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Influence of lateral single jets 
for thermal protection of reentry 
nose cone with multi‑row disk spike 
at hypersonic flow: computational 
study
Yunbin Shi 1*, Qiong Cheng 1, As’ad Alizadeh 2, Hongbo Yan 3, Gautam Choubey 4, 
K. Fallah 5* & Mahmoud Shamsborhan 6

The main challenge for the advancement of current high‑speed automotives is aerodynamic heating. 
In this study, the application of lateral jet for thermal protection of the high‑speed automotives is 
extensively studied. The simulation of the lateral coolant jet is done via Computational fluid dynamic 
at high‑velocity condition. Finding optimum jet configuration for reduction of the aerodynamic 
heating is the main goal of this research. Two different coolant jets (Helium and Carbon dioxide) are 
investigated as coolant jet and flow study and fuel penetration mechanism are fully presented. In 
addition, the thermal load on the main body of nose cone is compared for different configurations. Our 
results specify that the injection of lateral jet near the tip of spike is effective for thermal protection of 
main body via deflection of bow shock. Also, Carbon dioxide jet with lower diffusivity is more effective 
for the protection of forebody with multi‑row disk from sever aerodynamic heating.

In the aerospace and automotive context, Aerodynamic heating is known as the process of heating near the solid 
body due to change of the hypersonic/supersonic flow into energy  term1,2. Although it seems that the transforma-
tion of momentum into thermal energy is simple process, its impacts on the flow are highly  complicated3–5. The 
process of aerodynamic heating mainly happens near the nose cone of high-speed automotives. This process is 
highly significant for these high-speed automotives and it influences on the burning of the nose cone because 
of the splendid  heating6–9. In addition, aerodynamic heating results in the noise for transmission of digital sig-
nal. These disadvantageous of aerodynamic heating have motivated the aerospace and automotive engineers to 
manage this  process10–12.

There are several techniques for protection of the nose cone from aerodynamic heating. The main challenge 
for managing of aerodynamic heating is drag  force13–15. In fact, drag force level should be kept in the recom-
mended techniques. Three main techniques of mechanical, fluidic and energy devices have been investigated 
and examined in the previous  works16–19. In these techniques, spike, coolant jet and energy source are used, 
respectively, to avoid attachment of the free stream to the main body. These techniques could efficiently reduce 
the temperature of the main stream after receiving to the main  body20–22. However, the main challenge for these 
techniques is high drag force and this is the topic of the researchers to resolve this problem in this  field23,24.

Among these methods, the main conventional technique for reduction of high heat load near the nose cone is 
 spike25–28. Spike is known as the long thin rod located at tip of nose cone to deflect the main supersonic flow from 
main nose  cone29,30. The usage of spike as a practical method is due to its  simplicity31,32. Besides, the drag force is 
reduced in this technique since the supersonic air stream is bifurcated by spike. The shape of spike tip and length 
of spike is known as two effective factors on the performance of this technique. Previous  researches33–37 showed 
that the cooling performance of this technique is not acceptable as drag force although limited thermal load 
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reduction is reported by the application of the spike. Therefore, investigations have focused on new techniques 
which could compensate this deficiency of mechanical  technique38–40. Theoretical  approaches41–47, i.e. computa-
tional fluid dynamic, as well as experimental technique enables the researchers to improve their investigations in 
inaccessible  conditions48–55. Thus these techniques are extensively used in engineering  applications55–61.

Hybrid techniques have been recently investigated as new approach for the drag and heat reduction on 
the nose cone flying at hypersonic  speed62,63. In this methodology, spike is joint with either fluidic and energy 
methods to improve the performance of classical technique of mechanical  methods64–67. Although this approach 
seems very efficient, it is not considered as practical method yet. In fact, the usage of either fluidic and energy 
device for thermal load reduction is done in the laboratory and no real practical applications of this method was 
not reported. Since this hybrid method was new method, limited resources and articles have been presented in 
this topic.

In this research, the usage of lateral jet for the cooling of the nose cone with multi-row disk (MRD) at high-
speed flight is fully investigated (Fig. 1). The influence of jet location and condition on the cooling of the nose 
cone is investigated by the computational method. The highly compressible flow around the MRD blunt body is 
simulated and comprehensive flow analysis are presented to find the effective terms for thermal load management 
of the nose cone. The influence of coolant gas type is investigated by comparing carbon dioxide and helium jet 
in this investigation.

Governing equation and numerical method
This study applied RANS equations for modeling of the compressible flow near the nose cone with MRD  device68. 
SST turbulence model is applied in the simulation of highly turbulent flow around the nose  cone69. The flow is 
assumed ideal gas and species transport equation is also applied since the secondary gases of helium and  CO2 are 
used for the cooling in this hybrid technique. Computational fluid dynamic is applied for the simulation of flow 
around the nose while the coolant gas is released. This technique is popular for simulation of fluid in engineer-
ing  problems70,71. The details of the main governing equations have extensively presented and explained in the 
previous articles and readers are referred to these  resources72,73.

Applied boundary condition related to the selected model is demonstrated in Fig. 2. Inflow is pressure farfield 
with M = 5.0, Pinf-2550 and Tinf = 221 K. Helium and carbon dioxide are chosen for as coolant jets with sonic 
condition at Ts = 300 K. Pressure outlet is extrapolated from the results of inside domain. The spike and main 
body is assumed wall with constant temperature of 300 K. The length of spike is equal to diameter of the main 
 body60.

