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Identification of disease 
propagation paths in two‑layer 
networks
Guangjun Li 1,2*, Gang Liu 3, Xiaoqun Wu 3,4 & Lei Pan 2,4

To determine the path of disease in different types of networks, a new method based on compressive 
sensing is proposed for identifying the disease propagation paths in two‑layer networks. If a limited 
amount of data from network nodes is collected, according to the principle of compressive sensing, it 
is feasible to accurately identify the path of disease propagation in a multilayer network. Experimental 
results show that the method can be applied to various networks, such as scale‑free networks, small‑
world networks, and random networks. The impact of network density on identification accuracy is 
explored. The method could be used to aid in the prevention of disease spread.

Complex network research has been a trendy area and is on the rise. The area of research is expanding, from 
protein interaction networks to biological networks, from scientific research networks to social networks, from 
information transmission networks to disease propagation networks, and from transportation networks to logis-
tical networks. Complex network research topics include  synchronization1,2,  robustness3, node  importance4, 
structure identification, and  stability5, among  others6–9. The simulation of disease models is one of them, and it 
is an important component of complex network  research10–12.

Disease propagation and propagation path identification are two aspects of research on the disease model 
of a complex network. The single-layer network model of disease was first investigated in disease  models13. 
The models involved include SIS (susceptible-infected-susceptible)10–13, SIR (susceptible-infected-removed)12,14, 
SIRS (susceptible-infected- removed- susceptible)15, SEIR (susceptible-exposed-infected-recovered)16, SEIRS 
(susceptible-exposed-infected-recovered-susceptible)17, SIQRS (susceptible-infected-quarantined-recovered-
susceptible)18, SIVRS (susceptible-infected-variant-recovered-susceptible)19,20, etc. The propagation characteris-
tics of the SIS model under the condition of infected individual  mobility10, the nonlinear infectivity and adaptive 
weighted SIS  model13, the network-based SIS epidemic model with global behavior  notes21, the SIS epidemic 
model with infectious  latency22, the epidemic situation of nodes with a square  lattice13, and so on are among 
the most studied models. Path identification in the SIS model of a single-layer disease propagation network was 
also investigated by Zhesi Shen et al.23. Dongmei Fan et al. investigated the influence of geometric correlation 
on epidemic propagation with multilayer disease  models24. Paulo Cesar Ventura da Silva et al. investigated 
epidemic propagation with consciousness and varied time scales in multilayer  networks25, and Fuzhong Nian 
et al. simulated the MR-SIS propagation process in multirelational  networks26. There is more research on the 
model of disease propagation in the above research than there is on identifying the propagation path. There is 
currently just a small amount of literature on disease path identification, and it is focused on single-layer disease 
networks. In multilayer networks, there is a lack of literature on path identification. This may be because path 
identification in multilayer disease networks is difficult. Furthermore, identifying the disease propagation path 
in multilayer networks is critical for disease prevention and  control27. We will investigate the identification of 
propagation paths in a multilayer disease network in this paper.

The Granger causality  test28, synchronization-based29, and compressive sensing-based topology 
 identification30,31 are all common methods. The Granger method of topology identification necessitates sto-
chastic network node perturbations, which is not realistic in disease propagation networks. The synchronization-
based method requires constructing an auxiliary network with a very general form and designing some adap-
tive controllers. However, the compressive sensing-based method in this paper does not need these additional 
conditions. To identify the topology of a disease propagation network, only a small amount of measurement 
data is needed. Compressed sensing is a new sampling theory that can obtain discrete samples of a signal when 
the sampling rate is substantially lower than Nyquist, allowing for distortion-free signal reconstruction.The 
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compressive sensing-based method has the advantages of requiring less data to be measured and having a high 
identification  accuracy32,33. The basic concept of compressive sensing is Y = AX , where Y ∈ Rm , A is a m× n 
dimensional matrix, X ∈ Rn , and m ≪ n . Only a few values of Y and A need to be measured to reliably identify 
X when there are enough zero elements in it. The aim of this paper is to use compressive sensing to identify the 
topology of disease spread in multilayer networks.

