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Pipe vibration attenuation 
through internal damping 
and optimal design of vibro‑impact 
systems
Fabrizio Aloschi 1,2*, Roberto Andreotti 1 & Oreste Salvatore Bursi 1

Pipelines periodically supported by rack structures (PPRs) are common in chemical and petrochemical 
plants, among others, and conventional tools such as dampers and hysteretic absorbers are commonly 
used to mitigate large vibrations in these systems. In this study, we explore two alternative strategies: 
(i) enhancing the attenuation rate of PPR vibrations through structural internal damping, and (ii) using 
nonlinear vibro‑impact systems (VIS) to reduce seismic vibrations in a PPR. To shed light on the first 
strategy, we develop analytical dispersion relations for a PPR and show how damping can improve the 
mitigation capabilities of the periodic system. As for the second strategy, we consider a 9‑node beam, 
i.e., a single span (SS) of a PPR equipped with a VIS, and combine the central composite design (CCD) 
and Kriging metamodelling to maximize dissipation energy and minimize the number of impacts. 
This multi‑objective optimization problem aims to find the most effective design solution for the VIS 
in terms of gap and coefficient of restitution (COR). Additionally, we consider the stochastic nature 
of seismic input and the possible chaotic behavior of the VIS. To account for the sensitive variability 
of the number of impacts in seismic records, we perform incremental dynamic analyses and calculate 
fragility functions for various engineering demand parameters, including the number of impacts. We 
define a 3D surface for selecting the optimal gap‑COR pair. When impacts occur, transient results can 
be chaotic, and we compute the largest Lyapunov exponents of a few representative trajectories.

Pipelines supported by rack structures (PPRs) are a crucial means of carrying liquefied gas in different types of 
plants, such as liquefied natural gas plants, thermal power plants, petroleum industries, and chemical plants. 
These structures have demonstrated vulnerability to excessive  vibrations1–3, such as ground-borne  vibrations4–9 
and flow-induced  turbulence10–13. To mitigate vibrations, researchers have exploited bandgaps and attenuation 
zones exerted by periodically arranged structures. In some research works, Bloch waves have been applied to long, 
distributed infrastructures, such as  bridges14,15, and  pipes16–18. The dispersion analysis of Iqbal et al.16 revealed the 
dynamic flexural behavior of long supported pipes modeled as an infinite periodic structure. However, none of 
these works took into account the supplemental dissipation that  damping19,20 may provide to continuous systems.

Researchers have also used linear and nonlinear external tools to attenuate large vibrations, such as pound-
ing tuned mass dampers (PTMD)21, pipe-in-pipe  systems22, multi-stage  dampers23, and Stockbridge  dampers24. 
Song et al.21 developed a numerical analysis based on the Hertzian contact to model the pounding force and 
performed experimental tests on a pipeline coupled with a PTMD. The presence of the PTMD increased the 
damping ratio and effectively induced amplitude attenuation; nonetheless, this device is complicated to design 
since it combines vibro-impact and TMD. In this work, we exploit the impact  phenomenon26–41 with a nonlinear 
device that constrains the amplitude displacement of the pipe’s interface.

Conventional linear dampers, such as TMDs, are not always recommended for vibration mitigation due 
to their low performance under certain conditions caused by detuning  effects25. Moreover, they may not be 
sufficient to mitigate the abrupt flow-induced increases of velocity. In such cases, impact-based dissipation 
systems serve as a powerful  alternative26. However, high-velocity impacts can cause large deformations near the 
contact area, eventually leading to system design difficulties. Therefore, the design optimization of dissipative 
vibro-impact systems (VIS) needs further study. To the best of our knowledge, it is difficult to estimate the fre-
quency response function of a nonlinear VIS and compare it with that of a TMD system, as a VIS often exhibits 
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non-periodic motion. Additionally, TMDs have limitations in terms of their ability to suppress a broader range 
of  frequencies27,28, and as such, nonlinear systems have become the preferred choice for this purpose. Hysteretic 
quadratic nonlinearity  devices29, energy  sinks30,31, nonlinear vibration  absorbers32,33, and other nonlinear systems 
have proven to be effective in suppressing broader frequency ranges.

Within this framework, the mitigation of dynamic vibration in PPRs is performed by means of two main strat-
egies: (i) the attenuation properties of PPR models by means of internal damping; (ii) the optimized performance 
of a VIS subjected to stochastic (seismic) loading. Figure 1 schematically depicts the two strategies employed.

