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Associating broad 
and clinically defined polygenic 
scores for depression 
with depression‑related 
phenotypes
John E. McGeary  1,5, Chelsie E. Benca‑Bachman  1,2,5*, Victoria A. Risner  2, 
Christopher G. Beevers  3, Brandon E. Gibb  4 & Rohan H. C. Palmer  1,2

Twin studies indicate that 30–40% of the disease liability for depression can be attributed to 
genetic differences. Here, we assess the explanatory ability of polygenic scores (PGS) based on 
broad- (PGSBD) and clinical- (PGSMDD) depression summary statistics from the UK Biobank in an 
independent sample of adults (N = 210; 100% European Ancestry) who were extensively phenotyped 
for depression and related neurocognitive traits (e.g., rumination, emotion regulation, anhedonia, 
and resting frontal alpha asymmetry). The UK Biobank-derived PGSBD had small associations with 
MDD, depression severity, anhedonia, cognitive reappraisal, brooding, and suicidal ideation but 
only the association with suicidal ideation remained statistically significant after correcting for 
multiple comparisons. Similarly small associations were observed for the PGSMDD but none remained 
significant after correcting for multiple comparisons. These findings provide important initial guidance 
about the expected effect sizes between current UKB PGSs for depression and depression-related 
neurocognitive phenotypes.

There are clear genetic influences on depression risk1 and heritability estimates from twin studies suggest that 
30–40% of risk for depression can be attributed to genetic influences2. Although initial genome-wide association 
studies (GWAS) provided inconsistent evidence3–5, a recent, well-powered GWAS of depression has identified a 
more reliable set of genetic associations. Howard and colleagues found 102 independent variants in a discovery 
sample (N = 807,553) of which 87 were replicated in the validation sample (N = 1,306,354)6. Reliable findings in 
depression GWAS studies usher in an era of possibility wherein the identification of the specific heritable genetic 
variants may lead to novel insights for treatment or prevention.

In addition to identifying reliable single nucleotide polymorphisms (SNPs) associated with a particular 
phenotype, large, GWASs allow for the calculation of polygenic scores (PGS) that aggregate individual small 
genetic effects to summarize a person’s lifetime genetic risk of disease. These scores are critical for understanding 
the clinical importance of genetic influences to psychiatric disorders, such as depression, since the individual 
effects of commonly occurring polymorphisms are typically too subtle to be meaningful in isolation.

To maximize the value of genetic findings for depression research, the phenotypes used to glean reliable 
findings must be carefully considered. Phenotypes used in GWAS are typically limited in scope (by design) 
to simplified definitions that indicate the presence or absence of disease in order to obtain large samples. For 
instance, the broad depression phenotype in the UK Biobank (UKB), a study assessing a variety of health 
characteristics in a prospective population-based cohort of over 500,000 men and women from the UK, was 
based on endorsement (yes/no) of a single item, “Have you ever seen a general practitioner for nerves, anxiety, 
tension or depression?”6,7. Prior work has shown a strong genetic correlation (rG = 0.86, SE = 0.05) between 
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self-reported definitions of depression and clinically diagnosed major depressive disorder (MDD), with the 
former being easier to obtain8.

On one hand it is important to define the nomological network9 of constructs or detailed phenotypes (e.g., 
negative cognition; specific depression symptoms) associated with genetic variants initially identified by GWAS 
to better understand how genetic variation influences specific traits or features and in turn how these features 
impact the manifestation of the broader disorder. On the other hand, considering that sample sizes in the 
100,000 s are required for a GWAS study it can be challenging to engage in detailed phenotyping of depression-
relevant constructs, such as electroencephalography or suicidal ideation. However, the potential of this additional 
effort has been highlighted by the important etiological insights in SCZ obtained by the phenotypic annotation 
approach10. For instance, SNPs for schizophrenia identified by GWAS have been associated with known risk 
factors and correlates of the disorder, including neighborhood disadvantage11, illicit drug use12, and creativity13. 
Among people initially hospitalized for psychosis, PGSs for schizophrenia predict the occurrence of more 
severe negative symptoms, lower global assessment of functioning, more impaired cognition, and the eventual 
development of a schizophrenia spectrum disorder across a 20-year post-hospitalization follow-up period14.