Grid study as the main step for the computational fluid dynamic are done by producing different grids for 
our models. The number of grid in three directions are change to find optimum model in which results are inde-
pendent from grid. Figure 3 demonstrated the schematic of produced grid for our model. Structured grid is used 
since it has more accuracy in the finite volume based approach. Table 1 presented details of grid studies. For grid 
independency analysis, four grid resolutions are generated and simulated in the first step. Comparison of the heat 
load on the main body are done for produced grids (Table 1) and it is found that fine grid with 1,628,000 cells.

Results and discussion
The comparison of experimental and numerical data with our results is done to perform validation. This step is 
important since it approves the correctness of applied method for the simulation of the chosen case. As presented 
in ref.74, the variation of normalized pressure along the nose agrees reasonably with other methods. The deviation 
of the archived results from other techniques is not more than 8% in the simple nose cone at supersonic flow.

Streamline and coolant distribution for three lateral jets located on the stem of the spike are displayed in Fig. 4. 
The deflection of the main stream and the diffusion mechanism of Helium and  CO2 jet in these configurations 
are noticed in these models. The main effects of these jet locations are on the deflection of main stream while the 

Figure 1.  Selected model with proposed injection system.
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Figure 2.  Applied boundary condition.

Figure 3.  Grid production.

Table 1.  Grid details.

Model Grid number Average Stanton numb. on blunt cone (θ = 30) Average Stanton on numb. blunt cone (θ = 60)

Coarse grid 680,000 0.00212 0.00618

Normal grid 960,000 0.00245 0.00637

Fine grid 1,320,000 0.00251 0.00651

Very fine grid 1,680,000 0.00253 0.00653
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circulation regime in these model is almost identical. Due to high penetration rate of helium, this gas deflects 
the bow shock with higher angles.

The feature of the shock interactions for lateral injection system are demonstrated in Fig. 5. The main dif-
ference on the jet location on the spike is related to the interaction of the separation shock with barrel shock of 
coolant jet. In fact, this interaction results in deflection of the bow shock and limited the interaction of the sepa-
ration shock to the main body. As jet location move to the tip of the spike, the angle of the bow shock becomes 
more and separation layer did not touch the main body. Therefore, the heat transfer decreases on the main body. 

Figure 4.  Flow stream and concentration of the different lateral coolant injection systems.
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The main difference of these coolant jet is associated with the shape and size of barrel shock and their effects on 
the bow shock is almost identical.

To evaluate the strength of bow and barrel shocks, Fig. 6 demonstrates the temperature contour on the mid-
plane for different lateral injection systems. When the lateral injection occurs in the vicinity of the main body, the 
hot region is nearby the tip of disks where the interaction of the bow shock with disk results in the high entropy 
region. As coolant injection move to the tip of the spike, the temperature region become restricted between bar-
rel shock and the bow shock and this confirms the high power of bow shock. It is also found that the strength of 
deflection shock for helium jet is less than that of CO2 jet. Besides, as the coolant jet moves to the main body, 
more portion of the body is under impacts of the cool fluid.

Figure 5.  Influence of the different lateral coolant injection systems on shock interactions.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6549  | https://doi.org/10.1038/s41598-023-33739-2

www.nature.com/scientificreports/

Figure 7 illustrates the three-dimensional feature of the coolant layer to disclose the diffusion of these two 
gases in different lateral injection systems. Based on the achieved contour, the diffusion of the helium into the 
main bow shock cases the fluctuation and a segment of coolant diverted into the main body of the nose cone. 
This effect is noticed on the heat transfer rate displayed in Fig. 8. The heat transfer rate on the disk and main 
body indicates the diffusion mechanism of the coolant and its effects on the heat load of the nose and disk. As 
expected, high heat transfer rate occurs on the tip of the disk and this is because of shock deflection. Effects of 
coolant location is also noticed on the heat transfer of the main body.

Figure 9 demonstrates the effect of the different lateral coolant injection systems on the total heat load reduc-
tion on the main body and spike assembly. Obtained data indicates that the injection of  CO2 jet is more efficient 
than Helium for cooling of the body and spike assembly. In fact, this is due to the shield effects of the  CO2 gas 
since it has lower diffusivity than helium.

Figure 6.  temperature distributions nearby the main body for the different lateral coolant injection systems.
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Conclusion
This study tries to investigate the importance of the lateral jet for the thermal management of the nose cone 
with MRD flying at hypersonic flow. Three-dimensional model is used for the investigation of the flow and heat 
transfer near the nose cone and spike assembly. Flow analysis and coolant gas distribution are compared for 
two coolant gas types of helium and carbon dioxide. The influence of the coolant gas on the compression shock 
and bow shock near spike and main body. Mechanism of cooling in different jet locations is also investigated 
to achieve the optimum configuration for the thermal load reduction of the nose cone. Our results show that 
deflation of the main blow shock by the coolant jet near the spike tip has great impacts on the reduction of 
aerodynamic heating.

Figure 7.  3-D feature of the different lateral coolant injection systems.
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Figure 8.  Heat transfer rate on the main body and disk of the different lateral coolant injection systems.

Figure 9.  Comparison of heat load reduction of the different lateral coolant injection systems.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6549  | https://doi.org/10.1038/s41598-023-33739-2

www.nature.com/scientificreports/

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
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