In particular, Fig. 1a shows a linear PPR; the attenuation zones due to internal damping will be obtained by 
applying dispersion analysis to a single cell. Figure 1b depicts, instead, a single span (SS) of a pipeline equipped 
with the VIS. The relevant nonlinear dissipation system is optimized in terms of maximum dissipation energy 
and minimum number of impacts when subjected to stochastic excitations. To model the impact phenomenon, a 
non-smooth approach is adopted with an algorithm that combines instantaneous and finite duration  contact34–36; 
pipes and bumpers are assumed to be rigid bodies, and the COR is given by Newton’s impact law. To further 
streamline the computational effort, we adopt the CCD, along with the Kriging metamodel implemented in 
 UQLab43. Both Kriging metamodelling and response surface methodologies (RSM) in  general44 provide the 
designer with an overall perspective of the system’s response within the design domain, which in this paper are 
the gap and the COR. RSM is indeed a common tool for design optimization  problems45–49, especially for those 
cases where the input is (seismic) stochastic, and the system’s response is nonlinear. In this respect, among many 
interesting features of the dynamics of impacts, bifurcation and chaos have gained much attention over the last 
few decades. Two basic characteristics of chaos as a dynamical state are commonly  discussed39–42: (i) the chaos 
pertains to a pseudorandom behavior observed in a deterministic nonlinear dynamical system, i.e., the system’s 
output appears to be statistically random despite having been produced by a deterministic and repeatable pro-
cess; (ii) the chaos causes a sensitive dependence on initial conditions, thus the initial states of close trajectories 
exponentially separate; the rate of separation over time is identified by the Lyapunov exponent.  Shaw39 experi-
mentally tested an elastic beam with a one-sided displacement constraint under periodic excitation and reported 
nonlinear features of the beam, such as subharmonic resonances, period doublings, and chaotic regimes. The 
results were validated with the analytical model of a single oscillator with periodic excitation and a piecewise 
linear restoring force. Coexistent attractors and multi-stability appeared in the impact oscillator of Costa et al.41, 
and the existence of chaos was proven with the 0–1 test and the Lyapunov  exponents42.

Nonetheless, the design problem of a chaotic deterministic system under (seismic) stochastic loading, such 
as earthquakes, still needs to be deepened. To handle this task, the design optimization procedure of a pipe with 
vibro-impact is complemented with a fragility assessment. Fragility functions usually derive from a variety of 
approaches like static structural analyses, judgment, or field observations of damage. In this work, we derive the 
so-called analytical fragility functions from incremental dynamic analyses (IDA)50–52. Given the unpredictability 
of the number of impacts due to chaos, the fragility function will be defined by a  surface53 for a variety of dam-
age states (DM). Just to prove the existence of chaos in the SS depicted in Fig. 1b, a few chaotic trajectories and 
the bifurcation diagrams are reported in the Supplementary Information. They have been evaluated for certain 
ranges of frequencies in the vicinity of the natural frequency of the SS, and the largest Lyapunov exponents have 
been estimated. Due to the nonlinear dependence of the dispersion features upon amplitude and frequency of 
excitation, this last task has required periodic excitation with multiple amplitudes.

Figure 1.  (a) Periodic damped pipeline on flexible supports and (b) single span (SS) endowed with a vibro-
impact system (VIS) for impact-based energy dissipation.
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Methods
Internal and external damping models in periodic PPRs. To improve the attenuation properties of 
the PPRs depicted in Fig. 2 both damping and periodic properties are employed.

The supports of the pipelines depend on the flexural stiffness kv of the pipe rack’s columns. In Fig. 2a, flexible 
springs support the periodic pipeline. Figure 2b depicts the model of a pipeline supported by rigid supports. 
Hereinafter, the models in Fig. 2a, b are called  PPRf and  PPRr, respectively. The damping models proposed to 
enhance vibration mitigation are linear and have different sources: internal material damping due to localized 
plastic deformation within the apparent elastic limit, see Fig. 2c; and the external viscous damping that is pro-
portional to the forcing frequency, see Fig. 2d. Since the length dz → 0 , the damping is continuously distributed 
along the pipe. Therefore, internal and external damping forces can be represented by two different equations 
for the Euler–Bernoulli beam.