It is currently unknown whether depression-relevant endophenotypes are associated with the SNPs identified 
by large scale GWAS. Prior work suggests that the effects may be small. For instance, polygenic scores derived 
from the Psychiatric Genomics Consortium genome-wide association study of MDD explained less than 1% of 
the variance in depression symptom severity in an independent sample15 and 1.1% of the variance MDD status in 
a case–control study16, which is an improvement from a prior GWAS17. A recent study by Mitchell and colleagues 
(2021) associated depression PGSs with clinical features that extend beyond diagnosis (e.g., age of first depressive 
episode, 2 or more depressive episodes)18 in a clinical sample. However, the association between GWAS-derived 
PGSs and depression-related neurocognitive phenotypes has not been thoroughly examined to date.

Should a large-scale GWAS-derived PGS for depression reliably index one of these intermediate phenotypes, 
but not others, it could help identify mechanisms that link SNPs with depression risk, indexing specific 
endophenotypes of depression and potentially inform the future development of personalized/targeted 
treatment efforts. Given the heterogeneity of depression19, if a GWAS-derived PGS does not predict a particular 
intermediate phenotype, it might suggest that the PGS is indexing one particular aspect of depression over 
another. Accordingly, depression relevant PGSs should be used to determine whether they provide additional 
insights into the genetic basis of established neurocognitive phenotypes.

The current study examined associations between polygenic scores derived from a recent GWAS of depression 
in the UKB8 and a broad array of neurocognitive phenotypes associated with depression collected in an 
independent sample of 210 adults who ranged in depression severity. In addition to diagnoses and symptoms 
of depression, we also examined the relative utility of broadly- versus clinically-defined PGS in predicting 
depression-relevant phenotypes including self-reported rumination, emotion regulation, anhedonia, and 
resting frontal alpha asymmetry. These phenotypes are highly relevant to depression20–22, can be measured with 
good reliability23–26, and appear to be heritable to varying degrees27–32. Thus, they are promising candidates for 
examining associations with polygenic scores for depression.

Results
Table 1 provides descriptive information for the depression-relevant phenotypes. Participants were mostly female, 
in their mid-20 s. Much of the sample had experienced a past episode of depression (60.5%). Nearly a third 
(27.8%) of participants met criteria for current MDD and scores on the BDI-II ranged from 0 to 57 (M = 17.98, 
SD = 11.55). A third of participants endorsed having current suicidal ideation or wishes. All other outcomes 
had sufficient variability to warrant exploration PGSs could be associated with variability in the phenotype. To 
increase normality in the distributions, multivariate regressions with age and sex as predictors were run to create 
standardized residuals for each depression-related phenotype. Then the subsequent multivariable regression 
analyses reported in Table 2 were run.

Table 1.   Descriptive statistics of depression relevant outcomes and covariates. SD standard deviation, Min 
minimum, Max maximum, MDD major depressive disorder, BDI-II beck depression inventory-II, ERQ 
emotion regulation questionnaire, SHAPS Snaith–Hamilton pleasure scale, RRS ruminative response scale, 
N/A not applicable.

Phenotype N Mean SD Min Max

Age 218 23.29 4.88 18.00 36.00

Sex (% female) 218 66.06 N/A N/A N/A

MDD—current (% yes) 216 27.78 N/A N/A N/A

BDI-II 218 17.98 11.55 00.00 57.00

Alpha asymmetry (f7/f8) 206 -0.06 0.19 -0.76 0.61

ERQ cognitive reappraisal 218 25.73 7.62 6.00 42.00

ERQ suppression 218 15.36 5.49 4.00 27.00

SHAPS anhedonia 218 2.75 2.72 0.00 11.00

RRS brooding 218 11.49 3.67 5.00 20.00

BDI-II suicide item 217 0.34 0.52 0.00 3.00
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PGSBD and PGSMDD relations with symptoms and diagnoses of depression.  Both broad (PGSBD) 
and clinical (PGSMDD) operationalization of polygenic risk for depression were associated with increased 
depression severity and MDD diagnosis (Table 2). Although none of the associations survived correction for 
multiple testing, PGSBD corrected p-values for current MDD diagnosis and depression severity were marginally 
significant at 0.061 and 0.053, respectively.

