238 to 3.342

C/C 64 − 0.555 to 3.847

Dominant

T/T 96 0.066

T/C-C/C 211 − 0.096 to 3.257

Recessive

T/T-T/C 243 0.472

C/C 64 − 1.216 to 2.629

Over-dominant

T/T-C/C 160 0.263

T/C 147 − 0.668 to 2.455

log-Additive

0,1,2 − 0.196 to 1.984 0.109

Table 5.   Logistic regression analysis on the impacts of GCKR rs1260326 on waist circumference after the 
adjustment of gender and age. The T/T genotype was used as reference. GCKR glucokinase regulator, SNP 
single nucleotide polymorphism.

Phenotype SNP

Statistics of regression analyses

β R2 t p

Waist circumference rs1260326 1.916 0.043 2.343 0.020
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noted to the nearest 0.1 cm. Blood pressure was measured by electronic sphygmomanometers (Biospace, Cheo-
nan, South Korea). Fasting glucose, alanine transaminase (ALT), aspartate transaminase (AST), total cholesterol 
(TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) were measured 
using the biochemistry analyzer (Hitachi, Tokyo, Japan). Reagents for glucose, ALT, AST, TC, LDL, HDL, and 
TG detection were from Wako Pure Chemical Corporation, Japan. The quality control materials were provided 
by Beckman Company (M507471 and M507473), and the calibrators were provided by Wako Pure Chemical 
Corporation, Japan.

Genotyping.  Genomic DNA was extracted from venous blood leukocytes using the EZ1 DNA Blood 350 
μL kit (Qiagen) according to the manufacturer’s instructions for genotyping. Three SNPs, including rs1260326, 
rs780093, and rs780094 in GCKR from the NCBI database of SNP database (www.​ncbi.​nlm.​nih.​gov/​SNP), were 
analyzed and genotyped by matrix-assisted laser desorption/ionization time-off light mass spectrometer in Mas-
sARRAY Analyzer 4 platforms (Sequenom, San Diego, CA). Probes and primers were determined with online 
Assay Design Suite version 2.0 software. The polymerase chain reaction was performed according to the instruc-
tions of the manufacturers. More detailed information about primers and polymerase chain reaction conditions 
is available upon request.

Statistical analysis.  Clinical data in subjects were presented as mean ± standard deviation. Independent 
samples t-test was adopted for the group comparison. Categorical data were calculated as a percentage. Each var-
iable in this study satisfied the normality assumption distribution (SPSS statistical software version 26). Allelic 
and genotypic distributions and Hardy–Weinberg equilibrium were analyzed with the online software SHEsis 
(http://​analy​sis.​bio-x.​cn/​myAna​lysis.​php)35.

The association between each SNP with waist circumference in five genetic models (codominant, dominant, 
recessive, over-dominant, and log-additive models, respectively) was analyzed by “SNPassoc” R package38. These 
preliminary analyses identified relevant SNP genotypes (i.e., rs1260326) to lean NAFLD. The linear regression 
analysis was also conducted to verify the association of waist circumference with rs1260326 in lean NAFLD 
after the adjustment of gender and age (R script was shown in supplementary Table S2). Only those significant 
variables in a regression and genetic association analysis will be considered for the following mediation analy-
sis. Mediation models conducted with mediation package (with the linear and generalized linear models) were 
established to check whether the waist circumstance can mediate the association between SNP and the odds of 
lean NAFLD by the mediation package in R software. P < 0.05 was considered statistically significant.

waist circumference 

Indirect effect: 0.0515

95%CI: 0.0107~0.0900*

Total effect: 0.0202

95%CI: -0.1045~0.1400

Direct effect:-0.0313

95%CI: -0.1499~0.0800

Waist

rs1260326
Lean NAFLD 

Lean NAFLD 

individual

Liver

SNP

Figure 2.   Mediation of waist circumference on the association between rs1260326 and lean NAFLD. NAFLD 
non-alcoholic fatty liver disease. In this study, rs1260326-C had no significant direct effect on lean NAFLD 
(95% CI − 0.1499 to 0.0800), rs1260326-C had a significant indirect effect on lean NAFLD incidence via waist 
circumference (95% CI 0.0107–0.0900). Zero was not included in 95% confidence intervals representing 
statistical significance (p = 0.004).
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http://analysis.bio-x.cn/myAnalysis.php
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Ethics approval and consent to participate.  The study was approved by the Ethics Committee of the 
Shanghai University of Traditional Chinese Medicine. All participants provided informed written consent prior 
to the study.

Data availability
All data can be obtained from the corresponding author’s request and public repository (https://​pan.​baidu.​com/s/​
1HfMr8_​DZFe7​luh2P​XVnUzw, code: e336).
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