For the  PPRf and the internal damping model the Euler–Bernoulli equation reads,

where ρ, E, A and J are, respectively, the material density, the Young modulus, the area and the inertia of the 
beam cross section. The term w(z,t) is the beam transversal displacement. Ci is the internal damping coefficient. 
Instead, for the externally damped  PPRf, the Euler–Bernoulli equation reads,

where  Ce is the external damping coefficient. In (1) and (2) the damping coefficients read, respectively,

where ζi/e is the modal damping ratio; i/e specifies internal or external damping and ωn defines the modal fre-
quency. Note that the two coefficients Ci/e have different physical meanings and are dimensionally different. 
Ci in (3) comes from the assumption that structural internal damping does not entail plastic deformations in 
the cross section of the  pipe19. In this regard, Kimball et al.20 showed that, for metals subjected to cyclic stress, 
internal friction entails strains that remain below the elastic limit. Ce in (4), instead, represents the common 
proportionality constant of a viscous damping model.

The mass and the stiffness of the pipe are constant along its length. Since the systems are periodic, we consider 
(1) and (2) and apply the Floquet–Bloch theorem to the jth support,
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Figure 2.  (a)  PPRf: periodic damped pipeline coupled with the flexible supports and the masses  mpr of a pipe 
rack; (b)  PPRr: periodic damped pipeline on rigid supports; (c) internal or structural damping model for a 
continuous beam and (d) external viscous damping model.
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where μi/e = iκL is the propagation constant, κ is the wavenumber and L is the distance between the supports. 
Equation (5) is the dispersion relation wavenumber – frequency of a periodic damped pipeline. More specifically, 
the terms ψi/e, χi/e and ηi/e are functions of Ωi/e and read,

where ω defines the circular frequency. Full derivation of (5) is provided in the Supplementary information: 
Appendix A.

About the  PPRr, a dispersion relation between μ and ω is available in  literature15 and reads,

Two-dimensional FEMs of the  PPRf and  PPRr have been modelled via Ansys APDL 19.0 with Euler–Ber-
noulli beam elements. A time-harmonic rotation ϕi/p ei2πft was imposed as input at the left-end of the pipe, and 
the steady state response ϕo/p (f) was read as the output rotation at the right-end. The system response in the 
frequency domain is evaluated as follows,

where the FRF is the frequency response function expressed in dB. To foster the dynamics of a finite periodic 
system, the FEM consists of a 40 spans beam.

Optimization of the stochastic dynamic performance of the VIS. To analyse the performance of 
the VIS, nonlinear transient analyses were carried out for the equations of motion of a single unit cell of the 
 PPRf, i.e., a SS beam supported by flexible springs. The aforementioned FEM was adopted to obtain the consist-
ent mass matrix M and the symmetric stiffness matrix K, whereas the damping matrix C was computed with the 
proportional Rayleigh damping model. The discretized model of the SS equipped with a vibro-impact device is 
depicted in Fig. 3.

The interface of the SS has a two-sided displacement constraint, such that the node g-5 impacts two rigid 
bumpers. In this case, we directly model the VIS and let the system of equations of motion to remain fully linear. 
The coefficient of restitution (COR) is defined according to Newton’s  law26:

where  vr is the relative velocity of two colliding bodies, and + and − mean post-impact and pre-impact, respec-
tively. Since the bumpers are fixed to the ground, relative velocities coincide with absolute velocities. Note that 
Eq. (10) does not need further nonlinearities to be included. However, to take into account the typical limitations 
of the aforementioned instantaneous  model26,34–36, very small time steps of the order of  10–5 have been used; thus, 
the simulations showed a limited dependence from time  steps36.

The system of equations of motion read,

where M, C and K are respectively the mass, damping and stiffness matrices, r is the influence vector and  ug 
is the ground displacement; the dot represents the derivative wrt the time. When impact occurs, the g node is 
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Figure 3.  Single span (SS) discretized into 9 nodes that vibrate vertically and rotate; f indicates the nodes that 
do not experience the impact, whereas g-5 has a two-sided displacement constraint.
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subjected to the impact forces, and the f nodes vibrate according to inertial and restoring forces. The equations 
of motion now read,

where Rg is the impact force vector. Equation (12) is divided in two different equations, one for the non-impacting 
nodes f and one for the impacting node g. Since the impact force is unknown, we consider the first equation of 
the system in (12), as

To obtain the structural response at the ith step of the algorithm, Eq. (12) is employed when the pipe and the 
bumper are not in contact. Conversely, if the contact occurs, (13) is used. A flowchart that describes the algorithm 
implemented in MATLAB for the nonlinear impact model is shown in Fig. 4.