PGSBD and PGSMDD relations with depression‑related phenotypes.  Polygenic effects across 
depression-related phenotypes were mixed and varied by PGS (Table  2). Higher PGSBD was associated with 
increased suicidal thoughts and ideation, brooding and anhedonia, and lower levels of cognitive reappraisal. A 
similar pattern was observed for the PGSMDD (with the exception of anhedonia and suicidal ideation), although 
effect sizes were smaller than that of PGSBD and did not survive correction for multiple testing. Neither PGSBD 
nor PGSMDD were associated with alpha asymmetry.

Discussion
This study examined the utility of polygenic scores derived from GWAS of “broad-depression” (PGSBD) and 
MDD (PGSMDD) in an independent sample that had been characterized for eight depression-related phenotypes. 
These phenotypes included diagnostic and standardized measures of depression, electrophysiology, and cognitive 
assessments. Primary questions included: (a) whether the broad-depression PGS accounted for significant 
variance in depression-related phenotypes in a well-characterized adult sample, and (b) how a more focused 
MDD PGS performed in the same sample.

The PGSBD yielded six suggestive findings (see Table 2), though only one phenotype, suicidal ideation, 
survived correction for multiple testing. This suggests that a broad depression PGS, though low in specificity for 
depression liability33, may have utility for some but not other depression-related phenotypes18. The pattern of 
findings may hint at the type of “depression” indexed by the items used to create the PGS in UKB. While more 
work needs to be done, the current pattern of results suggests that perhaps those who answer affirmatively to 
the question about seeking help for nerves, anxiety, tension, or depression might be more likely to: (1) have an 
MDD diagnosis; (2) have higher levels of depressive symptoms; (3) endorse cognitive reappraisal, anhedonia, 
brooding, and/or suicidal ideation rather than being someone who shows pronounced alpha asymmetry or 
engages in cognitive suppression.

Use of the putatively more specific PGSMDD suggested four significant findings (i.e., for current MDD 
diagnosis, depressive symptoms, ERQ cognitive reappraisal, and brooding), but none survived correction for 
multiple testing. The results across both polygenic scores were largely consistent, apart from links with anhedonia 
and suicidal ideation, which were not significant in the PGSMDD analyses, even prior to correcting for multiple 
testing. These findings are also interesting given that the PGSMDD was defined in the UK Biobank using a much 
smaller sample of cases but a more specific sub-sample of those diagnosed with MDD as compared with the 
PGSBD.

Table 2.   Polygenic scores (PGS) effect on depression relevant outcomes. ERQ emotion regulation 
questionnaire, SHAPS Snaith–Hamilton pleasure scale, RRS ruminative response scale. p(unadj) is the 
observed two-tailed, p-value uncorrected for multiple testing with correlated outcomes. p(adj) refers to the 
false discovery rate adjusted p-value for correlated outcomes.