Method
Figure 1 depicts a typical two-layer disease model. The crowd’s spread of consciousness is shown in the upper 
 layer34, where nodes represent the individuals and edges between nodes indicate information propagation paths. 
Contacts via Facebook, WeChat, and other social media platforms can be used to spread information. The model 
used in the upper layer is UAU, where U represents the individual who is unaware of the disease and A repre-
sents the one who is aware. After acquiring information from those who are aware, those who are unaware can 
be changed into aware, with a probability of � . The state of the node is A (aware) if the node is aware of disease; 
otherwise, the status is U (unaware). The lower layer depicts the spread of disease among humans, with nodes 
representing people and edges between nodes representing disease propagation paths. We use the conventional 
SIS model in the lower layer, where S represents the susceptible population and I represents the infected popula-
tion. In the lower layer, we use S(i) to denote the status of infected and susceptible nodes as follows:

and the state of an arbitrary node i is denoted as M(i) in the upper layer, where

We use aij and bij in the networks to denote the edges between nodes in the upper and lower networks, respec-
tively (especially if there is an edge between node i and node j, then aij = 1 or bij = 1 ; otherwise, aij = 0 or 
bij = 0 ). If node i is unaware of the disease during disease propagation, node i may be converted to aware after 
being notified by surrounding nodes. The probability is denoted by ri(t) . The probability that node i will be 
infected by surrounding nodes at time t is qA01i (t) if it is susceptible and aware. The probability is qU01

i (t) if node 
i is unaware. The following are the changes in ri(t) , qA01i (t) , and qU01

i (t) over time:

 where pAi  is the infection probability of node i in the susceptible population if node i is aware, pUi  is the infection 
probability of node i if node i is unaware, and � is the probability of node i transitioning from unaware to aware 
when getting a notification. Meanwhile, node i recovers at a probability of σ after infection.

(1)S(i) =

{

1 infected,
0 susceptible,

(2)M(i) =

{

1 aware,
0 unaware.

(3)

ri(t) =1− (1− �)ai1M1(t)+···+aiNMN (t) = 1− (1− �)

N
∑

j=1,j �=i
aijMj(t)

,

qA01i (t) =1− (1− pAi )
bi1S1(t)+···+biN SN (t) = 1− (1− pAi )

N
∑

j=1,j �=i
bijSj(t)

,

qU01
i (t) =1− (1− pUi )

bi1S1(t)+···+biN SN (t) = 1− (1− pUi )

N
∑

j=1,j �=i
bijSj(t)

,

Figure 1.  Sketch of a two-layer epidemic network used in this work. The upper layer (virtual contact) 
represents the spreading of awareness, where nodes have two possible states: unaware (U) or aware (A). The 
lower layer (physical contact) corresponds to the network where the epidemic spreading takes place. The nodes 
are the same actors as that in the upper layer, and their states can be: susceptible (S) or infected (I).
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Taking the logarithm of both sides of Eq. (3), we can obtain

When one measures at different time points and obtains the state of multiple copies, then Eq. (4) can be written 
as a matrix:

where �m×(N−1) is defined as the state of other nodes except node i.

at different time t, one obtains the following equation:

We just need to solve vector X in Eq.(5) to find the propagation paths between node i and other nodes in the dis-
ease model. Letting i = 1, 2, · · · ,N , we can identify the paths among all nodes. The problem is then transformed 
into solving the equation �X = Y  , where � is a m× (N − 1) matrix, Y is a known vector, and the X vector is 
to be determined. According to the  literature23, qA01i (t) and qU01

i (t) can be obtained based on big data. For a 
specific disease, pAi  and pUi  are  known23, and only the status of each node needs to be measured. When there are 
few nonzero elements in X, we only need a minimal number of measurements to accurately solve X, according 
to compressive sensing  theory35,36. Minimizing the number of nonzero components in X produces the sparsest 
solution to �X = Y  with respect to X, i.e.,

Classical Tikhonov regularization is used to solve �X = Y  to obtain accurate reconstruction and increase numer-
ical stability. Then, this problem can be approximated by

The regularization value α is used to avoid large deviations from the optimal solution. To solve the convex opti-
mization problem, we usually use alternating direction method of multipliers (ADMM)  algorithms37.