At a certain instant td the energy dissipated by linear viscous damping is computed as follows:

whilst the energy dissipated by the impacts reads,

where nd is the number of impacts occurred up to td, and ẋ− and ẋ+ represent the velocity vector before and 
after impact, respectively. Once the seismic event is extinguished, free decay oscillation occurs in the structure 
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ẍf
ẍg
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)

(14)Edam(td)=

t = td
∑

t = 0

dxTt .C.ẋt ,
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Figure 4.  Flow chart for the implementation of the impact in the transient analyses in MATLAB.
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up to a certain time tr at which the rest condition is fully restored, and the number of impacts is nim. The total 
input seismic energy reads:

Therefore, at time instant tr, all the input seismic energy has been dissipated by means of viscous damping and 
impacts. In these conditions, the design parameters COR and gap that optimize the seismic performance of the 
VIS are sought by a multi-objective optimization problem based on two objective functions defined as follows,

where nim is the number of impacts, Eimp and Etot are defined by (15) and (16), respectively. The purpose of 
installing bumpers next to the pipe is to dissipate the largest amount of energy through impacts whilst limiting 
the number of impacts, to prevent damage to the pipe. Therefore, the objective function O1 must be maximized 
(equivalently, − O1 must be minimized), while O2 is to be minimized. To reduce the number of transient analyses, 
we combine CCD and Kriging modelling with the explanatory variables COR, gap, and Sa (T1), and response 
variables O1 and O2. More precisely, Sa (T1), i.e., the intensity measure (IM), represents the spectral accelera-
tion at the first period T1 of the system. The 15 yellow points of Fig. 5 indicate the computer-experimental data 
set-sampling points-defined by the CCD. The ranges of values of the explanatory variables are shown in Table 1.

Note that, to take into account the stochastic nature of the seismic input, the IM Sa(T1) has been included in 
the CCD. The system is nonlinear and sometimes chaotic, see Supplementary Information—Appendix B; therefore, 
a certain variability of the system response wrt the input is expected. As indicated in Table 1, Sa (T1) is bounded 
by the mean minus/plus the standard deviation of the selected records. Then, to evaluate O1 and O2 for the 15 
points selected within the CCD, seismic transient analyses are carried out. Each ground motion, see Table 2, is 
scaled at the relevant value of Sa(T1) and thus, O1 and O2 are calculated as the mean of the values obtained by 
employing all the seismic records described hereinafter. After running all the 15 × 12 analyses needed for CCD, 
a Gaussian polynomial regression between the 15 mean values by means of the Kriging metamodeling provided 
by  UqLab43 has been performed. It has been assumed that the model output is a realization of a Gaussian process 
defined as the joint distribution of the prediction and the true model  response43.

Then, the Pareto front is used to provide the optimal values of the multi-objective optimization problem by 
seeking the nondominated solutions among the O1 and O2 quantities of (17) and (18) evaluated through the Krig-
ing metamodel. To each nondominated solution of the Pareto front will correspond an optimal triplet (Sa(T1), 
gap, COR). Therefore, the optimal values of gap and COR are connected to a certain value of Sa(T1); nonetheless 
Sa(T1) is not a true design parameter since it characterizes a (seismic) stochastic process.

(16)Etot(tr) = Edam(tr) + Eimp(tr).

(17)O1(tr)=
Eimp

Etot
,

(18)O2(tr) = nim,

Figure 5.  Central composite design (CCD) points for the three factors: gap, COR, and Sa(T1).

Table 1.  Bounds of the CCD variables.

CCD variable Lower limit Upper limit

COR (−) 0.01 0.99

gap (mm) 40 80

Sa (T1) (g) 0.6 3.4
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Seismic input, fragility assessment, and optimal design parameters selection. To evaluate the 
performance of the SS depicted in Fig. 3, a set of twelve natural records with a 2% probability of exceedance 
in 50 years, are employed; that is, relevant to safe shutdown events (SSE). The selection of the natural seismic 
records follows the principle sketched in Fig. 6.