Phenotype

Broad depression PGS

β [95% CI] p (unadj) p (adj) R2 Estimate R2 SE R2 p

MDD (current) 0.18 [0.04, 0.31] 0.01 0.06 0.05 0.03 0.09

Beck depression inventory-II 0.17 [0.03, 0.31] 0.01 0.05 0.03 0.02 0.17

Alpha asymmetry (f7/f8) 0.11 [− 0.03, 0.24] 0.14 0.26 0.06 0.03 0.06

ERQ cognitive reappraisal − 0.17 [− 0.31, − 0.04] 0.01 0.06 0.05 0.03 0.10

ERQ suppression 0.04 [− 0.09, 0.17] 0.56 1.00 0.07 0.04 0.03

SHAPS anhedonia 0.14 [0.01, 0.28] 0.04 0.11 0.04 0.03 0.15

RRS brooding 0.17 [0.04, 0.31] 0.01 0.06 0.04 0.03 0.12

BDI-II suicide item 0.20 [0.06, 0.33] 0 0.03 0.06 0.03 0.07

Phenotype

MDD Diagnosis PGS

β [95% CI] p (unadj) p (adj) R2 Estimate R2 SE R2 p

MDD (current) 0.15 [0.02, 0.29] 0.03 0.17 0.04 0.03 0.12

Beck depression inventory-II 0.15 [0.02, 0.29] 0.03 0.16 0.03 0.02 0.21

Alpha asymmetry (f7/f8) − 0.09 [− 0.23, 0.05] 0.21 0.498 0.02 0.02 0.32

ERQ cognitive reappraisal − 0.15 [− 0.28, − 0.02] 0.03 0.16 0.04 0.03 0.13

ERQ suppression 0.10 [− 0.03, 0.23] 0.15 0.46 0.08 0.04 0.03

SHAPS anhedonia 0.05 [− 0.08, 0.19] 0.44 0.68 0.02 0.02 0.29

RRS brooding 0.15 [0.01, 0.28] 0.03 0.14 0.04 0.03 0.16

BDI-II suicide item 0.04 [− 0.10, 0.17] 0.6 1.00 0.02 0.02 0.29
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However, the association between PGSBD and suicidal ideation survived correction for multiple comparisons. 
The finding that the PGSMDD was less sensitive for suicide-related phenotypes than the PGSBD may underscore 
differences between the etiology of MDD and suicidal behavior. This might support the position that argues 
for suicidal behavior disorder to be considered a separate diagnostic entity in the DSM classification system34. 
The finding that the PGSMDD was less sensitive for suicide-related phenotypes than the PGSBD may underscore 
differences between the etiology of MDD and suicidal behavior. Anhedonia also differed between the broad 
and MDD PGSs. Recent evidence suggests that this core feature of depression may have distinct genetic and 
neuroimaging profiles compared with other features of depression35, so if this presumed dimension of depression 
was less prevalent in individuals identified with MDD in the UKB, the PGSMDD might have less utility than the 
PGSBD.

Moreover, prior work has found an association between suicide attempts and a PRS for anhedonia—this 
association was observed even after controlling for an MDD PGS36. Together with the current study, this work 
suggests that anhedonia and suicidality may share a genetic etiology separate from MDD. Indeed, a recent 
meta-analysis finds that anhedonia and current suicidal ideation are robustly associated, even after controlling 
for concurrent depression37. This is consistent with the finding from the current study that the PGSMDD was not 
strongly associated with either suicidal ideation nor anhedonia.

It was notable that the observed associations between the polygenic risk scores and the intermediate 
phenotypes for depression were quite small (the strongest β = 0.20 for suicidal ideation for the PGSBD). Our 
sample size of 210 had sufficient power (unadjusted) to detect an effect size that explained approximately 3.6% 
of the variance, which may have been overly optimistic. Indeed, after correcting for 8 statistical tests, we only had 
sufficient power to detect an effect size that explained approximately 5.8% of the variance. Others have pointed 
out that if PGSs account for 3% of the variance in a phenotype, sample sizes of approximately 300 are needed 
to achieve 80% power. Sample sizes of ≥ 800 would be needed for PGSs to account for 1% of the variance with 
even greater sample sizes needed to detect much smaller effects38. Given the small effects observed in the current 
study and previous work reviewed above, future work with depression-related PGSs would be well served to have 
1000 participants or more. Nevertheless, this work provides useful guidance about the expected effect sizes for 
intermediate phenotypes for depression.

A somewhat atypical feature of this study is that we aimed to recruit a sample whose depression scores were 
normally distributed. This recruitment approach allowed us to examine the genetic contributions to depression-
related phenotypes in a continuous manner, rather than comparing groups (e.g., high vs low in rumination). This 
approach should provide more statistical power than group-based analyses. Further, evidence suggests that many 
depression-related phenotypes differ in degree rather than kind39, another reason for recruiting participants in 
this manner.