Numerical simulation. We use different network structures for simulation to verify the universality of 
our method of identifying propagation paths. It is assumed that a specific disease has spread throughout a com-
munity. The notations pAi  and pUi  denote the infection probability of a node in the aware and unaware states, 
respectively. In practice, pAi < pUi  . � represents the probability that a node will become aware of the disease after 
being notified by any of its neighbours, and σ represents the recovery probability. We set the path value to 1 if 
there is a disease propagation path between two nodes in the community, which corresponds to bij = 1 . We state 
in the identification procedure that the path is regarded to exist if the identification value is bij ∈ [1− ε, 1+ ε] 
and nonexistent if the value is bij ∈ [−ε, ε] . The value of ε in this paper is 0.01.

TPR (true positive rate) and TNR (true negative rate) are indicators of identification accuracy, with the TPR 
being the ratio of all correctly identified paths out of all existing paths and the TNR representing the percentage 
of all correctly identified nonexistent paths out of all nonexistent paths.

The identification error for nonzero (existing) and zero (nonexistent) edges is represented by Enz and Ez , 
respectively.

(4)
In(1− qA01i (t)) = In(1− pAi ) ·

N
∑

j=1,j �=i

bijSj(t),

In(1− qU01
i (t)) = In(1− pUi ) ·

N
∑

j=1,j �=i

bijSj(t).

(5)�m×(N−1)X(N−1)×1 = Ym×1,

X =(bi1, bi2, · · · , bi−1, bi+1, · · · , bN )
T ;

Y =(y1, y2, · · · , ym)
T , yi = In(1− qA01i (t)) or yi = In(1− qU01

i (t));

� =(φ1,φ2, · · · ,φm)
T ;

φi =(S1(ti)In(1− ptii ), · · · , Si−1(ti)In(1− ptii ), Si+1(ti)In(1− ptii ), · · · ,

SN (ti)In(1− ptii ))

(6)











S1(t1)In(1− pt1i ) · · · Si−1(t1)In(1− pt1i ) Si+1(t1)In(1− pt1i ) · · · SN (t1)In(1− pt1i )

S1(t2)In(1− pt2i ) · · · Si−1(t2)In(1− pt2i ) Si+1(t2)In(1− pt2i ) · · · SN (t2)In(1− pt2i )
...

...
...

...
...

...

S1(tm)In(1− ptmi ) · · · Si−1(tm)In(1− ptmi ) Si+1(tm)In(1− ptmi ) · · · SN (tm)In(1− ptmi )
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bi1
...

bi,j−1

bi,j+1
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biN





















=











In(1− qt101i (t1))

In(1− qt201i (t2))
...

In(1− qtm01i (tm))











.

(7)min � X �0, subject to �X = Y .

(8)min
X

� �X − Y �2 +α � X �1,
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where b′ij indicates the identification value of the existing edge and bij indicates the true value. The true value of 
bij for the existing edge between nodes i and j is 1.

where b′ij indicates the identification value of nonexistent edges.

Identification paths of disease propagation in ER, WS, and BA networks. We initially discover disease propagation 
paths in various types of networks using numerical simulation. Random networks (ER), small-world networks 
(WS), and scale-free networks (BA) are the networks we chose. The three networks are mostly used to mimic 
real population relationships in disease propagation  models6,27,34. The following are the practical implications: 
Everyone can be considered a node, and there are a great number of paths linking them in a WS network. People 
who know each other are represented by the connected nodes. A few nodes in BA networks have a great number 
of connections, while the majority of nodes have minimal connections.Given a specific number of nodes, there 
is the same probability of a path existing between each pair of nodes in an ER network, u and v. The data ratio 
in the simulation refers to the proportion of actual observed data to the data necessary for a typical solution. 
The typical solution takes N − 1 measurements to solve the solution vector (bi1, bi2, · · · , bi−1, bi+1, · · · , bN )

T , 
as given in Eq. 6. However, compressive sensing assumes that only k times ( k < N − 1 ) of data measurement 
are necessary to solve the vector, and the data ratio is defined as the ratio of k to N − 1 . The parameters are as 
follows: all networks’ edge connection probability is 10% , and the total number of nodes in all three networks is 
500. The infection probability is 20% , pAi = 0.4, pUi = 0.7 , and σ=0.2. The identification of paths connecting all 
nodes is repeated separately 30 times in the simulation, and the average value is taken. The result of the identifi-
cation is presented in Fig. 2, with the top and lower boundaries of each data point label representing the result’s 
standard deviations.