Both the mean spectrum and the mean spectrum plus one standard deviation of the selected accelerograms 
match with the uniform hazard spectrum (UHS) of a specific site, Priolo Gargallo, Sicily in Italy, in a least-square 
sense. More precisely, let us consider s0 the target spectrum value vector, that is, the UHS, and evaluate  as the 
spectra matrix of the na accelerograms. One can define a vector of na selection coefficients, α, where each element 
can only take a binary value of 1 or 0, and the sum of the elements is equal to ns, i.e., the number of accelerograms 
to be selected. Thus, the vector α that satisfies

is sought. The selection is performed with all possible combinations of the ns accelerograms among a set of na 
records. This operation allows to preserve full seismic hazard consistency of the site and minimize the record-
to-record variability yet considering the dispersion of the records about the mean spectrum. Table 2 reports the 
set of accelerograms and their main characteristics.

Finally, we perform the fragility assessment of the SS. Along this line, the fragility function FDM (IM) is 
defined as the probability that the node g-5 of Fig. 3 reaches or exceeds some damage measure (DM) for a given 
ground motion with IM = im. In particular, the DM is connected to the number of impacts nim, i.e., the engi-
neering demand parameters (EDP), that exceeds a certain threshold. Typically, FDM (IM) is assumed to follow a 
lognormal distribution, and hence reads,

(19)min

(

∥

∥

∥

∥

Sα

ns
− s0

∥

∥

∥

∥

2
)

Table 2.  Main characteristics of the selected records. Note that the * indicates the records that are employed 
for performing the incremental dynamic analyses (IDA). The number of impacts, indeed, is related to the 
maximum velocity exhibited by the system during the transient analysis, and to observe a sufficient number of 
impacts, the duration of the strong motion must exceed about 40 s.

Event Country R, distance (km) M, magnitude

1. Victoria Mexico Mexico 13.8 6.33

2. Loma Prieta USA 3.85 6.93

3. Northridge‐01* USA 20.11 6.69

4. Montenegro* Montenegro 25.00 6.90

5. Erzincan Turkey 13.00 6.60

6. South Iceland* Island 7.00 6.50

7. L’Aquila Mainshock* Italy 4.87 6.30

8. Loma Prieta USA 11.03 6.93

9. Landers* USA 11.03 7.28

10. South Iceland* Island 11.00 6.40

11. L’Aquila Mainshock* Italy 4.63 6.30

12. L’Aquila Mainshock* Italy 4.39 6.30
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Figure 6.  Response spectrum, mean spectrum and mean + standard deviation spectrum matching the UHS; in 
gray, each individual spectrum of Table 2.
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where Φ is the Gaussian cumulative distribution with a median Xm and a logarithmic standard deviation β, 
calculated as,

where M is the number of ground motions considered, and IMi is the IM value associated with onset of DM for 
the ith ground motion. The values of IMi are the results of the IDA performed on the SS. Commonly, the IDA 
involves scaling each ground motion in a suite until it causes the exceedance of some  DM52. However, for the 
purpose of generality, FDM (IM) in (20) is calculated for all the feasible nim = EDP corresponding to the Pareto 
front. In fact, the Pareto front highlights the optimal design parameters gap and COR. Therefore, each optimal 
value of the Pareto front corresponds to a fragility surface (FDM (IM), IM, EDP). The corresponding volume  Vj 
under the jth surface is computed as follows

where j indicates the jth optimal solution of the Pareto front. According to the law of total probability, (23) is 
proportional to the total probability of exceedance of all the edps. Then, one should perform the fragility assess-
ment for all the j = {1,…,n} Pareto front solutions and select the optimal couple gap—COR that minimizes (23). 
In this work, an application of this procedure is shown for three optimal couples.

Results
Dispersion curves of the PPRs and enhancement of the vibration mitigation. The pipe cross 
section has an outer and inner diameter of 0.2731 m and 0.2639 m, respectively, whilst the inertia J of the cross 
section is 3.4977e−5  m4. The span length L is 12 m, and the modulus of elasticity E and the mass density ρ are 200 
GPa and 7800 kg/m3, respectively. The stiffness kv of the pipe rack’s pillars reads 17.9 MN/m and the mass mpr of 
the repetitive unit of the coupled system PPR is equal to 22,880 kg. Consequently, the first natural frequency of 
the  PPRf reads ωpr,1 = (kv/mpr)0.5 = 4.45 Hz.