Taken together the current study’s findings must be considered in light of several limitations. First, this 
study was conducted using summary statistics from GWAS of European Ancestry individuals, and the target 
sample was also comprised of European ancestry individuals. While this was done for both technical (e.g., using 
summary statistics from individuals with a similar genetic background to the target population produces more 
robust and accurate PGSs) and practical reasons (i.e., the clinical sample collected included EA individuals), it 
is still important to collect data and to examine these findings in non-European groups. Second, larger sample 
sizes assessed for depression-related measures might yield more significant findings in the future. That said, the 
patterns of results revealed in these analyses suggest that the amount of variance in depression-related phenotypes 
explained by UKB PGSs is relatively small. This is likely the result of several reasons that range from factors 
specific to the PGSs used, to an underwhelming transportability of PGSs that are seen across psychiatric and 
behavior genetics. Recent UKB analyses identified key differences in the genetic architecture between minimal 
phenotypes and more diagnostic phenotypes18,33. Specifically, by examining five depression phenotypes within 
UKB, they determined that SNP heritability of minimal phenotypes are lower than those for MDD and that use of 
a minimal phenotype identified genetic variation that was not specific to depression. Some possible explanations 
for this include power limitations even within consortia-based GWAS to date, a current reliance on linkage 
disequilibrium in GWA methods that does not identify functional variants, and the possibility that weights may 
be mostly sample-specific and the transportation of weights between samples impairs PGS performance. Efforts of 
large consortia, such as the Psychiatric Genetics Consortium, will provide key insights as to the origin of limited 
PGS transportability as they continue to aggregate ever larger samples for GWAS.

Future directions could include use of more diverse samples, larger samples to address power limitations, 
use of samples enriched for depression, and in other populations (e.g., developmental periods, sex-specific). As 
large-scale genomic consortia efforts (e.g., the Psychiatric Genetics Consortium, Million Veteran Program, All 
of Us) continue to increase in scale, additional polygenic scores will become available that may reflect a different 
depression phenotype than is currently available. Use of newly developed PGSs might yield different results than 
were seen here. Finally, examination of PGSs that index other forms of psychopathology, including personality 
disorders or neuroticism (explored in the supplemental materials section S1 of the present paper), may help 
highlight genomic variation that is depression-specific in contrast to genomic influences on psychopathology 
more generally.

In summary, broad and MDD-related PGSs derived from the UK Biobank accounted for small amounts of 
variance in eight depression-related phenotypes (i.e., MDD diagnosis, depression severity, alpha asymmetry, 
cognitive reappraisal, suppression, anhedonia, brooding, and suicidal ideation) characterized in an independent 
sample of adults. Only the association between PGSBD and suicidal ideation survived correction for multiple 
comparisons in the current study. Nevertheless, these findings provide guidance about the expected effect sizes 
between current UKB PGSs for depression and depression-related neurocognitive phenotypes. These small 
effects suggest limited transportability of PGSs between large-scale efforts and smaller, intensively phenotyped 
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samples. Future studies with improved power (both in the discovery and target datasets) may yield larger effects 
and increased utility.

Methods
Subjects.  The protocol and procedures for the current study were ethically reviewed and approved by the 
Institutional Review Boards at the University of Texas and Emory University and all research was performed in 
accordance with the relevant guidelines and regulations. Phenotypic and genetic data were collected from 210 
unrelated European ancestry adults recruited from the Austin, Texas community. As such, informed consent 
was obtained from all participants However, Ns ranged from 206 to 210 depending on missing phenotypic data. 
Consistent with dimensional approaches to psychopathology40, participants were recruited along a continuum 
from no depressive symptoms to clinical levels to approximate a normally distributed sample of depression. 
Depression symptom severity was monitored during weekly project meetings via a Shiny app that extracted 
depression symptom severity data from the study database in real-time, plotted the distribution of the data, and 
then recruitment was adjusted as necessary. Most adjustments involved recruiting individuals at the higher end 
of the depression spectrum (i.e., screening out more participants with lower levels of depression as the study 
progressed). Recruitment was adjusted as needed to obtain a normal distribution of depression severity within 
the sample.

Participants were eligible if they met the following inclusion criteria: (1) 18–35 years of age; (2) European 
ancestry as accessed using principal component analysis and multi-dimensional scaling; (3) able to speak and 
read proficiently in English, and (4) either normal or corrected to normal vision. The exclusion criteria were: 
(1) current use of steroidal or psychotropic medications; (2) serious medical conditions; (3) heavy tobacco use 
defined as 20 cigarettes per day or greater than 20 pack years41,42; (4) a score of two or higher on the drug subscale 
of the Psychiatric Diagnostic Screening Questionnaire43; (5) a score of two or higher on the alcohol subscale 
of the Psychiatric Diagnostic Screening Questionnaire; (6) a score of one or higher on the psychosis subscale 
of Psychiatric Diagnostic Screening Questionnaire; or (7) being in imminent danger to others or self, or any 
recent suicidal behavior (suicidal ideation at level 4 on the Columbia-Suicide Severity Rating Scale in the past 
two months, or any suicidal behavior in the past two months).