The disease propagation paths for the three networks can be accurately determined, as shown in Fig. 2. The 
WS network outperforms the others in terms of identification, while the ER network comes in second. This could 
be because the nodes in the WS network are more uniformly connected than those in other networks. When 

Enz =

N
∑

i=1,j=1

N
∑

j �=i,bij=1

(bij − b
′

ij)/

N
∑

i=1,j=1

N
∑

j �=i,bij=1

bij ,

Ez =

N
∑

i=1,j=1

N
∑

j �=i,bij=0

b
′

ij/

N
∑

i=1,j=1

N
∑

j �=i,bij=0

1,

Figure 2.  Identification results of disease propagation paths in three different networks: ER, WS, and BA. (a) 
True positive rate (b) True negative rate. (c) Average relative error (d) Average absolute error.
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the data ratio is 40% , the propagation paths of the WS and ER networks may be reliably identified in Panels 
(a) and (b) of Fig. 2. The paths of the BA network are also accurately identified when the data ratio is 50% . The 
errors of identification vary with the data ratio, as seen in Panels (c) and (d) of Fig. 2. The relative error of the 
real existing path is shown in Panel (c) of Fig. 2, whereas the average absolute error of the nonexistent path is 
shown in Panel (d). When the data ratio is 40% , the average relative error and absolute error of the WS and ER 
networks in identification are already very small, as shown in Panels (c) and (d) of Fig. 2. The ER network is 
zero and 0.009, and the WS network is all zero. The BA network is the worst. When the data ratio is 50% , each 
of the three networks has a zero error.

Impact of network density on identification. To investigate the impact of network density on identification, we 
simulate networks of the same kind but with varied densities. In this case, we use the BA scale-free model. The 
network’s density parameters are m = 2 , m = 4 , and m = 8 . When generating the network, m represents the 
number of connection edges of the new node. The network density is 3.92% , 7.68% and 14.72% , respectively. The 
number of network nodes is set to 100, and the rest of the settings are the same as in  “Conclusion” Section Fig. 3 
depicts the identification result.

As shown in Fig. 3, propagation paths may be accurately identified at three different path densities while 
maintaining the same data ratio. However, as the path density of the network increases, the accuracy of the 
identification decreases. The identification accuracy of the TPR in three different path densities is 90% , 60% , 
and 7% when the data ratio is 20% , as shown in Panel (a) of Fig. 3. The identification accuracy of the TNR is 
better than that of the TPR, as shown in Panel (b) of Fig. 3; however, the identification accuracy diminishes as 
path density increases. The identification accuracy is 98% , 94% , and 86% when the data ratio is 20% . The relative 
and absolute errors of identification rapidly decrease as the data ratio increases, as seen in Panels (c) and (d) 
of Fig. 3. The absolute error is decreased to zero when the data ratio is 60% , and the relative error is reduced to 
zero when the data ratio is 70%.

The compressive sensing method has the advantage of identifying the unknown path with less data. Only 
a few monitoring data are required to determine the disease’s propagation path. Even with a poor data ratio, 
we can still roughly identify the path that the disease takes to propagate. Fig. 3 illustrates this. We only need 
20% of the data in the BA network with 3.92% density, and the recognition accuracy can reach 90% . When the 
network density is 14.72% , the required monitoring data are approximately 40% , and the identification accuracy 
is approximately 80%.

Figure 3.  Identification performance with varying data ratio Rm in three 100-node BA networks, where 
ε = 0.01 , and the density parameter is given as m = 2 , 4, and 8 separately.
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Conclusion
To accurately identify disease propagation paths in multilayer networks, this paper uses compressive sensing 
to identify disease propagation paths using only a few measurement data. The method can accurately identify 
the path in many types of networks, including ER, WS, and BA, according to experimental data. It has the best 
identifying performance among them in the WS network. The identification performance of BA networks with 
various densities has been examined and assessed. The results reveal that as network density increases, the accu-
racy of identification decreases and the error increases. The path of disease propagation can still be accurately 
identified assuming appropriate measurement data are added. This method could help in the prevention of 
disease epidemics in the general population.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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