When the pillars’ stiffness is considerably higher than the pipe’s flexural stiffness, the pillars act as rigid sup-
ports wrt the flexural behaviour of the pipe. Thus, the  PPRr is modelled as a beam supported by simple supports. 
The dispersion diagrams of the internally damped  PPRr, are calculated via Eq. (6) and are depicted in Fig. 7.

Figure 7 shows the dispersion diagrams (μ−f) for seven values of material damping ζi of Eq. (3). The yellow 
bands in Fig. 7a, b highlight four bandgaps in the following frequency ranges: [0–5.25] Hz, [11.94–21.01] Hz, 
[32.79–47.27] Hz and [64.30–84.03] Hz. The dispersion diagrams of Fig. 7 reveal common properties of linear 
periodic systems. The blue curve represents the undamped pipe and clearly defines the bandgaps in the regions 
where Re(μ) ≠ 0 and, consequently, Im(μ) = 0 or Im(μ) = π, unveiling the existence of pure evanescent waves. 
Instead, for damped pipes with nonzero values of ζ, Re(μ) ≠ 0 in the overall frequency domain, since attenuating 
oscillatory waves can always be observed for all frequencies. However, the damping is included in the main struc-
ture, and clearly enlarges the attenuation rate Re(μ). This effect is more evident as the frequency range increases. 
Figure 7c shows the FRF of (9), evaluated with the FE software. A good agreement is observed between Fig. 7c 
and the dispersion curves of Fig. 7a, b, in terms of passbands, bandgaps and attenuation rates.

Let us now consider the  PPRf depicted in Fig. 2b. The pipe rack is modelled by a spring-mass oscillator that 
matches the first lateral mode of the rack. Iqbal et al.17 demonstrated the effectiveness of such an approximation. 
The relevant dispersion curves are calculated via (5) and plotted in Fig. 8.

Fig. 8a, b show the dispersion relations of the  PPRf, where a local resonance is observed around the first 
natural frequency of the pipe rack ωpr,1 = 4.45 Hz. The first bandgap, that initially ranged from 0 to 5.25 Hz, is 
now divided into two different bandgaps. Generally, bandgaps can be tuned with local resonances, whereas the 
Bragg scattering induces bandgaps that are constrained by the periodic system dimensions. Nevertheless, in this 
paper the  PPRf’s first natural frequency belongs to the first bandgap frequency range, and therefore no additional 
bandgaps appear. Conversely, Fig. 8a, b depict a zoom on a narrow passband that opened due to the pipe rack’s 
resonance. Finally, one can notice a good agreement between the numerical FRF of Fig. 8c and the analytical dis-
persion diagrams of Fig. 8a, b. Again, the damping induces an attenuation rate that increases with the frequency.

The combination of Eq. (7) with (8) allows for plotting the dispersion diagrams and the bandgaps relevant 
to the external damping case. Also in that situation, favourable bandgap zones can be obtained; for brevity, they 
are not shown or commented on.

(20)
FDM(IM) ≡ P

[

EDP > edp|IM = im
]

,

FDM(IM)=�

(

ln(im/Xm)

β

)

,

(21)Xm = exp

(

1

M

M
∑

i

ln(IMi)

)

,

(22)β=

(

1

M− 1

M
∑

i

[ln(IMi/Xm)]
2

)1/2

,

(23)Vj =

∫

IM

∫

EDP

FDM(IM) dIM dEDP,
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Optimization results. As anticipated in a previous subsection, the Pareto front S1 depicted in Fig. 9 pin-
points the nondominated solutions among all the possible realizations evaluated with the Kriging model. This 
Pareto front is called S1 to avoid confusions with Fig. 12.

The surrogate Kriging metamodel generates O1 and O2 as 3D-arrays for the parameters gap, COR and Sa(T1). 
Therefore, the Pareto front highlights the optimal triplets (Sa(T1), gap, COR), and the optimal values of gap and 
COR corresponds to a certain optimal value of Sa(T1). Nonetheless, Sa(T1) is characterized by randomness and 
influences the optimal solutions. For clarity, the three surfaces that depict the values of O1 wrt three optimal 
Sa(T1), equal to 0.6 g, 1.3 g and 2 g, are depicted in Fig. 10.