Full participant demographics are reported in Table 1. Previous research with this sample examined 
associations between self-reported depression symptoms and negative cognitive biases44, identified predictors 
that reliably distinguish MDD, psychiatric controls, and healthy controls45, and used machine learning to identify 
neurocognitive predictors of reward responsivity46.

Measures.  The current study utilized a cross-sectional design with both genetic and phenotypic data 
collection. All phenotypes were residualized to adjust for age and sex and to transform variables to a more 
normal distribution.

Depression symptoms were measured with the following self-report questionnaires: Beck Depression 
Inventory-II (BDI-II)47 and the Snaith-Hamilton Pleasure Scale (SHAPS)48, a measure of anhedonia. Suicidal 
ideation question was taken from the BDI-II scale which had the following response options: (1) “I have thoughts 
of killing myself, but I would not carry them out”, (2) “I would like to kill myself ”, or (3) “I would kill myself if 
I had the chance”.

Emotion regulation was measured with the brooding subscale of the Ruminative Response Scale (RRS)49, the 
Perseverative Thinking Questionnaire (PTQ)24, and the reappraisal and suppression subscales of the Emotion 
Regulation Questionnaire (ERQ)50.

Electroencephalography (EEG) was recorded during eight minutes of alternating eyes open and eyes closed at 
rest using a modified 64 channel montage BrainVision electrode cap and collected at a 500 Hz sampling frequency. 
Recording sites in the cap included standard and extended 10–20 system locations. Alpha power (8–13 Hz) was 
extracted and frontal alpha asymmetry was calculated by subtracting left from right log transformed EEG alpha 
power (lnright–lnleft) at homologous frontal sites (i.e., F7/F8).

Genotyping and quality control.  Whole blood samples were stored in Dr. Beevers laboratory and 
transferred to Dr. McGeary’s laboratory for analysis. DNA was extracted from blood using QIAamp DNA Blood 
Maxi Kits (Qiagen, Valencia, CA) and DNA was extracted from saliva/buccal cells using manufacturers methods 
(Genotek, Ontario, Canada) and methods reported previously51. Extracted DNA was quantified and normalized 
per Illumina’s requirements for array genotyping (Picogreen and nanodrop). DNA was genotyped using the 
PsychArray BeadChip (Illumina).

Prior to imputing data, genetic variants with a genotyping rate less than 5%, rare variants (minor allele 
frequency < 1%), and individuals missing more than 10% of genetic data were removed. Datasets were then 
aligned to the Haplotype Reference Consortium (HRC) reference panel using a tool developed by the McCarthy 
Group52 that checked and updated marker information with respect to chromosome, base pair position, strand 
alignment, and reference alleles to match the HRC panel. Variants were removed if: (1) alleles were mismatched 
with the reference panel, (2) allele frequency differed by more than 0.20 from the reference panel, and (3) they 
were palindromic. Prior to imputation, a principal components analysis (PCA) was conducted using FlashPCA2 
with the 1000Genomes reference panel, followed by multidimensional scaling, to identify individuals of European 
Ancestry. A second round of PCA was conducted within the European Ancestry subset to generate PCs to control 
for any residual stratification as done in prior work (Brick et al., 2019). Six PCs were conservatively selected based 
on visual inspection of scree plot (Supplemental Fig. S1) to be included as covariates in further analyses. Samples 
were then genetically imputed via Minimac4 genotype imputation software available on the Michigan Imputation 
Server, using the HRC r1.1 2016 admixed reference panel and Eagle v2.4 phasing53. Following imputation, 
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variants were screened to only include biallelic variants located on autosomal chromosomes with an imputation 
quality score (r2) greater than 0.30. Additional post-imputation QC removed variants with a call rate < 95%, 
minor allele frequency < 1%, or failed the Hardy Weinberg Equilibrium test (p < 0.0001). After imputation and 
QC, the data contained 6,858,885 variants and up to 210 individuals with genetic and phenotypic data (n for 
each phenotype is presented in Table 1).