Note that the objective function O1 defined in (17), must be maximized. Nonetheless, we plot -O1 in Fig. 10 
and then seek its minimum values. The surfaces O2 of (18) refer to the optimal Sa(1) equal to 0.6 g, 1.3 g and 2 g 
in Fig. 11.

The black circles in both Figs. 10 and 11 represent the Pareto front of Fig. 9.
To underline the sensitivity of the optimization problem to the seismic input Sa(T1), Fig. 12 shows the Pareto 

fronts corresponding to several levels of Sa(T1).
It is clear that the optimal solutions differ significantly as the severity level of the seismic input varies. For 

clarity, Fig. 13 depicts all the Pareto fronts of Fig. 12 along with the relevant surfaces O1 and O2.
One can clearly note that the optimization is sensitive to the seismic input Sa(T1); therefore, the inclusion of 

the IM in the CCD is justified. A few more general considerations arise from the optimization results. Both the 
objective functions O1 and O2 depend more on the COR than on the gap. In particular, optimal values of COR 
are found in the whole range 0–1, whereas large gap values are optimal for strong earthquakes, say Sa(T1) equal 
to 2 g, 2.7 g, and 3.4 g. For lower values of Sa(T1), the optimal gaps cover the whole range 40–80 mm.

Fragility assessment and selection of the optimal solution. To perform the fragility assessment, 
three optimal solutions among those of the Pareto front in Fig. 9 are randomly taken; and the IDA are calculated 
for the eight ground motions indicated with the * in Table 2. Figure 14 reports the results of the IDA and the 
relevant 2D fragility functions.

The impact phenomenon may generate chaotic motion, as described in the Supplementary Information—
Appendix B; hence the IDAs result in responses that are not unique for a certain EDP = nimp. Vamvatsikos et al.52 
described the occurrence of multiple capacity points, and recommended to handle this ambiguity by an ad hoc, 

0 1 2
Re(

i
) [ - ]

0

10

20

30

40

50

60

70

80

90

100

f 
[H

z]
i
 = 0

i
 = 0.01

i
 = 0.02

i
 = 0.05

i
 = 0.1

i
 = 0.2

i
 = 0.3

0 1 2 3
Im(

i
) [rad]

0

10

20

30

40

50

60

70

80

90

100

f 
[H

z]

-400-2000
FRF [dB]

0

10

20

30

40

50

60

70

80

90

100

f 
[H

z]

(a)                                         (b)                                          (c)                                  

Figure 7.  Dispersion curves for an internally damped  PPRr as (a) function of the real part of μi, (b) function of 
the imaginary part of μi; (c) numerical FRF of the finite periodic (40 spans) FEM. The bandgaps are indicated in 
yellow.
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specified procedure, i.e., by conservatively defining the limit state point as the lowest IM. However, we preferred 
to filter the numerical data of the IDAs, see the circles in Fig. 14, with a moving average technique that resulted 
in the solid curves of Fig. 14. Indeed, the IDA curves appear rather noisy because of the nonlinear and some-
times chaotic behaviour of the VIS. Then, the fragility surfaces are calculated by Eq. (20) and are plotted both 
in Figs. 14 and 15.

Figure 8.  Dispersion curves for an internally damped  PPRf: (a) real part of μi, (b) imaginary part of μi; (c) the 
numerical FRF.

Figure 9.  Plot of all the realizations of the Kriging metamodel and the Pareto front S1; the circles indicate 
the three optimal solutions investigated in the Subsection “Fragility assessment and selection of the optimal 
solution”.
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Figure 10.  O1 surfaces for (a) the “optimal” Sa(T1) equal to 0.6 g; (b) equal to 1.3 g; and (c) 2 g.

Figure 11.  O2 surfaces for (a) the optimal Sa(T1) equal to 0.6 g, (b) 1.3 g, and (c) 2 g.

Figure 12.  Pareto fronts obtained for certain Sa(T1) levels.
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Moreover, we can compute the volumes underneath the surfaces of Fig. 15a–c with (23). The lower the surface, 
the lower the probability of exceedance of the edp, namely the number of impacts  nimp. The volumes relevant 
to Fig. 15a–c read: V1 = 6698 g, V2 = 7069 g, and V3 = 7270 g. Therefore, the Optimal solution #1 is the one that 
minimizes the volume under the fragility surface.

Finally, and for the sake of completeness, the reader can appreciate the speed of the algorithm sketched 
in Fig. 4 by using Optimal solution #1. In this respect, Table 3 reports the CPU time required to simulate the 
response of the optimal VIS to the records listed in Table 2 using MATLAB. The simulations run on a processor 
with a clock speed of 3.00 GHz and 4 cores.

One can observe that the CPU time employed to solve the system of Eq. (11) is effective in relation to the 
event duration.

Discussion and outlooks
In this paper, the enhanced attenuation properties of two periodic damped pipelines coupled with pipe racks 
(PPRs) have been shown; and the relevant results have been confirmed by the FE software Ansys on a 40-spans 
PPR. Two damping models were proposed in view of vibration mitigation, i.e., internal material damping, 
and external viscous damping. A local resonance was observed around the first natural frequency of the PPR 
ωpr,1 = 4.45 Hz. The damping clearly enlarges the attenuation rate Re(μ), and this effect is more evident as the 
frequency range increases. As a result of the analyses, we have found a good agreement between the frequency 
response function (FRF) of the FE models and the analytical band structures.

Then, a generic single span (SS) of the PPR equipped with a vibro-impact device was considered; and due 
to the nonlinearities, a design optimization procedure was conceived and carried out. The procedure aims to 
maximize the dissipation energy and to minimize the number of impacts. Both objective functions resulted to 
be more sensitive to the COR than to the gap; the response surface was generated by the Kriging metamodel 
with a Gaussian 2nd order-polynomial regression. It was found that the metamodels were endowed with sharp 
curvatures wrt to COR. Optimal values of COR were found in the whole range 0–1; large gap values appear to 
be optimal for strong earthquakes, say Sa(T1) equal to 2 g, 2.7 g, and 3.4 g, whereas optimal gaps are found in 
the whole range 40–80 mm for lower values of Sa(T1). Moreover, we have found that the optimal solution with 
gap = 64 mm and COR = 0.49 is the one that minimizes the probability of exceeding the damage states (DM) con-
nected to the engineering demand parameter (EDP), that is, the number of impacts. The incremental dynamic 
analysis (IDA) resulted in curves that are not unique for a certain EDP, i.e., noisy, mainly due to the chaotic 

Figure 13.  On the left column, each single Pareto front of Fig. 12; on the middle and the right column, the −O1 
and  O2 surfaces, respectively.
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behaviour of the VIS. In addition, the IDA curves displayed significant record-to-record variability: for example, 
in Fig. 14a, the EDPnim = 3000 was reached for values of Sa(T1) equal to about 1 g, 1.6 g, 1.7 g, 2.4 g, 2.5 g, 5 g, 
5.3 g and 7 g. This result, however, must be imputed to the frequency content of the records and the nonlinear 
response of the vibro-impact that exhibits a strong dependency upon frequency and amplitude of excitation, 
and sometimes chaos. To investigate this last issue, we have excited the single span (SS) with periodic loadings 
for a restricted range of frequencies in the vicinity of ωpr,1, and have reported the relevant bifurcation diagrams 
in the Supplementary Information – Appendix B. When impact does not occur, the bifurcation diagram shows 
that the system is linear and periodic. Conversely, the impact activates higher modes of vibrations, and non-
periodic solutions that can be found in the bifurcation diagram. Therefore, three of these trajectories have been 
investigated, and the largest Lyapunov exponents were found to be higher than zero, thus indicating the presence 
of divergence and chaos.

In conclusion, we have shown how to evaluate the safest design solution for a nonlinear dissipation system 
despite the (seismic) stochastic nature of the loading. Nevertheless, some challenges remain undisclosed. The 
defined dispersion curves concern the linearly damped system without impact-induced dissipation. Nonlinear 
waves, in fact, distort as they propagate and change their original shape along the periodic medium; therefore, 
numerical transient analyses of a multiple-span pipe rack with vibro-impact devices may reveal unintended 
periodic features of the impacting repetitive structure.

Figure 14.  IDA curves on the left side and 2D color plot of the fragility function on the right side for: (a) the 
first optimal point with gap = 64 mm, COR = 0.49; (b) the second optimal point with gap = 58 mm, COR = 0.52; 
and (c) the third optimal point with gap = 80 mm, COR = 0.39. These optimal points are indicated by the circles 
in Fig. 9.
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