Statistical analyses.  In the interest of determining which facets of depression (broad vs. specific) are 
captured with our phenotypes, we employed summary statistics of two Depression GWAS in the UKB: Broad 
Depression and ICD-Coded MDD. Both Broad Depression and ICD-Coded MDD summary statistics originated 
from the same study8. Howard and colleagues defined broad depression as self-reported evidence of past help-
seeking behavior for problems with “nerves, anxiety, tension or depression” meaning individuals who either have 
a primary/secondary diagnosis of a depressive mood disorder obtained from hospital records, or individuals 
who answered “yes” to the following questions at an assessment visit met criteria for broad depression: “Have 
you ever seen a general practitioner for nerves, anxiety, tension or depression?” or “Have you ever seen a 
psychiatrist for nerves, anxiety, tension or depression?”8. Summary statistics for Broad Depression included 
7,641,986 variants from 113,769 cases that met criteria for Broad Depression and 208,811 controls in the UK 
Biobank (prevalence = 35.27%)8.

Cases for the GWAS of ICD-coded MDD were a subset of cases of Broad Depression, only including 
individuals that had either an ICD-9 or ICD-10 primary or secondary diagnosis for a depressive unipolar mood 
disorder (ICD codes: F32—Single Episode Depression, F33—Recurrent Depression, F34—Persistent mood 
disorders, F38—Other mood disorders and F39—Unspecified mood disorders)8. Summary statistics for ICD-
coded MDD included 7,658,352 variants from 8276 cases that met criteria for ICD-coded MDD and 209,308 
controls in the UK Biobank (prevalence = 3.80%)8.

Polygenic scores were calculated using the clumping and p-value thresholding method on variants that 
aligned across the Discovery GWAS8 and study datasets (number of k SNPs per trait were kBD = 5,500,234; 
kMDD = 5,510,487). We performed LD-clumping using PRSice54, to remove variants that were in Linkage 
Disequilibrium (i.e., using LD threshold (clump-r2) of 0.1, a physical distance threshold (clump-kb) of 250 kb 
and a p-value threshold (clump-p) of 0.05), which effectively removed redundant/correlated effects between 
variants55–57 (kBD = 221,253; kMDD = 222,509). Instead of testing multiple p-value thresholds, which would inflate 
the type I error rate, we used a p-value threshold of 0.05 to calculate the PGSs. A p-value of 0.05 was picked 
a priori for two reasons. First, multiple depression related phenotypes were tested, and it is likely that each 
phenotype would likely have a different p-value threshold that is the “best” predictor. Second, depression is 
known to be highly polygenic so a lower p-value may be too restrictive; however, including too many variants 
would likely introduce more noise than signal. This threshold reduced the number of SNPs contributing to each 
PGS (BD = 37,091; MDD = 31,376). PGSs were calculated using the effect size of each allele.

The effect of the Broad-Depression and MDD PGS (PGSBD and PGSMDD, respectively) on the eight depression-
related phenotypes was determined using multiple regression using maximum likelihood estimation in Mplus 
(version 8)58.Although not a primary focus of the study, post-hoc analyses also examined the effects of polygenic 
risk for neuroticism; details on PGSNeuroticism are available in the supplementary text S1. All models included the 
first six genetic principal components (as determined appropriate by a scree plot) as covariates to account for 
SNP allele frequency differences across subpopulations within the data. We report standardized beta estimates 
as well as observed and corrected p-values adjusted for the eight correlated phenotypes within each sample using 
the P values adjusted for correlated tests (PACT​) method59. Phenotypic correlations among outcomes ranged from 
-0.46 for rBDI-II-ERQ_reappraisal to 0.62 for r BDI-II-Brooding (see Supplemental Fig. S2).

Data availability
The phenotypic and polygenic score data that support the findings will be available the Mood Disorders 
Laboratory Dataverse at [https://​datav​erse.​tdl.​org/​datav​erse/​mdl?q=​&​types=​datav​erses;]. The data for the 
genotypes used to derive the polygenic scores will become available after an embargo period through dbGaP 
[https://​www.​ncbi.​nlm.​nih.​gov/​gap/], until that time, data may be made available upon request to the authors.
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